
HAL Id: hal-01356850
https://hal.sorbonne-universite.fr/hal-01356850v1

Submitted on 17 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving the Table Maker’s Dilemma on Current SIMD
Architectures

Christophe Avenel, Pierre Fortin, Mourad Gouicem, Zaidi Samia

To cite this version:
Christophe Avenel, Pierre Fortin, Mourad Gouicem, Zaidi Samia. Solving the Table Maker’s Dilemma
on Current SIMD Architectures. Scalable Computing : Practice and Experience, 2016, 17 (3), pp.237-
249. �10.12694/scpe.v17i3.1183�. �hal-01356850�

https://hal.sorbonne-universite.fr/hal-01356850v1
https://hal.archives-ouvertes.fr

SOLVING THE TABLE MAKER’S DILEMMA

ON CURRENT SIMD ARCHITECTURES

CHRISTOPHE AVENEL�§, PIERRE FORTIN�, MOURAD GOUICEM��, AND SAMIA ZAIDI�

Abstract. Correctly-rounded implementations of some elementary functions are recommended by the IEEE 754-2008 standard,
which aims at ensuring portable and predictable floating-point computations. Such implementations require the solving of the Table
Maker’s Dilemma which implies a huge amount of computation time. These computations are embarrassingly and massively parallel,
but present control flow divergence which limits performance at the SIMD parallelism level, whose share in the overall performance of
current and forthcoming HPC architectures is increasing. In this paper, we show that efficiently solving the Table Maker’s Dilemma
on various multi-core and many-core SIMD architectures (CPUs, GPUs, Intel Xeon Phi) requires to jointly handle divergence at the
algorithmic, programming and hardware levels in order to scale with the number of SIMD lanes. Depending on the architecture,
the performance gains can reach 10.5x over divergent code, or be constrained by different limits that we detail.

Key words: floating-point arithmetic, Table Maker’s Dilemma, SIMD, control flow divergence, OpenCL

AMS subject classifications. 68M07, 68W10

1. Introduction. Since 1985, the IEEE 754 standard specifies the implementation of floating-point op-
erations in order to have portable and predictable numerical software. Its latest revision [15, 4] recommends
the correct rounding of some elementary functions, like log, exp and the trigonometric functions. Since such
functions are transcendental, one cannot evaluate them exactly but have to approximate their evaluation. How-
ever, it is hard to decide which intermediate precision is required in the function implementation to guarantee a
correctly rounded result: the rounded evaluation of the approximation must be equal to the rounded evaluation
of the function with infinite precision. This problem is known as the Table Maker’s Dilemma or TMD (see [25],
chapter 12: Solving the Table Maker’s Dilemma).

Solving the TMD involves finding the hardest-to-round arguments of the function [25], that is to say the
arguments requiring the highest precision to be correctly rounded when the function is evaluated at. This
precision guaranteeing the correct rounding for all arguments is named the hardness-to-round of the function
[25]. The hardest-to-round cases can be found by exhaustive search, which implies to browse each floating-point
number in the domain of definition of the function. This approach is however prohibitive since it leads to a
O(2p) operation count when considering precision-p floating-point numbers as arguments.

In order to speed up the search for hardest-to-round arguments, the Lefèvre algorithm [21] uses local affine
approximations of the targeted function. The domain of definition of the function is split into several domains
Di and an affine approximation of the function is computed for each Di. Thanks to this affine approximation,
one can isolate hard-to-round cases (HR-cases, see [25, 23]) with a O(p2) operation count for a domain Di

with precision-p floating-point numbers. The hardest-to-round cases are then found among the HR-cases with
a localized exhaustive search. Higher degree approximations have been introduced since (SLZ algorithm [29])
in order to further reduce the asymptotic operation count for large values of p. However quadruple precision
(p = 113) is still currently out of reach. We thus focus in this article on the double precision format (p = 53),
for which the Lefèvre algorithm is as efficient as the SLZ algorithm in practice [25, 6]. Moreover, the Lefèvre
algorithm has already been used to generate all known hardness-to-round in double precision [25], and it offers
fine-grained parallelism which is suitable for massively parallel architectures like GPUs [8, 10]. We therefore
study the Lefèvre algorithm here.

