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Abstract

The effects of inserted needle on the subcutaneous interstitial flow is studied.

Our goal is to describe the physical stress affecting cells during acupuncture

needling. The convective Brinkman equations are considered to describe the

flow through a fibrous medium. Three-dimensional simulations are carried

out by employing an ALE finite element model. Numerical studies illustrate

the acute physical stress developed by the implantation of a needle.

Keywords: Finite element method, ALE, FreeFem++, acupuncture,

Brinkman model, interstitial fluid flow

∗Corresponding author
Email addresses: yannick.deleuze@ljll.math.upmc.fr (Yannick Deleuze),

marc.thiriet@upmc.fr (Marc Thiriet), twhsheu@ntu.edu.tw (Tony W.H. Sheu)

Preprint submitted to Computers & Fluids August 3, 2016



1. Introduction

In recent years, computational techniques have been widely used by re-

searchers to investigate and simulate biological flow within three dimensional

context. Applications include blood flow models, air flow models in the respi-

ratory tract, interstitial flow models, and chemical mediators transport. Most5

of the structure and fluid interactions have been considered with simplified

rigid wall or deformable wall models.

Methods to predict flows that account for moving domains or domain de-

formability using the finite element method are based on fixed mesh methods

or moving mesh methods. On the one hand, fixed mesh methods include the10

immersed boundary formulation [1] which relies on the description of solid

phase by adding a force vector to the governing equations. A similar ap-

proach, known as the fictitious domain formulation [2, 3], is based on the

use of Lagrange multipliers to enforce kinematic condition on the solid phase

or alternatively based on a penalty method [3]. Both methods track solid15

phase with a characteristic function or a level set function. These methods

are well adapted to moving bodies in the fluid or fluid-structure computa-

tion with interface of a highly geometric complexity. The latest method has

been implemented with FreeFem++ [4]. On the other hand, moving mesh

methods include the Lagrangian method, the moving finite element (MFE)20

method [5, 6], the deformation map method [7], the Geometric Conservation

Law (GCL) method [8], the space/time method [9–12], and the Arbitrarily

Lagrangian–Eulerian (ALE) method [13–15] for the solution of fluid dynamic

problems. Note that the space-time finite element method can also be im-

plemented in FreeFem++ in 1D and 2D.25
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Significant progress has been made in recent years in solving fluid-structure

interaction problems in deformable domains using the ALE method. The

mathematically rigorous ALE framework has been well accepted to be appli-

cable to simulate transport phenomena in time and allows some freedom in

the description of mesh motion. A theoretical analysis of the ALE method30

can be found in [16, 17]. However, ALE equations are computationally ex-

pensive when considering a large domain because of the necessity of contin-

uously updating the geometry of the fluid and structural mesh. Interface

tracking with time discretization also raises some implementation questions.

The implementation of the ALE method can be done in FreeFem++ [18].35

Study of biological flows plays a central role in acupuncture research. For

a description of the underlying acupuncture mechanism, one can refer to [19–

21]. Interstitial flow models take into account interstitial fluid, cell membrane

interaction, and fiber interactions [22]. Mastocytes, among other cells, are

able to respond to fluidic stimuli via mechanotransduction pathways leading40

to the degranulation and liberation of chemical mediators [23]. Degranula-

tion mechanisms include interaction of the cell membrane with interstitial

and cytosolic flow [24]. Ion transport in narrow ion channels is another chal-

lenging task to model. Indeed, degranulation of chemical mediators upon

stimulation can be triggered by a rapid Ca2+ entry in the cytosol [25].45

Modeling the three-dimensional interstitial flow in tissues is extremely

challenging for a large number of reasons: a complex geometry of the tissue,

an accurate constitutive description of the behavior of the tissue, and flow

rheology are only few examples. Macroscopic models developed for incorpo-

rating complex microscopic structure are essential for applications [22, 25–50
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28]. In the context of acupuncture, the interstitial flow has been modeled

by the Brinkman equations in two-dimensional fixed domain [27, 28] and

two-dimensional deformable domain [19].

