C. S. Peskin, Numerical analysis of blood flow in the heart, Journal of Computational Physics, vol.25, issue.3, pp.220-252, 1977.
DOI : 10.1016/0021-9991(77)90100-0

R. Glowinski, T. Pan, and J. Periaux, A fictitious domain method for 215 dirichlet problem and applications, Computer Methods in Applied Mechanics and Engineering, vol.111, pp.3-4, 1994.

J. Janela, A. Lefebvre, and B. Maury, A penalty method for the simulation of fluid - rigid body interaction, ESAIM: Proceedings
DOI : 10.1051/proc:2005010

URL : https://hal.archives-ouvertes.fr/hal-00728372

A. Lefebvre, Fluid-Particle simulations with FreeFem++, ESAIM: Proceedings, pp.120-132, 2007.
DOI : 10.1051/proc:071810

URL : https://hal.archives-ouvertes.fr/hal-00728387

K. Miller, Moving Finite Elements. II, SIAM Journal on Numerical Analysis, vol.18, issue.6, pp.1033-1057, 1981.
DOI : 10.1137/0718071

K. Miller and R. Miller, Moving finite elements. I, SIAM Journal on Nu- 225 merical, Analysis, vol.18, issue.6, pp.1019-1032, 1981.

G. Liao and D. Anderson, A new approach to grid generation, Applicable Analysis, vol.29, issue.3-4, pp.285-298, 1992.
DOI : 10.1016/0021-9991(74)90114-4

W. Cao, W. Huang, and R. Russell, A Moving Mesh Method Based on the Geometric Conservation Law, SIAM Journal on Scientific Computing, vol.24, issue.1, pp.230-118, 2002.
DOI : 10.1137/S1064827501384925

T. E. Tezduyar, M. Behr, S. Mittal, and J. Liou, A new strategy for finite element computations involving moving boundaries and interfaces???The deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders, Computer Methods in Applied Mechanics and Engineering, vol.94, issue.3, pp.353-371, 1992.
DOI : 10.1016/0045-7825(92)90060-W

O. Pironneau, J. Liou, and T. Tezduyar, Characteristic-Galerkin and Galerkin/least-squares space-time formulations for the advection-diffusion equation with time-dependent domains, Computer Methods in Applied Mechanics and Engineering, vol.100, issue.1, pp.117-141, 1992.
DOI : 10.1016/0045-7825(92)90116-2

T. E. Tezduyar, ]. J. Donea, S. Giuliani, and J. P. Halleux, Computation of moving boundaries and interfaces and [15 An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions, Computer Methods in Applied Mechanics and Engineering, vol.33, pp.1-3

C. Grandmont and Y. Maday, Fluid-Structure Interaction: A Theoretical Point of View, Revue Europ??enne des ??l??ments Finis, vol.94, issue.2, pp.633-653, 2000.
DOI : 10.1080/12506559.2000.10511479

A. Quarteroni, M. Tuveri, and A. Veneziani, Computational vascular fluid dynamics: problems, models and methods, Computing and Visualiza- 260 tion in, Science, vol.2, issue.4, pp.163-197, 2000.

A. Decoene and B. Maury, Moving meshes with freefem++, Journal of Numerical Mathematics, vol.20, issue.3-4, 2013.
DOI : 10.1515/jnum-2012-0010

Y. Deleuze, M. Thiriet, and T. W. Sheu, Modeling and simulation of local physical stress on the mastocytes created by the needle manipulation 265 during acupuncture, Communications in Computational Physics

M. Thiriet-deleuze and T. W. Sheu, Intracellular Signaling Mediators in the Circulatory and Ventilatory Systems of Biomathematical and Biomechanical Modeling of the Circulatory and Ventilatory Systems A biological model of acupuncture and its derived mathematical modeling and simulations, Communications in Computational Physics, p.270, 2013.