Even if the Lefèvre algorithm makes it possible to compute the hardness-to-round of elementary functions,
it remains very computationally intensive. For example, it requires around five years of CPU time for the
exponential function over all double precision arguments. Moreover, even if the hardest-to-round cases of some
functions in double precision are known [25], this is still not the case for about half of the univariate functions

�Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7606, LIP6, F-75005, Paris, France
�LIRMM, CNRS/Université Montpellier 2, UMR 5506, Montpellier, France
§Centre for Image Analysis, Uppsala University

iPad de Gouat

iPad de Gouat

recommended by the IEEE standard 754-2008. Furthermore, some scientific computations may require correctly-
rounded implementations of other elementary functions, of specific compositions of elementary functions or even
of elementary functions using non-standard formats or precisions. Being able to find the hardness-to-round of
any elementary function in double precision in a reasonable amount of time would therefore be very useful.

In practice, both the affine approximation generation and the HR-case search are independent among the Di

domains. This data-parallel algorithm is thus embarrassingly and massively parallel which suits well to multi-
core and many-core parallel architectures. However, such architectures rely heavily on SIMD (Single Instruction
Multiple Data) parallelism. As far as CPUs are concerned, such parallelism is increasingly important in the
overall CPU performance since the SIMD vector width has been constantly increasing from 64 bits (MMX [16]
and 3DNow! [1]) to 128 bits (SSE [17], AltiVec [5]), then to 256 bits (AVX [18]), and to 512 bits on the Intel
Xeon Phi as well as in the forthcoming AVX-512 instruction set [19]. As far as GPUs are concerned, they are
now widely used in HPC and also present a partial SIMD execution since multiple GPU threads are processed
in a SIMD fashion by groups of 32 or 64 threads. This increasing SIMD parallelism offers indeed important
performance gains at a relatively low hardware cost. But efficiently exploiting such parallelism requires “regular”
algorithms where the memory accesses and the computations are similar among the lanes of the SIMD vector
unit. Unfortunately, as presented in [8], the original HR-case search of Lefèvre algorithm (Lefèvre HR-case

search) presents multiple sources of control flow divergence which limit its performance on GPUs.

In this paper, we show that efficiently solving the TMD on various multi-core and many-core SIMD archi-
tectures (CPUs, GPUs, Intel Xeon Phi), and scaling performance with the number of SIMD lanes, requires to
jointly handle this divergence at multiple levels: algorithm, programming and hardware. We start by describ-
ing a regular HR-case search algorithm, first presented in [9, 10], which has been shown to drastically reduce
divergence in the execution flow on NVIDIA GPUs [9, 10]. We then extend the deployment of this HR-case
search on other SIMD architectures: CPUs and the Intel Xeon Phi. We first compare C programming with
the SPMD-on-SIMD (Single Program Multiple Data) programming model [26, 7], and show that the SPMD-on-
SIMD model is well-suited for vectorizing the HR-case search on CPUs and on the Xeon Phi. Moreover, thanks
to OpenCL this programming model enables code portability on various architectures, including AMD GPUs.
Secondly, we present a survey of the deployment of this OpenCL implementation on various current SIMD
architectures. We detail the performance results depending on how divergence is handled at the hardware level,
and on the discrepancy between control flow (static) divergence and execution flow (dynamic) divergence. We
obtain performance gains up to 10.5x on some architectures, and specify the performance bottlenecks on the
other architectures. Finally, we present a performance comparison of these architectures for solving the TMD.

As far as related work is concerned, general solutions have been proposed to handle divergence on SIMD
architectures, at the hardware level [3, 12, 24] as well as at the software level [11, 13, 31, 28]. We target here
currently available hardware, and our HR-case searches offer very fine computation grains: the overhead of
software solutions to handle divergence would be too high here (see [8] for example). Up to our knowledge,
there is no other specific work to reduce the SIMD divergence when solving the TMD. The reference C code of
V. Lefèvre [21] is a CPU scalar code that can target multi-core and distributed multi-processor architectures,
but does not exploit SIMD parallelism within each CPU core. It can be noticed that another implementation to
solve the TMD has been designed for FPGA architectures [6], but this implementation relies on the exhaustive
search.