In this paper, a porous medium formulation of the interstitial fluid is

presented for modeling mastocyte-needle interaction in deformable connec-55

tive tissues. This formulation is based on the conventional ALE character-

istic/Galerkin finite element model for an unsteady flow thought a porous

medium modeled by the incompressible Brinkman’s equations in a three-

dimensional moving domain. The motion of the needle in the fluid is taken

into account. The main features of the model can be summarized as follows:60

1. The loose connective tissue of the hypodermis is constituted of scat-

tered cells immersed in extracellular matrix. The extracellular matrix

contains relatively sparse fibers and abundant interstitial fluid. The

interstitial fluid contains water, ions and other small molecules. Such a

fluid corresponds to plasma without macromolecules and interacts with65

the ground substance, thereby forming a viscous hydrated gel that can

stabilize fiber network [29, 30].

2. The Darcy law is used to approximate fibers of the media as a contin-

uum and allows us to compute the actual microscopic flow phenomena

that occur in the fibrous media.70

3. Brinkman’s law then allows us to describe the flow field around solid

bodies such as the embedded cells in extracellular matrix.

4. Transient convective Brinkman’s equations [31–33] are applied to sim-

ulate interstitial flow in a fibrous medium driven by a moving needle

[19].75
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Although the previously stated approach cannot give information on mi-

croscopic events, it can describe macroscale flow patterns in porous media.

Focus is given to the effects of interstitial fluid flow during implantation of

an acupuncture needle until the tip has reached the desired location within

the hypodermis. The objective of this work is to give a description of the80

physical stress (shear stress and pressure) influencing tissue and cells.

2. Methods

On a microscopic scale, the interstitial tissues are composed of fluid, cells,

and solid fibers. The interstitial fluid contains water, ions and other small

molecules. Such a fluid corresponds to plasma without macromolecules [22].85

It interacts with the ground substance to form a gel-like medium.

A model taking into account individual fibers and cell adhesion complexes

is already a falsification of the reality. Moreover, it is very costly from the

computational viewpoint. When considering an organized homogeneous ma-

trix of fibers, computation of such a model shows the microscopic fluctuations90

of the fluid shear stress at the protein level [34].

Due to biological complexity, the interstitium is considered as a fluid-filled

porous material [22]. The interstitial flow is simulated using the incompress-

ible convective Brinkman equation. The phenomenological model cannot

give information on unneeded microscopic events but the Darcy equation95

can describe macroscale flow patterns in porous media.

2.1. Flow equations

The governing equations of the unsteady flow of an incompressible fluid

through a porous medium (with mass density ρ, dynamic viscosity µ, and
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kinematic viscosity ν = µ/ρ) can be derived as [31–33]:100

ρ

αf

(
∂ū

∂t
+ ū · ∇

(
ū

αf

))
− µ∇2ū +

1

αf
∇(αfpf ) = − µ

P
ū in Ω(t),(1)

∇ · ū = 0, (2)

ū(x, 0) = ū0(x), (3)

where − µ
P

ū denotes the Darcy drag, P the Darcy permeability, ū the aver-

aged velocity vector, and pf the pressure. The averaged velocity is defined

as

ū = αfuf , (4)

where uf is the fluid velocity and

αf =
fluid volume

total volume
(5)

is the fluid volume fraction. This volume fraction corresponds to the effec-

tive porosity of the medium. The fluid fractional volume αf is taken as a105

space-dependent parameter to model the distinguished properties around an

acupoint.

The system of equations (1-2) is applied to the case of a flow driven by the

motion of a needle in the deformable domain Ω(t) [19]. The domain boundary

can be decomposed into four surfaces: the needle boundary denoted by Γ1, an110

impervious boundary (wall) denoted by Γ2, the mastocyte membrane denoted

by Γ3, and the open boundary on the sides denoted by Γ4. The classical no-

slip condition is applied to the needle surface Γ1, the rigid wall Γ2, and the

cell surface Γ3. At the outer boundary Γ4 a traction-free boundary condition
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is prescribed. Thus, the entire set of boundary conditions reads as115

ū = vneedle, on Γ1, (6)

ū = 0, on Γ2, (7)

ū = 0, on Γ3, (8)