M. A. Swartz and M. E. Fleury, Interstitial Flow and Its Effects in Soft Tissues, Annual Review of Biomedical Engineering, vol.9, issue.1, pp.229-256, 2007.
DOI : 10.1146/annurev.bioeng.9.060906.151850

J. Y. Park, S. J. Yoo, L. Patel, S. H. Lee, and S. Lee, Cell morphological response to low shear stress in a two-dimensional culture microsystem with magnitudes comparable to interstitial shear stress, Biorheology, vol.47, issue.3, pp.275-165, 2010.

Y. Tseng and H. Huang, An immersed boundary method for endocytosis, Journal of Computational Physics, vol.273, issue.273, pp.143-159, 2014.
DOI : 10.1016/j.jcp.2014.05.009

M. Thiriet, Cell and Tissue Organization in the Circulatory and Ventilatory Systems of Biomathematical and Biomechanical Modeling of the Circulatory and Ventilatory Systems, Thèse de doctorat, p.285, 2011.

W. Yao and G. H. Ding, Interstitial fluid flow: simulation of mechanical environment of cells in the interosseous membrane, Acta Mechanica Sinica, vol.2, issue.1, pp.602-610, 2011.
DOI : 10.1007/s10409-011-0439-7

]. W. Yao, Y. Li, and G. Ding, Interstitial Fluid Flow: The Mechanical Environment of Cells and Foundation of Meridians, Evidence-Based Complementary and Alternative Medicine, vol.14, issue.1, pp.290-291, 2012.
DOI : 10.1146/annurev.bioeng.9.060906.151850

M. Thiriet, Cells and Tissues, in Biomathematical and Biomechanical Modeling of the Circulatory and Ventilatory Systems, pp.295-306, 2008.
DOI : 10.1007/978-1-4419-9758-6_2

C. T. Hsu and P. Cheng, Thermal dispersion in a porous medium, International Journal of Heat and Mass Transfer, vol.33, issue.8, pp.1587-1597, 1990.
DOI : 10.1016/0017-9310(90)90015-M

P. Nithiarasu, K. N. Seetharamu, and T. Sundararajan, Natural convective heat transfer in a fluid saturated variable porosity medium, International Journal of Heat and Mass Transfer, vol.40, issue.16, pp.3955-3967, 1997.
DOI : 10.1016/S0017-9310(97)00008-2

K. Vafai and C. L. Tien, Boundary and inertia effects on flow and heat transfer in porous media, International Journal of Heat and Mass Transfer, vol.24, issue.2, pp.195-203, 1981.
DOI : 10.1016/0017-9310(81)90027-2

J. A. Pedersen, F. Boschetti, and M. A. Swartz, Effects of extracellular fiber architecture on cell membrane shear stress in a 3D fibrous matrix, Journal of Biomechanics, vol.40, issue.7, pp.1484-1492, 2007.
DOI : 10.1016/j.jbiomech.2006.06.023

M. A. Fernández, L. Formaggia, J. Gerbeau, and A. Quarteroni, The derivation of the equations for fluids and structure, Cardiovascular Mathematics
DOI : 10.1007/978-88-470-1152-6_3

A. J. Chorin, A numerical method for solving incompressible viscous flow problems, Journal of Computational Physics, vol.2, issue.1, pp.12-26, 1967.
DOI : 10.1016/0021-9991(67)90037-X

R. Témam, Une méthode d'approximation de la solution deséquationsdeséquations de Navier-Stokes

P. Raviart and J. Thomas, Introduction`AIntroduction` Introduction`A L'analyse Numérique Des ´ Equations Aux Dérivées Partielles, 1983.

H. Dütsch, F. Durst, S. Becker, and H. Lienhart, Low-Reynolds-number flow around an oscillating circular cylinder at low Keulegan???Carpenter numbers, Journal of Fluid Mechanics, vol.360, pp.249-271, 1998.
DOI : 10.1017/S002211209800860X

F. Wei, X. Shi, J. Chen, and L. Zhou, Fluid shear stress-induced cytosolic calcium signalling and degranulation dynamics in mast cells, Cell Biology International Reports, vol.61, issue.2, pp.45-51, 2012.
DOI : 10.1016/j.ceca.2008.05.003