In the rest of this paper, Sect. 2 introduces the Table Maker’s Dilemma and Lefèvre algorithm. In Sect.
3 we present our regular algorithm for the HR-case search which reduces divergence in the execution flow. In
Sect. 4 we compare two programming models to enable the CPU vectorization of the HR-case search code,
and show the relevance of the SPMD-on-SIMD programming model. Section 5 presents performance results,
detailed analyzes on various SIMD architectures, and the performance comparison among these architectures.
Finally, concluding remarks will be presented in Sect. 6.

2. The Table Maker’s Dilemma and Lefèvre algorithm. Floating-point arithmetic aims at approx-
imating real arithmetic. It uses the property that any real number α can be uniquely represented in base β
scientific notation as α = m × βe, with 1 ≤ m < β the significand of α and e ∈ N the exponent of α. A
precision-p floating-point (abbreviated FPp) number format will then represent real numbers with e in a specific
range and m with a finite precision of p digits. Hence every real number α is either exactly representable as an

[y − ϵ, y + ϵ]

Midpoints

Floating-points

Fig. 2.1. Example of undetermined correct rounding for a value y computed with precision ϵ in the case of rounding to nearest,
where the rounding breakpoints are the midpoints of floating-point numbers.

FPp number, or is not, in which case it will be approximated using a rounding function.

When evaluating a function at a precision-p floating-point argument, the exact result is commonly not a
precision-p floating-point number. The simple example of the inverse function 1/x evaluated at x different than
a power of 2 (e.g. x = 10) yields an infinite sequence of digits in the fractional part of the result if represented in
binary format. Hence, a typical implementation of a mathematical function will have to approximate the exact
mathematical result f(x) by f̂(x) with precision ϵ, and then round this approximation to p bits of precision.

However, if for some argument x, f̂(x) is at a distance less than ϵ to a rounding breakpoint (where the result

of the rounding function changes), it is impossible to determine the correct rounding of f(x) from f̂(x) as
illustrated in Fig. 2.1. Such an argument x is called a (p, ϵ) hard-to-round case (abbreviated as HR-case).

Given a function f , a rounding function, and a FPp format, the Table Maker’s Dilemma is hence defined as

finding the necessary accuracy ε such that both f(x) and an approximation f̂(x) with accuracy ε round to the
same FPp number for every FPp number x in the definition domain of the function f . The largest ε verifying
this property is called the hardness-to-round of f at precision p.

To find this hardness-to-round with a better complexity than exhaustive search, Lefèvre algorithm relies on
a three step methodology based on searching (p, ϵ) HR-cases [21]:

• fix a “convenient” ϵ using probabilistic assumptions [25],
• find (p, ϵ) HR-cases with ad hoc methods,
• find the hardest-to-round case among the (p, ϵ) hard-to-round cases.

There are two key-points in that methodology. First, the statistical assumption states that the probability
of an argument being an HR-case decreases exponentially with the precision of the approximation. This implies
that the hardness-to-round of an elementary function evaluated to a precision-p is likely to be around 2−2p [25],
and that there are few (p, 2−2p) HR-cases. This can dramatically reduce the use of exhaustive search, which is
time consuming. But more importantly, the second key-point is that we can search for HR-cases in polynomial
time in the format size, against an exponential time for the exhaustive search. This efficient HR-case search is
obtained by using polynomials and the following two steps.

• The generation of polynomial approximations: we generate many local polynomial approximations Pi

of the function f over independent domains Di, with error ϵapprox ≈ ϵ.
• The (p, ϵ′) HR-case search: for each polynomial approximation Pi, we search for (p, ϵ′) HR-cases of Pi,
which are the (p, ϵ) HR-cases of f , with ϵ′ = ϵ+ ϵapprox.