−µ∇ū · n + pfn = 0, on Γ4. (9)

2.2. Finite element model

The governing equations in section 2.2.1 are solved using the finite element

software FreeFem++ [35]. This code programs the discrete equations derived

from the finite element weak formulation of the problem presented in section

2.2.3 using a characteristic/Galerkin model to stabilize convection terms.120

2.2.1. Scaling and setting for numerical simulations

L denotes the characteristic length that is the needle width and V is the

characteristic velocity set to be the needle maximum velocity. Rescaling the

variables leads to

x′ = x
L
, t′ = t

(L/V)
, p′ =

pf
(ρV 2)

, u′ = ū
V
. (10)

In the resulting dimensionless form, after removing the prime in the rescaled

variables, the dimensionless incompressible convective Brinkman equations

read as

1

αf

∂u

∂t
+

1

αf
u · ∇

(
u

αf

)
− 1

Re
∇2u +

1

αf
∇(αfp) = − 1

Da Re
u, (11)

∇ · u = 0. (12)

7



where Re is the Reynolds number and Da is the Darcy number. The previous

dimensionless parameters are defined as

Re = ρLV
µ
, Da = P

L2 . (13)

In considering the above dimensionless governing equations, the normalized125

boundary conditions on the domain boundary are prescribed as

u = v on Γ1, (14)

u = 0 on Γ2, (15)

u = 0 on Γ3, (16)

− 1

Re
∇u · n + pn = 0 on Γ4. (17)

2.2.2. ALE implementation on moving meshes

In the present paper, the ALE framework built in FreeFem++ is employed

to compute the flow in the moving domain. In the current problem setting,

the motion of needle is prescribed with respect to time. The boundary of the130

domain is thus exactly known at each time so that an area preserving mesh

can be precisely generated.

The framework of the ALE approach employed is briefly described below.

Let Ω(t) be the domain at each time t with regular boundary ∂Ω(t). In the

Eulerian description, the fluid is described by

u(x, t) and p(x, t), ∀x ∈ Ω(t). (18)

To follow a moving domain, one can define the ALE map as

Ã : ω̃ × R+ → R2 (x̃, t)→ Ã(x̃, t) := Ãt, (19)
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such that ω(t) = Ã(ω̃, t), where ω̃ is the reference computational domain.

Given an ALE field q̃ : ω̃ × R+ → R, its Eulerian description is given by

∀x ∈ Ω(t), q(x, t) = q̃(Ã−1
t (x), t) (20)

In ALE framework, the computational domain velocity (or ALE velocity

or grid velocity) is defined as

ã(x̃, t) =
∂Ã
∂t

(x̃, t), ∀x̃ ∈ ω̃, (21)

so that we can get

a(x, t) = ã(Ã−1
t , t). (22)

The ALE time-derivative is defined as

∂q

∂t

∣∣∣∣
Ã

=
d

dt
q(Ã(x̃, t), t), (23)

and the following identity holds

∂q

∂t

∣∣∣∣
Ã

= (a · ∇)q +
∂q

∂t
. (24)

A general method is used to construct the mapping or, equivalently, the

domain velocity a. The domain velocity is computed by solving the following

Laplace equation subjected to the Dirichlet boundary condition [36]135

−∇2a = 0, a|∂Ω
= v. (25)

In the ALE framework, the equations (11-12), subject to a prescribed

needle motion, become

∂(u/αf )

∂t

∣∣∣∣
Ã

+

((
u

αf
−a

)
·∇
)

u

αf
− 1

Re
∇2u +

1

αf
∇(αfp) = − u

Da Re
, (26)

∇ · u = 0. (27)

The solutions u and p are sought subject to the initial condition (3) and the

boundary conditions (7-9) described in section 2.2.1.
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2.2.3. Finite element discretization

The convective incompressible Brinkman equations are approximated with

the method of characteristics for the nonlinear convection term and a Galerkin140

method for the rest of the spatial derivative terms. The time discretization

gives

1

∆t

(
un+1

αf
−
(

un

αf

)
◦Xn

)
− 1

Re
∇2un+1 +

1

αf
∇(αfp

n+1) = − un+1

Da Re
,(28)

∇ · un+1 + εpn+1 = 0, (29)

in Ωn+1. Note that Xn is approximated by Xn ≈ x −
(

un

αf
− an

)
(x) ∆t.

