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An optimal time control problem for the one-dimensional, linear, normalized heat equation, in the presence of a scaling parameter

Introduction

In an optimal time control problem, one searches the minimum time for an eligible control, in order to bring a dynamic system, from an arbitrary initial point, to a final prescribed one. This problem is classical in finite dimension, with nice properties, due to the maximum principle of Pontriaguine, and the bang-bang property (see the seminal article by R. Bellman, I. Glicksberg and O. Gross [START_REF] Bellman | On the "bang-bang" control problem[END_REF]).

The generalization in infinite dimension was initiated by H.O. Fattorini [START_REF] Fattorini | Time-optimal control of solutions of operational differenital equations[END_REF], [START_REF] Fattorini | A remark on the "bang-bang" principle for linear control systems in infinite dimensional spaces[END_REF], [START_REF] Fattorini | Infinite dimensional linear control systems[END_REF], and developed by J.L. Lions [START_REF] Lions | Contrle optimal de systmes gouverns par des quations aux drives partielles[END_REF]. The book of M. Tucsnak et G. Weiss [START_REF] Tucsnak | Observation and control for operator semigroups[END_REF] is an unavoidable reference for the control.

The objective of our work is to study the existence and uniqueness of an optimal time control problem for the one-dimensional, linear heat equation, in the presence of a scaling parameter, and to determine whether the bang-bang property can be satisfied.

The general problem for the equation of the linear heat-dimensional, on a compact K ⊂ IR, can be stated as follows:

   ẏ(x, t) = ∆y(x, t) + ω (x) u(x, t) ∀ (x, t) ∈ K × IR + y(x, t) = 0 ∀ x ∈ ∂K, ∀ t ∈ IR + y(t = 0) = y 0 ∈ L 2 (K) ∀ x ∈ K : ω (x) = { 1 if x ∈ ω 0 if not
where u is in L ∞ ([0, T ], U ), and where:

∥u∥ L ∞ ([0,T ],U ) ≤ 1 for almost all t ∈ [0, T ]
Definition 1 An element y f will be called available if there exists a strictly positive number τ , and u in L ∞ ([0, T ], U ) such that:

∥u∥ L ∞ ([0,T ];U ) ≤ 1 for almost all t ∈ [0, T ].
and if the solution of the above system satisfies:

y(τ, •) = y f (•)
The objective is to find the control u ⋆ which is accessible, with a final time τ ⋆ as small as possible.

One can obtain the bang-bang property by means of the maximum principle, if the system can be controled exactly (see for example, the article of J. Lohac et de M. Tucsnak [START_REF] Lohac | Maximum principle and bang-bang property of time optimal controls for Schrdinger type systems[END_REF]).

It is now well known that for specific equations (for the general heat equation, for instance), the exact controllability is not verified. This is the reason why we choose to study new conditions, without using the maximum principle. With an assumption on the L ∞ -null controllability, we can establish the bang-bang property (see also the paper of S. Micu, I. Roventa and M. Tucsnak [START_REF] Micu | Time optimal boundary controls for the heat equation[END_REF], and the one of G. Wang [START_REF] Wang | L ∞ -null controllability for the heat equation and its consequences for the time optimal control problem[END_REF]).

Invariant solutions for the linear, one-dimensional, normalized, heat equation

We are interested in the following, to the linear, one-dimensional, normalized, heat equation:

∂y ∂t = ∂ 2 y ∂x 2 ∀ (x, t) ∈ R × [0, T ]
where T is a positive real number, with the initial condition:

y(x, 0) = y 0 (x) ∀ x ∈ IR
and where y 0 denotes a given function. The analytical solution is given, for any (x, t) ∈ R × [0, T ], by:

y classical (x, t) = 1 2 √ πt ∫ ∞ -∞ y 0 (u) e -(x-u) 2 4t du
The linear heat equation has a natural scaling invariance. Let us denote by y a solution. Then, for any strictly positive real number Λ, the mapping:

(t, x) → y Λ (t, x) = Λy(Λ 2 t, Λ x)
is also a solution.