These two steps are massively parallel over the domains Di since these numerous domains can all be
processed independently. However, while the polynomial approximation generation has a regular control flow
[9], the HR-case search presents divergence issues when executed on SIMD architectures. Moreover, the HR-case
search is the most time consuming step when solving the TMD. In the rest of this paper, we will therefore focus
on this HR-case search and its SIMD execution on various HPC architectures.

The HR-case search on the polynomials Pi is done using an isolation strategy [22] as described in Algorithm
1. An HR-case existence test Exists? is executed on each domain Di. It returns True if there potentially exists
an HR-case in the tested domain (false positives are possible), or False otherwise. If the test succeeds (that is
to say, there might be an HR-case in the tested domain Di), we split Di into κ sub-domains Di,j , upon which

we repeat the HR-case existence test. For each of these sub-domains succeeding the HR-case existence test, we
finally perform exhaustive search. In [22], Lefèvre tested other variants of this strategy and concluded that in
practice the most efficient strategy was this three phases refinement. This is mainly due to the fact that the
number of arguments succeeding the existence test can be roughly predicted, and that the amount of time spent
in the HR-case existence test has to be balanced with the amount of time spent in exhaustive search [9, 22].

Algorithm 1: Lefèvre three phases isolation strategy for HR-case search.

1 foreach Pi over its domain Di do

2 if Exists?(Pi, ϵ
′) then /* Phase 1 */

3 (Di,1, Di,2, . . . , Di,κ) := SplitDomain(Di, κ);
4 (Pi,1, Pi,2, . . . , Pi,κ) := RefineApprox(Pi, κ);
5 foreach Pi,j over its domain Di,j do

6 if Exist?(Pi,j , ϵ
′) then /* Phase 2 */

7 ExhaustiveSearch(Pi,j , ϵ
′) ; /* Phase 3 */

8 end

9 end

10 end

11 end

Lefèvre HR-case existence test takes as argument a degree one polynomial Pi or Pi,j . As we do not need
the dynamic range of floating-point numbers, we use fixed-point arithmetic to avoid rounding errors, and we
apply a suitable change of variable to write Pi or Pi,j as a polynomial b − a · x, while representing only the
64 bits after the pth bit of the significands of a and b as 64-bit integers. Hence we also consider x ∈ N. This
HR-case existence test then returns a lower bound on the distance between the values of b − a · x for x < N
and the rounding breakpoints, with N the number of arguments to test in Di or Di,j . This is achieved by
computing the continued fraction expansion of a with the Euclidean algorithm, and a particular decomposition
of b in the sequence of partial remainders. Comparing this lower bound to ϵ′, we can then determine whether
there is potentially a (p, ϵ′) HR-case in the domain or not. Lefèvre existence test is presented in Algorithm 2
and is explained more thoroughly in [9, 10].

Algorithm 2: Lefèvre HR-case existence test algorithm.

input : b− a · x, ϵ′, N

1 initialisation:
p← {a}; q ← 1− {a}; d← {b};
u← 1; v ← 1;

2 if d < ϵ′ then return True;
3 while True do

4 if d < p then

5 k = ⌊q/p⌋;
6 q ← q − k ∗ p; u← u+ k ∗ v;
7 if u+ v ≥ N then return False;
8 p← p− q; v ← v + u;

9 else

10 d← d− p;
11 if d < ϵ′ then return True;
12 k = ⌊p/q⌋;
13 p← p− k ∗ q; v ← v + k ∗ u;
14 if u+ v ≥ N then return False;
15 q ← q − p; u← u+ v;

16 end

17 end

3. A regular algorithm for the HR-case search. In [8], we underlined a problem in Lefèvre algorithm
execution on GPU architectures: the execution flow is highly divergent from one thread to another. There are
three sources of divergence in Algorithm 2:

• the main unconditional loop, whose number of iterations depends on the value of the arguments;

(a) Lefèvre HR-case search (b) Regular HR-case search

Fig. 3.1. Normalized mean deviation to the maximum of the number of main loop iterations per CUDA warp, on NVIDIA
GPUs, among the 220 CUDA warps required for the exp function in the domain [1; 1 + 2−13].

