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Abstract In this paper, we study the optimal time problem for the one-dimensional, linear heat equation, in the
presence of a scaling parameter. To begin with, we build an exact solution. The dependence of this solution as
regards the scaling parameter naturally opens the way to study the existence and uniqueness of an optimal time
control. If, moreover, one assumes the zero L∞−controllability, it enables to establish a bang-bang type property.

Keywords Optimal time control problem · null controllability · bang-bang property · heat equation, · scaling
invariance.

1 Introduction

In an optimal time control problem, one searches the minimum time for an eligible control, in order to bring
a dynamic system, from an arbitrary initial point, to a final prescribed one. This problem is classical in finite
dimension, with nice properties, due to the maximum principle of Pontriaguine, and the bang-bang property
(see the seminal article by R. Bellman, I. Glicksberg and O. Gross [1]).

The generalization in infinite dimension was initiated by H.O. Fattorini [2], [3], [4], and developed by J.L. Li-
ons [5]. The book of M. Tucsnak et G. Weiss [6] is an unavoidable reference for the control.

The objective of our work is to study the existence and uniqueness of an optimal time control problem for
the one-dimensional, linear heat equation, in the presence of a scaling parameter, and to determine whether the
bang-bang property can be satisfied.

The general problem for the equation of the linear heat-dimensional, on a compact K ⊂ IR, can be stated
as follows:

 ẏ(x, t) = ∆y(x, t) + 1ω(x)u(x, t) ∀ (x, t) ∈ K × IR+

y(x, t) = 0 ∀x ∈ ∂K, ∀ t ∈ IR+

y(t = 0) = y0 ∈ L2(K)

where T > 0, ω ⊂ Ω, while 1ω denotes the characteristic function of the set ω:
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∀x ∈ K : 1ω(x) =

{
1 if x ∈ ω
0 if not

where u is in L∞([0, T ], U), and where:

∥u∥L∞([0,T ],U) ≤ 1 for almost all t ∈ [0, T ]

Definition 1 An element yf will be called available if there exists a strictly positive number τ , and u in L∞([0, T ], U)
such that:

∥u∥L∞([0,T ];U) ≤ 1 for almost all t ∈ [0, T ].

and if the solution of the above system satisfies:

y(τ, ·) = yf (·)

The objective is to find the control u⋆ which is accessible, with a final time τ⋆ as small as possible.
One can obtain the bang-bang property by means of the maximum principle, if the system can be controled
exactly (see for example, the article of J. Lohac et de M. Tucsnak [7]).

It is now well known that for specific equations (for the general heat equation, for instance), the exact control-
lability is not verified. This is the reason why we choose to study new conditions, without using the maximum
principle. With an assumption on the L∞− null controllability, we can establish the bang-bang property (see
also the paper of S. Micu, I. Roventa and M. Tucsnak [8], and the one of G. Wang [9]).

2 Invariant solutions for the linear, one-dimensional, normalized, heat equation

We are interested in the following, to the linear, one-dimensional, normalized, heat equation:

∂y

∂t
=
∂2y

∂x2
∀ (x, t) ∈ R× [0, T ]

where T is a positive real number, with the initial condition:

y(x, 0) = y0(x) ∀x ∈ IR

and where y0 denotes a given function.
The analytical solution is given, for any (x, t) ∈ R× [0, T ], by:

yclassical(x, t) =
1

2
√
πt

∫ ∞

−∞
y0(u) e

− (x−u)2

4t du

The linear heat equation has a natural scaling invariance. Let us denote by y a solution. Then, for any strictly
positive real number Λ, the mapping:

(t, x) 7→ yΛ(t, x) = Λy(Λ2 t, Λ x)

is also a solution.
By applying the method developed by Jean-Yves Chemin and Claire David [10], [11], one can introduce the
mapping F , belonging to L2

loc(R)× R⋆
+ × N⋆, by:

F(y0, Λ,N0) = y0 + ε

N0∑
j=1

Λ−j y0(Λ
−j ·) , ε ∈ {−1,+1}, N0 ∈ N⋆

The building of thus mapping takes its origin in the profile theory, introduced by P. Gérard et H. Bahouri [12].
It is based on the idea that two solutions of an evolution equation, of scales, sufficiently different, almost not
interact.
We are thus interested, in the following, to initial data of the form:
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y0(x) + ε