By applying the method developed by Jean-Yves Chemin and Claire David [START_REF] Chemin | Sur la construction de grandes solutions pour des quations de Schrdinger de type " masse critique[END_REF], [START_REF] Chemin | From an initial data to a global solution of the nonlinear Schrdinger equation: a building process[END_REF], one can introduce the mapping F, belonging to L 2 loc (R) × R ⋆ + × N ⋆ , by:

F(y 0 , Λ, N 0 ) = y 0 + ε N0 ∑ j=1 Λ -j y 0 (Λ -j •) , ε ∈ {-1, +1}, N 0 ∈ N ⋆
The building of thus mapping takes its origin in the profile theory, introduced by P. Gérard et H. Bahouri [START_REF] Bahouri | High frequency approximation of solutions to critical nonlinear wave equations[END_REF]. It is based on the idea that two solutions of an evolution equation, of scales, sufficiently different, almost not interact.

We are thus interested, in the following, to initial data of the form:

y 0 (x) + ε N0 ∑ j=1 y 0,Λ,j (x) = y 0 (x) + ε N0 ∑ j=1 1 Λ j y 0 ( x Λ j ) , Λ > 0
The exact analytical solution ỹ, which depends on the space variable x, the time variable t, and the scaling parameter Λ, is given by:

ỹ(x, t, Λ) = y classical (x, t) + ε 1 2 √ π t ∫ ∞ -∞ N0 ∑ j=1 y 0,Λ,j (u) e -(x-u) 2 4 t du It is interesting to note that: ỹ(x, t, Λ) = y classical (x, t) + ε N0 ∑ j=1 1 Λ y classical ( x Λ j , t Λ 2j
) Hence, we have:

∆ỹ(x, t, Λ) = ∆y classical (x, t) + ε Λ N0 ∑ j=1 ∆y classical ( x Λ j , t Λ 2j
)

One builds thus an exact solution of the afore mentioned linear heat equation. The dependence of this solution towards the scaling parameter Λ, naturally leads to an internal control problem, which can be formulated as follows: being given a compact K = [α, β] ⊂ R, and a domain ω ⊂ K, what kind of control u does one require in order to obtain a given result ? The associated system is the following:

   ẏ(x, t, Λ) = ∆ỹ(x, t, Λ) + ω (x) u(x, t) ∀ (x, t, Λ) ∈ K × IR + × IR ⋆ + ỹ(x, t, Λ) = 0 ∀ x ∈ ∂K, ∀ (t, Λ) ∈ IR + × IR ⋆ + ỹ(x, t = 0, Λ) = ỹ0 ∈ L 2 (K) ∀ Λ ∈ IR ⋆ + ( 1 
)
where ω is the characteristic function of ω:

∀ x ∈ K : ω (x) = { 1 if x ∈ ω 0 if not
and where u is a control checking:

∀ t ≥ 0 : ∥u∥ L 2 (K) ≤ C 0
while C 0 denotes a positive constant, that depends on the initial condition ỹ0 . In the following, this initial condition will be adjusted in order to have:

C 0 ≤ 1
Let us recall the following classical results:

Proposition 1 For any strictly positive real T , and for any continuous function u defined on ω × [0, T ], the unique solution y such that:

y(t = 0, •) = y 0 (•)
is given, for any couple (x, t) belonging to K × [0, T ], by:

y(x, t) = e t ∆ y 0 (x) + ∫ t 0 e (t-τ ) ∆ ω (x) u(τ, x) dτ
Proposition 2 For any strictly positive number T , and for any continuous function u of L 2 (ω × [0, T ]), the system (1) has a unique solution ỹ such that:

ỹ ∈ C ( [0, T ], H 0 1 (K) ) , ∂ ỹ ∂t ∈ L 2 ( [0, T ], L 2 (K) )
As recalled in [START_REF] Puel | Contrle et quations aux drives partielles[END_REF], it is then natural to introduce, for any strictly positive number T , the set of reachable states at time T related to the system (1):

R(T ) = { ỹ(T ) u ∈ L 2 (K × [0, T ]) } Proposition 3 ([13])
For any strictly positive number T , the set R(T ) is dense in L 2 (K).

Proof The set R(T ) is obviously a vectorial subspace of L 2 (K).

Let us concentrate on the orthogonal of the set R(T ) in L 2 (K). To this purpose, let us consider the retrograde problem:

   -φ(x, t) = ∆φ(x, t) ∀ (x, t) ∈ K × [0, T ] φ(x, t) = 0 ∀ (x, t) ∈ ∂K × [0, T ] φ(t = 0) = φ 0 ∈ L 2 (K) (2)
This problem, which brings back to the equation of the classical heat through the of variable

t → T -t admits a unique solution φ in C ( [0, T ], L 2 (K) ) ∩ L 2 ( [0, T ], H 0 1 (K)
) with:

∂φ ∂t ∈ L 2 ( [0, T ], H -1 (K) )
By multiplying by φ each member of the relation:

ẏ = ∆y + ω u
one gets:

φ ẏ = φ ∆y
Integration leads to:

∫ T 0 ∫ K φ ẏ dx dt = ∫ T 0 ∫ ∂K φ ∆y dx dt - ∫ T 0 ∫ K ∂φ ∂x ∂φ ∂x dx dt + ∫ T 0 ∫ K φ u dx dt i.e.: ∫ T 0 ∫ K φ ẏ dx dt = - ∫ T 0 ∫ K ∂φ ∂x ∂φ ∂x dx dt + ∫ T 0 ∫ K φ u dx dt or: ∫ T 0 ∫ K φ ẏ dx dt = - ∫ T 0 ∫ ∂K ∂φ ∂x y dx dt + ∫ T 0 ∫ K ∂ 2 φ ∂x 2 y dx dt + ∫ T 0 ∫ K φ u dx dt i.e.: ∫ T 0 ∫ K φ ẏ dx dt = ∫ T 0 ∫ K ∂ 2 φ ∂x 2 y dx dt + ∫ T 0 ∫ K φ u dx dt
since φ and y take zero values on the boundary ∂K. An integration by part leads then to:

y(•, T ) φ(•, T ) - ∫ T 0 ∫ K φ y dx dt = ∫ T 0 ∫ K ∂ 2 φ ∂x 2 y dx dt + ∫ T 0 ∫ ω φ u dx dt
By taking into account:

-φ = ∆φ one gets:

y(•, T ) φ 0 (•, T ) = ∫ T 0 ∫ ω φ u dx dt As φ 0 ∈ R(T ) ⊥ one deduces: ∫ T 0 ∫ ω φ u dx dt = y(•, T ) φ 0 (•, T ) = 0
Since one can take any control function u, we have:

φ = 0 in K × [0, T ]
The generalized result of Mizohata [START_REF]Unicit du prolongement des solutions pour quelques oprateurs paraboliques[END_REF] allows then to deduce:

φ = 0 in K × [0, T ]
Thus:

φ 0 = 0 The orthogonal of R(T ) in L 2 (K) is then reduced to {0}.
One can then apply the density criterion, the one which is a corollary of the Hahn-Banach theorem:

( R(T ) ⊥ ) ⊥ = { φ ∈ L 2 (K) ∀ ψ ∈ R(T ) ⊥ : ⟨φ, ψ⟩ = 0 } = R(T )
This allows to state that the necessary and sufficient condition of density of R(T ) in L 2 (K):

R(T ) = L 2 (K)
is therefore equivalent to: R(T ) ⊥ = {0}

Corollary 1 Let us consider ỹ in L 2 (K), and a strictly positive number ε. There exists a control u, belonging to L 2 (K × [0, T ]), such that:

∥y(•, T ) -ỹ∥ L 2 (K) ≤ ε
Remark 1 Thus, the study of the approximate controllability of our linear system (1) reduces to a continuity problem, for the associate adjunct problem.

We now aim at determining if we there is a control u which verifies the following bang-bang property:

∥u(., t)∥ L 2 (K) = 1 for all t ∈ [0, τ ⋆ ]
where τ ⋆ is a unique optimal time that can lead the solution of (1) from the starting point ỹ0 to ỹf , at the time τ ⋆ . This enables one to go back to the work of G. Lebeau et L. Robbiano [START_REF] Lebeau | Contrle exact de l'quation de la chaleur[END_REF], which lead to the following result:

Proposition 4 For any ỹ0 , and for any ỹf in L 2 (K) such that

ỹ0 ̸ = ỹf
if ỹ is a solution of system ( 1), associated with u ⋆ , there is a unique optimal time τ ⋆ which leads the solution of ( 1), from the starting point ỹ0 , to ỹf , at the time τ ⋆ . Moreover, u ⋆ checks the bang-bang property, i.e.:

∥u(., t)∥ L 2 (K) = 1 for all t ∈ [0, τ ⋆ ]

Numerical results

Our numerical application is carried out by means of a direct type method (total discretization), of the afore mentioned linear heat equation, in the presence of a scaling parameter Λ > 0, with an internal control, in a domain ω ⊂ [0, 1]. More precisely, we consider the following system:

Λ 2 ẏ(Λx, Λ 2 t) = Λ 2 ∆y(Λx, Λ 2 t) + [ 1 3 , 2 3 ] (x) u(x) ∀ x ∈ [0, 1], ∀ t ∈ [0, t f ], ∀ Λ > 0 y(0, t, Λ) = 0 , y(1, t, Λ) = 0 , ∀ t ∈ [0, t f ], Λ > 0
The discretization is carried out by finite differences, with an implicit Euler scheme in time.