• the main conditional statement, whose scope contains all the intructions within the main loop;
• and finally the divisions, which are computed using a hybrid implementation with a tunable parameter
LOGMS. If we compute p/q and p > 2LOGMSq, we call the division instruction, otherwise it is more efficient
to use a loop to compute the quotient by repeated subtractions. As divisions operands are 64-bit
integers, LOGMS = 64 implies all quotients are computed using repeated subtractions, and LOGMS = 0
implies all quotients are computed using the division intruction.

Even though the hybrid divisions affect the control flow, they do not lead to strong divergence issue at
runtime since almost all the computed quotients are expected to be small in practice [9]. However when
processing multiple instances of the Lefèvre HR-case existence test in parallel on GPUs, the main conditional
statement and the main loop have a strong performance impact because of the partial SIMD execution of GPUs.
Both are induced by conditioning the computation of the quotients of the continued fraction of a by the value of
b. To our knowledge there is no a priori information on the number of loop iterations or on the branch executed
at each iteration that would enable us to statically reorder the domains Di in order to decrease this divergence.
We also tried to use software solutions to reduce the impact of the loop divergence [8]: no performance gain
was obtained because the computation is very fine-grained.

To highlight the impact of loop divergence during Lefèvre existence test execution, we introduced in [8] an
indicator named the normalized mean deviation to the maximum. When processing concurrently n independent
instances of a divergent loop on a SIMD unit with n lanes, the number of loop iterations issued in total is the
maximum number of loop iterations issued among all the lanes of the SIMD unit. This indicator aims thus at
giving the average percentage of loop iterations for which a lane remains idle during the SIMD execution. More
formally, we denote ℓi the number of loop iterations to issue for the lane i and we number the lanes within a
SIMD vector from 1 to n. If ℓ = {ℓi, i ∈ J1, nK}, the Normalized Mean Deviation to the Maximum (NMDM) is
defined as

NMDM(ℓ) = 1−
mean(ℓ)

max(ℓ)
.

In Fig. 3.1(a), we measured the NMDM of the main unconditional loop of Lefèvre HR-case search execution
on a NVIDIA GPU (n = 32) on a set of domains Di for the exponential function. We can see that the NMDM is
uniformly high with an average NMDM of 25.6%, which means that a SIMD lane remains idle on average 25.6%
of the number of loop iterations issued on its SIMD unit. This divergence in Lefèvre HR-case search is mainly
due to the fact that the algorithm goes from the subtraction-based Euclidean algorithm to the division-based
one depending on the value of b.

In [9, 10], we proposed a new HR-case existence test which presents a regular execution, as illustrated
in Algorithm 3. This is enabled by getting rid of the dependence between the computation of the continued

Algorithm 3: Regular HR-case existence test algorithm.

input : b− ax, ϵ′, N

1 initialisation:
p← {a}; q ← 1; d← {b};
u← 1; v ← 0;

2 while True do

3 k = ⌊q/p⌋;
4 q = q − k ∗ p; u = u+ k ∗ v;
5 d = d mod p;
6 if u+ v ≥ N then return d > ϵ′;
7 k = ⌊p/q⌋;
8 p = p− k ∗ q; v = v + k ∗ u;
9 if d ≥ p then

10 d = d− p mod q;
11 end

12 if u+ v ≥ N then return d > ϵ′;

13 end

fraction expansion of a and the value of b. It first turns the unpredictable main conditional statement of Lefèvre
algorithm into a deterministic test, which can be removed by unrolling two loop iterations as in Algorithm 3.
And second, a full quotient of the Euclidean algorithm is entirely computed at each loop iteration in the regular
HR-case search, which is not the case in the Lefèvre existence test. As the number of quotients to compute
is almost constant from one domain Di to the next, we reduce the mean NMDM per SIMD computation on
NVIDIA GPUs from 25.6% to 0.1% (cf. Fig. 3.1(b)). However, even though the execution flow is now regular,
the control flow in the source code remains divergent: the algorithm still exhibits the main unconditional loop,
a few conditional statements, inner loops for the hybrid implementation of the divisions, and outer loops (over
the Di or Di,j domains as presented in Algorithm 1).