Note that a small stabilization parameter epsilon is introduced following the

so-called artificial compressibility method introduced in [37] and [38].145

For all ϕ ∈ H1/2(Γ1), let us introduce the product space

Vϕ =
{

(w, q) ∈ [H1(Ω)]2 × L2(Ω),w = ϕ on Γ1,w = 0 on Γ2

}
. (30)

Let

(a, b) =

∫
Ωn+1

ab dx. (31)

The weak formulation becomes the following finite dimensional linear system:

find (un+1, pn+1) ∈ Vg such that

1

∆t

(
un+1

αf
−
(

un

αf

)
◦Xn,w

)
+

1

Re

(
1

αf
∇un+1,∇w

)
−
(
αf p

n+1,∇ ·
(

w

αf

))
+

1

Da Re

(
un+1,w

)
= 0,(

∇ · un+1, q
)

+ ε
(
pn+1, q

)
= 0,

(32)

for all (w, q) ∈ V0.
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The Taylor-Hood P2–P1 elements are adopted to ensure satisfaction of the

LBB stability condition [39]. Note that temporal accuracy order of the pre-

sented characteristic/Galerkin method is one. Meshes are generated within

FreeFem++ and mesh adaptation is performed prior to simulations so as to150

improve mesh quality around the needle and the cell.

2.3. Validation

Let the interaction of an oscillating circular cylinder with a fluid at rest

be considered. The problem is to find the velocity vector field u and the

pressure p of a flow satisfying the incompressible Navier-Stokes equations in155

the domain Ω = [−l, l] × [−h, h] with no-slip boundary conditions on the

cylinder and traction-free boundary condition on the border of the physical

domain.

The horizontal velocity of the cylinder of diameter D is given by uc(t) =

−U cos(2π f t), where U = 2π Af . At each time step, the mesh is moved160

according to the displacement a ∆t, where a is the solution of (25). As

soon as the mesh is moved, the computed an and un, that are defined in

the previous mesh, are then pushed to the new mesh without interpolation

following the scheme proposed in [18].

Numerical simulation of flow is carried out for Re = 100 and KC :=165

U
D f

= 5, where U = 1, D = 1, T := 1/f = 5, and A = 5/2π. In figures 1 and

2, good comparison between the computed solution and experimental data

from [40] is shown at two different times that correspond to the phases 7π/6

and 11π/6.
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Figure 1: Comparison of the computed and referenced solutions along the line x = −0.6∗D

(top) and x = 1.2 ∗D (bottom) for the values of u = (u, v) at t = 55
12T .

3. Results170

In the present work, the needling direction is perpendicular to the skin

surface. In practice, it is possible that the needling direction is oblique to the

skin surface. The simulation results show that the insertion of an acupunc-

ture needle can influence interstitial fluid flow. The computed velocity field

shows that at a location away from the needle, the effect of the stress field175

on the meshwork vanishes (Fig. 3). Furthermore, when the needle reaches

its maximum speed, the interstitial pressure gradient becomes higher at a

location close to the needle tip (Fig. 4). The changes in the interstitial fluid

flow and the high pressure gradient can affect the activities of the masto-

cyte pools in the stimulated area. Local mastocyte pools can be activated180
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Figure 2: Comparison of the computed and referenced solutions along the line x = −0.6∗D

(top) and x = 1.2 ∗D (bottom) for the values of u = (u, v) at t = 59
12T .

in regions close to the needle and remain granulated outside this region of

triggered mechanical stress.

Another subject of interest is the effects of the fluidic stimuli on an inter-

stitial cell. Local mechanical forces can trigger the activation of mechanore-

sponsive proteins on the cell surface [20, 41] so that Ca++ is allowed to enter185

the cytosol via pressure and shear stress gated ion channels. Simulations

are carried out by considering fixed cells and no-slip boundary condition

prescribed at the cell surface. Figure 5 shows the pressure contours on the

surface of a cell added closely to the needle. Figure 6 shows the streamlines

and the shear stress along the cell surface. The pressure and the shear stress190

on the cell surface appear to be higher in the region closest to the needle tip.