To this purpose, let us consider the time discretization:

0 = t 0 < t 1 < . . . < t i < . . . < t n = t f
and the space discretization:

0 = x 0 < x 1 < . . . < x j < . . . < x N +1 = 1
For any integer i belonging to {0, . . . , n}, and for any j belonging to {0, . . . , N + 1}, let us denote by:

y i,j = y Λ (t i , x j )
the value of the solution at t = t i and x = x j , for the scaling parameter Λ. We assume: ẏλ (t i , x j ) ≈ y i,j -y i-1,j t h and:

∆y Λ (t i , x j ) ≈ y i,j+1 + y i,j-1 -2 y i,j x 2 h
where:

t h = t f n , x h = Λ N + 1 , t f = Λ 2
For each integer i belonging to {1, . . . , N }, we set:

Y i =      y i,1 y i,2 . . . y i,N     
The related discrete system can be written under the following matrix form:

Λ 2 Y i+1 -Y i t h = A h .Y i+1 + B h .U i+1 (3) 
where the N × N matrix A h is given by:

A h = Λ 2 x 2 h          -2 1 0 . . . 0 1 -2 . . . . . . 0 . . . . . . . . . 0 . . . . . . -2 1 0 . . . 0 1 -2         
and where the N × N diagonal matrix B h is given by:

B h = diag (α 1 , . . . , α N )
while, for any integer i belonging to {1, . . . , N }:

α i = { 1 if 1 3 ≤ x i ≤ 2 3 0 otherwise
and:

U i+1 =    u i,1
. . .

u i,N   
where u i,j is the value chosen for the control at t = t i and x = x j .

Basic calculations enable one to solve, for all i in {1, . . . , N }, the system equivalent to (3) :

C Y i+1 = Y i + t h Λ 2 B h .U i where C = I N - 1 Λ 2 t h .A h I N denoting the N × N identity matrix.
At each time step, the matrix C is inverted, in order to calculate Y i+1 . Let us denote by X a variable which contains the whole set of values

{ u i,j i ∈ [1, N ], j ∈ [1, N ] } ∪ {t f }
One has to bear in mind that the principle of direct methods lay in minimizing a function F that yields t f with constraints, i.e., for each integer i of {1, . . . , N }: 

∥U i ∥ L 2 ([ 1 3 , 2 3 ]) ≤ 1 with the final condition: Y (t f ) = Y f
The initial and final conditions are:

∀ x ∈ K : y 0 (x) = sin(π x) , y f (x) = 0
Our simulation is carried for:

n = N
In practice, we choose the number of discretizations (N = 10 for instance), while changing the value of the scaling parameter. Numerical results are given in the following table.

The following figures show the evolution of the L 2 norm of the time control.

It is interesting to note that the L 2 norm of the time control take the value 1 for any time t in [0, t ⋆ f ]. Thus, the control has the bang-bang property. Moreover, as the scaling parameter Λ increases, so does the numerical final time, with the bang-bang property still verified. Our approach has conventionaly, consisted in studying a system with an internal control, in the presence of a scaling parameter. It is interesting to note that, due to the expression of the solution with parameter:

ỹ(x, t, Λ) = y classical (x, t) + ε N0 ∑ j=1 1 Λ j y classical ( x Λ j , t Λ 2j
) it appears interesting to consider a control of the form:

ε N0 ∑ j=1 u j Λ j y classical ( x Λ j , t Λ 2j
)

This thus leads to an affine control system. For any integer j belonging to {1, . . . , N 0 }, the control u j corresponds to a displacement in the direction

f j = ε 1 Λ j y classical ( x Λ j , t Λ 2j
)

It is then natural to study in the Lie algebra generated by the family in the spirit of what is presented in [START_REF] Coron | Quelques rsultats sur la commandabilit et la stabilisation des systmes non linaires[END_REF], [START_REF] Liang | Uber systeme von linearen partiellen differentialgleichung ester ordnung[END_REF], in so far the displacements on subintervals of K, in the given directions f i , f j , i ̸ = j, involve their Lie bracket.

Table 1

 1 Final time -Optimal time

	Λ	1	2	8	10	15	20
	t ⋆ f	0.6769	1.0486	1.7031	2.4861 4.3337	6.1435