In practice, such regular existence test offers performance gains on NVIDIA GPUs up to 3.4x over Lefèvre
existence test [9, 10]. When comparing an high-end hex-core CPU with an high-end NVIDIA GPU, the GPU
deployment delivers a 6.6x speedup for the regular existence test. Such speedup is mainly due to the lack of
SIMD computations on the CPU. That is why we will now consider the vectorization of the two existence tests
on CPUs and on Xeon Phi.

For the sake of shortness, we will name in the remainder of this paper Lefèvre HR-case search the combina-
tion of the isolation algorithm with Lefèvre existence test, and regular HR-case search the combination of the
isolation algorithm with the regular existence test.

4. The relevant programming paradigm. In order to deploy the HR-case search on CPUs and on the
Xeon Phi, one could first consider to rely on C programming. We thus start by considering the vectorization of
the reference scalar C code implementing the Lefèvre and regular HR-case searches [9, 10].

4.1. Vectorization with C compiler. When considering the vectorization of a C program, one can use
several programming paradigms.

Manual SIMD programming with intrinsics is a first possibility. However, this is generally a tedious task
which requires for example array padding and which leads to non-portable code: the program must be re-written
when moving to another SIMD instruction set or to another vector width. In the case of the HR-case search,
this would be an especially tedious task because of the multiple nested while loops and conditional branches.
Each one is a divergence source which implies a different mask to handle this divergence on CPU SIMD units.
Therefore, with intrinsics we would have to set and update all these masks in the source code which represents
a very important programming effort.

Another possibility is to rely on the C compiler. Automatic vectorization is provided for example in icc

(Intel C/C++ Compiler) and gcc (GNU C Compiler). The programmer can let the compiler perform the
dependency analysis of the targeted loop, in order to determine whether the loop is parallel or not, hence
vectorizable or not. This dependency analysis is however limited by the compiler capacity [20]. Therefore, some
compilers support compiler directives, which enable the programmer to indicate (and ensure) that the loop is
parallel: no dependency analysis is then required by the compiler. Such compiler directives are available in icc

(#pragma simd), and have recently been standardized in the last versions of OpenMP (OpenMP 4.X).
As far as the HR-case search is concerned, we aim at vectorizing multiple iterations of the outermost loop

which browses 225 Di domains. We use here icc (version 15.0.2).

4.1.1. Exhaustive search. In order to start with a simpler code, we first consider only the exhaustive
search (phase 3): phases 1 and 2 are here removed from the code. In the reference C code, the original
implementation used to rely on two inner do..while loop for each Di domain: the 215 arguments of the Di

domain being browsed as 8 sub-domains of 212 arguments (to match phase 2). In order to minimize the number
of nested loops, and to ease the compiler vectorization, these two do..while loops have been merged in one
single for loop.

When considering automatic vectorization of a loop nest without compiler directive, the compiler starts
with the innermost loop [20], which corresponds here to this new inner for loop within the outer for loop
over the Di domains. However, as the exhaustive search is performed using the tabulated differences algorithm
[21], this inner for loop presents flow and anti data dependencies among its iterations: the next polynomial
evaluation is computed from the current one. This used to prevent former versions of icc from vectorizing the
inner loop and hence the outer loop. The latest version of icc (15.0.2) can override this vector dependency on
the inner loop, and attempt to vectorize the outer loop. But, this outer loop vectorization fails due to an output

dependency. Indeed, the 225 Di domains provided as input lead in practice to very few HR-cases (e.g. 243 for
the first set of 225 Di domains). These HR-cases are written consecutively in memory thanks to a counter
incremented each time an HR-case is found, which results in an output data dependency between successive
iterations.

When considering vectorization hinted by compiler directives (here #pragma simd on the outer loop), either
the compiler does generate vector code, which leads to wrong results because of this output data dependency,
or the compiler detects the dependency and refuses the vectorization.