N0∑
j=1

y0,Λ,j(x) = y0(x) + ε

N0∑
j=1

1

Λj
y0

( x

Λj

)
, Λ > 0

The exact analytical solution ỹ, which depends on the space variable x, the time variable t, and the scaling
parameter Λ, is given by:

ỹ(x, t, Λ) = yclassical(x, t) + ε
1

2
√
π t

∫ ∞

−∞

N0∑
j=1

y0,Λ,j(u) e
− (x−u)2

4 t du

It is interesting to note that:

ỹ(x, t, Λ) = yclassical(x, t) + ε

N0∑
j=1

1

Λ
yclassical

(
x

Λj
,
t

Λ2j

)
Hence, we have:

∆ỹ(x, t, Λ) = ∆yclassical(x, t) +
ε

Λ

N0∑
j=1

∆yclassical

(
x

Λj
,
t

Λ2j

)
One builds thus an exact solution of the afore mentioned linear heat equation. The dependence of this solution
towards the scaling parameter Λ, naturally leads to an internal control problem, which can be formulated as
follows: being given a compact K = [α, β] ⊂ R, and a domain ω ⊂ K, what kind of control u does one require
in order to obtain a given result ? The associated system is the following:

˙̃y(x, t, Λ) = ∆ỹ(x, t, Λ) + 1ω(x)u(x, t) ∀ (x, t, Λ) ∈ K × IR+ × IR⋆
+

ỹ(x, t, Λ) = 0 ∀x ∈ ∂K, ∀ (t, Λ) ∈ IR+ × IR⋆
+

ỹ(x, t = 0, Λ) = ỹ0 ∈ L2(K) ∀ Λ ∈ IR⋆
+

(1)

where 1ω is the characteristic function of ω:

∀x ∈ K : 1ω(x) =

{
1 if x ∈ ω
0 if not

and where u is a control checking:

∀ t ≥ 0 : ∥u∥L2(K) ≤ C0

while C0 denotes a positive constant, that depends on the initial condition ỹ0. In the following, this initial
condition will be adjusted in order to have:

C0 ≤ 1
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Let us recall the following classical results:

Proposition 1 For any strictly positive real T , and for any continuous function u defined on ω × [0, T ], the
unique solution y such that:

y(t = 0, ·) = y0(·)

is given, for any couple (x, t) belonging to K × [0, T ], by:

y(x, t) = et∆ y0(x) +

∫ t

0

e(t−τ)∆
1ω(x)u(τ, x) dτ

Proposition 2 For any strictly positive number T , and for any continuous function u of L2(ω × [0, T ]), the
system (1) has a unique solution ỹ such that:

ỹ ∈ C
(
[0, T ],H0

1 (K)
)

,
∂ỹ

∂t
∈ L2

(
[0, T ], L2(K)

)

As recalled in [13], it is then natural to introduce, for any strictly positive number T , the set of reachable states
at time T related to the system (1):

R(T ) =
{
ỹ(T )

∣∣u ∈ L2 (K × [0, T ])
}

Proposition 3 ([13])

For any strictly positive number T , the set R(T ) is dense in L2(K).

Proof The set R(T ) is obviously a vectorial subspace of L2(K).

Let us concentrate on the orthogonal of the set R(T ) in L2(K). To this purpose, let us consider the retrograde
problem: −φ̇(x, t) = ∆φ(x, t) ∀ (x, t) ∈ K × [0, T ]

φ(x, t) = 0 ∀ (x, t) ∈ ∂K × [0, T ]
φ(t = 0) = φ0 ∈ L2(K)

(2)

This problem, which brings back to the equation of the classical heat through the of variable

t 7→ T − t

admits a unique solution φ in

C
(
[0, T ], L2(K)

)
∩ L2

(
[0, T ],H0

1 (K)
)

with:

∂φ

∂t
∈ L2

(
[0, T ],H−1(K)

)
By multiplying by φ each member of the relation:
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ẏ = ∆y + 1ω u

one gets:

φ ẏ = φ∆y

Integration leads to:∫ T

0

∫
K

φ ẏ dx dt =

∫ T

0

∫
∂K

φ∆y dx dt−
∫ T

0

∫
K

∂φ

∂x

∂φ

∂x
dx dt+

∫ T

0

∫
K

φudx dt

i.e.: ∫ T

0

∫
K

φ ẏ dx dt = −
∫ T

0

∫
K

∂φ

∂x

∂φ

∂x
dx dt+

∫ T

0

∫
K

φudx dt

or: ∫ T

0

∫
K

φ ẏ dx dt = −
∫ T

0

∫
∂K

∂φ

∂x
y dx dt+

∫ T

0

∫
K

∂2φ

∂x2
y dx dt+

∫ T

0

∫
K

φudx dt

i.e.: ∫ T

0

∫
K

φ ẏ dx dt =

∫ T

0

∫
K

∂2φ

∂x2
y dx dt+

∫ T

0

∫
K

φudx dt

since φ and y take zero values on the boundary ∂K. An integration by part leads then to:

y(·, T )φ(·, T )−
∫ T

0

∫
K

φ̇ y dx dt =

∫ T

0

∫
K

∂2φ

∂x2
y dx dt+

∫ T

0

∫
ω

φudx dt

By taking into account:

−φ̇ = ∆φ

one gets:

y(·, T )φ0(·, T ) =
∫ T

0

∫
ω

φudx dt

As

φ0 ∈ R(T )⊥

one deduces: ∫ T

0

∫
ω

φudx dt = y(·, T )φ0(·, T ) = 0

Since one can take any control function u, we have:

φ = 0 in K × [0, T ]

The generalized result of Mizohata [14] allows then to deduce:

φ = 0 in K × [0, T ]

Thus:

φ0 = 0

The orthogonal of R(T ) in L2(K) is then reduced to {0}.

One can then apply the density criterion, the one which is a corollary of the Hahn-Banach theorem:(
R(T )⊥

)
⊥ =

{
φ ∈ L2(K)

∣∣∀ψ ∈ R(T )⊥ : ⟨φ,ψ⟩ = 0
}
= R(T )

This allows to state that the necessary and sufficient condition of density of R(T ) in L2(K):

R(T ) = L2(K)

is therefore equivalent to:
R(T )⊥ = {0}
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Corollary 1 Let us consider ˜̃y in L2(K), and a strictly positive number ε. There exists a control u, belonging
to L2(K × [0, T ]), such that:

∥y(·, T )− ˜̃y∥L2(K) ≤ ε

Remark 1 Thus, the study of the approximate controllability of our linear system (1) reduces to a continuity
problem, for the associate adjunct problem.

We now aim at determining if we there is a control u which verifies the following bang-bang property:

∥u(., t)∥L2(K) = 1 for all t ∈ [0, τ⋆]

where τ⋆ is a unique optimal time that can lead the solution of (1) from the starting point ỹ0 to ỹf , at the
time τ⋆. This enables one to go back to the work of G. Lebeau et L. Robbiano [15], which lead to the following
result:

Proposition 4 For any ỹ0, and for any ỹf in L2(K) such that

ỹ0 ̸= ỹf

if ỹ is a solution of system (1), associated with u⋆, there is a unique optimal time τ⋆ which leads the solution
of (1), from the starting point ỹ0, to ỹ

f , at the time τ⋆.
Moreover, u⋆ checks the bang-bang property, i.e.:

∥u(., t)∥L2(K) = 1 for all t ∈ [0, τ⋆]

3 Numerical results

Our numerical application is carried out by means of a direct type method (total discretization), of the afore
mentioned linear heat equation, in the presence of a scaling parameter Λ > 0, with an internal control, in a
domain ω ⊂ [0, 1]. More precisely, we consider the following system:

Λ2 ẏ(Λx,Λ2t) = Λ2∆y(Λx,Λ2t) + 1[ 13 ,
2
3 ]
(x)u(x) ∀x ∈ [0, 1], ∀ t ∈ [0, tf ], ∀Λ > 0

y(0, t, Λ) = 0 , y(1, t, Λ) = 0 , ∀ t ∈ [0, tf ], Λ > 0

The discretization is carried out by finite differences, with an implicit Euler scheme in time.
To this purpose, let us consider the time discretization:

0 = t0 < t1 < . . . < ti < . . . < tn = tf

and the space discretization:

0 = x0 < x1 < . . . < xj < . . . < xN+1 = 1

For any integer i belonging to {0, . . . , n}, and for any j belonging to {0, . . . , N + 1}, let us denote by:

yi,j = yΛ(ti, xj)

the value of the solution at t = ti and x = xj , for the scaling parameter Λ.
We assume:

ẏλ(ti, xj) ≈
yi,j − yi−1,j

th

and:
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∆yΛ(ti, xj) ≈
yi,j+1 + yi,j−1 − 2 yi,j

x2h

where:

th =
tf
n

, xh =
Λ

N + 1
, tf = Λ2

For each integer i belonging to {1, . . . , N}, we set:

Yi =


yi,1
yi,2
...

yi,N


The related discrete system can be written under the following matrix form:

Λ2 Yi+1 − Yi
th

= Ah.Yi+1 +Bh.Ui+1 (3)

where the N ×N matrix Ah is given by:

Ah =
Λ2

x2h



−2 1 0 . . . 0

1 −2
. . .

...

0
. . .

. . .
. . . 0

...
. . . −2 1

0 . . . 0 1 −2


and where the N ×N diagonal matrix Bh is given by:

Bh = diag (α1, . . . , αN )

while, for any integer i belonging to {1, . . . , N}:

αi =

{
1 if

1

3
≤ xi ≤

2

3
0 otherwise

and:

Ui+1 =

 ui,1
...

ui,N


where ui,j is the value chosen for the control at t = ti and x = xj .

Basic calculations enable one to solve, for all i in {1, . . . , N}, the system equivalent to (3) :

C Yi+1 = Yi +
th
Λ2

Bh.Ui

where

C = IN − 1

Λ2
th.Ah

IN denoting the N ×N identity matrix.

At each time step, the matrix C is inverted, in order to calculate Yi+1.
Let us denote by X a variable which contains the whole set of values{

ui,j
∣∣ i ∈ [1, N ], j ∈ [1, N ]

}
∪ {tf}

One has to bear in mind that the principle of direct methods lay in minimizing a function F that yields tf with
constraints, i.e., for each integer i of {1, . . . , N}:
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Table 1 Final time - Optimal time

Λ 1 2 8 10 15 20
t⋆f 0.6769 1.0486 1.7031 2.4861 4.3337 6.1435

∥Ui∥L2([ 13 ,
2
3 ])

≤ 1

with the final condition:
Y (tf ) = Y f

The initial and final conditions are:

∀x ∈ K : y0(x) = sin(π x) , yf (x) = 0

Our simulation is carried for:

n = N

In practice, we choose the number of discretizations (N = 10 for instance), while changing the value of the
scaling parameter. Numerical results are given in the following table.

The following figures show the evolution of the L2 norm of the time control.

It is interesting to note that the L2 norm of the time control take the value 1 for any time t in [0, t⋆f ]. Thus,
the control has the bang-bang property. Moreover, as the scaling parameter Λ increases, so does the numerical
final time, with the bang-bang property still verified.
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4 Perspectives

Our approach has conventionaly, consisted in studying a system with an internal control, in the presence of a
scaling parameter. It is interesting to note that, due to the expression of the solution with parameter:

ỹ(x, t, Λ) = yclassical(x, t) + ε

N0∑
j=1

1

Λj
yclassical

(
x

Λj
,
t

Λ2j

)
it appears interesting to consider a control of the form:

ε

N0∑
j=1

uj
Λj

yclassical

(
x

Λj
,
t

Λ2j

)
This thus leads to an affine control system. For any integer j belonging to {1, . . . , N0}, the control uj corresponds
to a displacement in the direction

fj = ε
1

Λj
yclassical

(
x

Λj
,
t

Λ2j

)
It is then natural to study in the Lie algebra generated by the family
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(fj)1≤i≤N0

in the spirit of what is presented in [16], [17], in so far the displacements on subintervals of K, in the given
directions fi, fj , i ̸= j, involve their Lie bracket.
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