Fluctuation of the pressure and the time varying shear stress suggest that
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Figure 3: The predicted contours of velocity along the z-direction resulting from the needle

(blue) motion in interstitial fluid with αf = 0.7, Da = 0.321, and Re = 0.103

the whole cell surface could be stimulated. Mastocytes have been shown to

respond to fluid shear stress [41]. These local mechanical forces participate

in the activation of mechanoresponsive proteins on the cell surface [20] so195

that Ca++ is allowed to enter the cytosol via pressure and shear stress gated

ion channels.
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4. Conclusions

The proposed three-dimensional ALE finite element model is able to de-

scribe the interstitial flow and pressure from the macroscopic point of view200

when a needle is inserted and moved within the hypodermis. High local fluid

pressure and shear stress on cells are most likely to appear near the needle

tip region. However, the proposed method does not model the deformation of

the extracellular matrix and only the effect of interstitial flow is considered.

When considering the rotation of the needle, a large deformation of tissues205

is observed with the twisting of the fibers around the needle, that in turn

makes the corresponding change in interstitial flow. A fluid/structure model

taking into account the mechanics of the fibers should then be considered.

This study has shown that the numerical prediction of the interstitial pres-

sure and shear stress is an essential tool to gain a better understanding of210

the activity involved in acupuncture needling.
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[17] A. Quarteroni, M. Tuveri, A. Veneziani, Computational vascular fluid

dynamics: problems, models and methods, Computing and Visualiza-260

tion in Science 2 (4) (2000) 163–197.

[18] A. Decoene, B. Maury, Moving meshes with FreeFem++, Journal of

Numerical Mathematics 20 (2013) 195.

17



[19] Y. Deleuze, M. Thiriet, T. W. H. Sheu, Modeling and simulation of local

physical stress on the mastocytes created by the needle manipulation265

during acupuncture, Communications in Computational Physics.

[20] M. Thiriet, Intracellular Signaling Mediators in the Circulatory and Ven-

tilatory Systems, Vol. 4 of Biomathematical and Biomechanical Model-

ing of the Circulatory and Ventilatory Systems, Springer New York, New

York, NY, 2013.270

[21] M. Thiriet, Y. Deleuze, T. W. Sheu, A biological model of acupuncture

and its derived mathematical modeling and simulations, Communica-

tions in Computational Physics.

[22] M. A. Swartz, M. E. Fleury, Interstitial flow and its effects in soft tissues,

Annual Review of Biomedical Engineering 9 (1) (2007) 229–256.275

[23] J. Y. Park, S. J. Yoo, L. Patel, S. H. Lee, S.-H. Lee, Cell morphologi-

cal response to low shear stress in a two-dimensional culture microsys-

tem with magnitudes comparable to interstitial shear stress, Biorheology

47 (3) (2010) 165–178.

[24] Y.-H. Tseng, H. Huang, An immersed boundary method for endocytosis,280

Journal of Computational Physics 273 (2014) 143–159.

[25] M. Thiriet, Cell and Tissue Organization in the Circulatory and Venti-

latory Systems, Vol. 1 of Biomathematical and Biomechanical Modeling

of the Circulatory and Ventilatory Systems, Springer New York, New

York, NY, 2011.285

18



[26] A. Blasselle, Modélisation mathématique de la peau, Thèse de doctorat,
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Équations Aux Dérivées Partielles, Masson, 1983.
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Figure 4: The predicted contours of velocity along the z-direction resulting from the needle

(blue) motion in interstitial fluid with αf = 0.7, Da = 0.321, and Re = 0.103.
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Figure 5: The predicted pressure contours on the needle and cell surface as the needle

moves toward the cell with αf = 0.7, Da = 0.321, and Re = 0.103.
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Figure 6: The predicted streamlines and shear stress on the cell surface as the needle

moves toward the cell with αf = 0.7, Da = 0.321, andRe = 0.103.
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