4.1.2. Complete HR-case search. We now consider the complete HR-case search with the three phases
and study the regular HR-case search. In order to enable the vectorization [20], we had to strongly rewrite our
C code. Function calls from the loop bodies have first been replaced by preprocessor macros. The corresponding
return statements have been replaced by boolean tests: this ensures one single entry and one single exit in
each loop [20]. Likewise, goto statements among the different phases have been replaced by boolean tests.

When considering the complete HR-case search, the compiler faces the same data dependencies as with
the exhaustive search only. Moreover, there are in phases 1 and 2 inner while loops with unknown iteration
numbers, which cannot be vectorized and can thus prevent the outer loop vectorization. All this leads to the
same conclusion: the outer loop vectorization fails without compiler directives. When forcing vectorization
with compiler directives, the compiler can manage to vectorize the code but this results again in wrong results
because of the output dependency.

It has to be noticed that the same conclusions would also apply to the Lefèvre HR-case search which presents
the same data dependencies and also outputs its HR-cases consecutively.

4.2. Implicit vectorization in OpenCL. Another possibility to exploit the SIMD units is to rely on
the SPMD-on-SIMD (Single Program Multiple Data) programming model [26, 7]. All computations are written
as scalar ones and it is up to the compiler to merge such scalar computations in SIMD instructions. The main
advantages are the ease of programming and the portability: the programmer needs neither to write the specific
SIMD intrinsics for each architecture, nor to know the vector width, nor to implement data padding with zeros
according to this vector width. The vector width will indeed be determined only at compile time (depending
on the targeted hardware). Moreover, like compiler directives, no data dependency analysis is required by the
compiler: it is up to the user to ensure that the scalar computations can be processed correctly in parallel.
Such programming paradigm is increasingly used in HPC: first on GPUs with CUDA and then on various
compute devices with OpenCL. On CPU, such programming model is available in OpenCL (OpenCL implicit
vectorization), as well as in the Intel SPMD Program Compiler (ispc) [26]. We choose here OpenCL over
ispc since OpenCL enables us to maintain one single source code for both CPUs and GPUs, and to target
other GPUs like the AMD ones. On multi-core CPUs, we use the Intel OpenCL SDK1 which provides OpenCL

1See: https://software.intel.com/en-us/intel-opencl

Table 5.1

Times in seconds for both HR-case searches over I0 on one NVIDIA C2070 GPU.

HR-case search Lefèvre Regular
CUDA OpenCL CUDA OpenCL

Phase 1 0.258 0.246 0.074 0.069
Phase 2 0.006 0.006 0.010 0.008
Phase 3 0.001 0.001 0.003 0.003
Total 0.265 0.253 0.086 0.081

implicit vectorization while supporting conditional statements as well as while loops in the OpenCL kernels
[27]. It has to be noticed that OpenCL also provides parallelism at the thread level in order to exploit multi-core
processors in shared memory. This is however not a key-point here since such parallelism is straightforward to
implement in the HR-case search [10].

Our OpenCL kernels are thus a translation of our CUDA kernels [8, 9]. The OpenCL implementation
therefore uses the same code structure as in the CUDA implementation [8] where the three phases of the HR-
case search have been separated in three distinct GPU kernels. Like in CUDA, atomic operations are used in
OpenCL to consecutively write the outputs of each phase in memory. This includes the HR-cases resulting from
phase 3 and leading to the output dependency with the C compiler vectorization. Here this issue is easily solved
thanks to the SPMD-on-SIMD programming model, and these atomic operations are the only synchronizations
required among the work-items. We thus emphasize that the HR-case search of the Table Maker’s Dilemma fits
naturally with the SPMD-on-SIMD programming model: each work-item processes one (or a few) Di domain(s),
and only a few atomic operations are required for correct work-item synchronization. We then fully exploit the
data parallelism of this massively parallel application to process concurrently the numerous work-items on the
SIMD units (as well as on all the available CPU cores).

However, as far as performance is concerned, the divergence in the SIMD processing of consecutive Di

domains will be a key-factor and will impact performance differently depending on the algorithm (Lefèvre or
regular HR-case search) and on the underlying hardware, as detailed in the next section.

5. Performance results of HR-case searches on various current SIMD architectures. For the
following performance results, each OpenCL implementation is tuned in order to determine, for each OpenCL
kernel, the optimal value for the work group size, for the number of intervals processed by each work-item, and
for the LOGMS value (for phases 1 and 2, cf. Sects. 2 and 3).

All the results given in this section are issued from the HR-case search on the exp function for double
precision. Except otherwise mentioned, all tests are performed over the 1024 first intervals I0..1023 = [1; 1+2−3[
of the binade [1; 2[(I0..1023 containing 250 doubles). The parameter tuning has been performed only on the
interval I0 = [1; 1 + 2−13] (containing 240 doubles).

5.1. GPUs and SIMD width impact. We first present performance results of our OpenCL implemen-
tation on both NVIDIA and AMD GPU architectures. Table 5.1 shows that for both HR-case searches the
performance of our OpenCL implementation matches, and even slightly outperforms, the one of our original
CUDA code on NVIDIA GPUs. This validates the choice to move from CUDA to OpenCL even on NVIDIA
GPUs.

We now consider in Fig. 5.1 performance results on various high-end GPUs. On one NVIDIA C2070, the
regular HR-case search delivers a 2.7x performance gain over the Lefèvre HR-case search thanks to its regular
execution flow. On a newer NVIDIA GPU (K20c),the two HR-case searches are 2.2 or 2.3 times faster compared
to their execution on the C2070, which shows that our HR-case search GPU implementation scales well on the
newer Kepler GPU architectures which offers a much higher number of GPU cores. Besides, the performance
gain of the regular HR-case search over the Lefèvre HR-case search is almost the same. The SIMD width is
indeed the same in both Fermi (C2050) and Kepler (K20c) architectures: work-items are processed in a SIMD
fashion by groups of 32.

Starting from the Southern Islands family (which includes our Radeon HD 7970), AMD GPUs present a
scalar architecture (Graphics Core Next - GCN) that enables the programmer to reach best performance with

 0

 50

 100

 150

 200

 250

 300

 350

NVIDIA C2070 NVIDIA K20c AMD 7970

C
o
m

p
u
ta

ti
o
n
 t

im
e
 (

s
)

Lefèvre
Regular

Gain
2.7x

Gain
2.9x

Gain
10.5x

Fig. 5.1. HR-case searches computation times over I0..1023 on various GPUs, using OpenCL from CUDA 7.5 (352.68 driver)
and from the AMD SDK 2.9.1 (Catalyst Omega 14.12 driver).The performance gains on top of the bars correspond to the Lefèvre
over regular ratios.

scalar work-items. Contrary to previous AMD GPU generations, no explicit vector programming is required.
On these scalar GPUs, the ALUs are arranged in four SIMD arrays consisting of 16 processing elements each
[2] (using OpenCL terminology), and work-items are processed in a SIMD fashion by groups of 64. Dynamic
divergence among work-items can therefore have an even more detrimental impact on AMD GPUs than on
NVIDIA GPUs. This explains that the gain of the regular HR-case search over the Lefèvre’s one is more
important on AMD Radeon HD 7970 GPU than on NVIDIA GPUs. Comparing this AMD 7970 and the
NVIDIA K20c, whose hardware compute powers are similar2, one can see that only thanks to the regular
HR-case search similar application performance can be achieved on these two GPUs.

5.2. AVX and SSE CPUs. We now consider the OpenCL deployment of the two HR-case searches on
standard CPUs with either SSE4.2 or AVX2 SIMD instruction sets. SSE4.2 vector units can process two 64-bit
integers in a SIMD fashion, whereas AVX2 ones can process four 64-bit integers. There are however multiple
issues when considering the deployment of the HR-case searches on such SIMD instruction sets.

The first issue lies at the hardware level, where divergence among SIMD lanes is handled differently on
CPU and on GPU [14]. When the control flow diverges on a GPU SIMD unit, a mask register is set according
to the condition evaluation: each processing element then either performs the following instruction or remains
idle. A stack of mask registers is used to handle nested divergence levels. This is handled dynamically by
the GPU hardware, which can then skip at runtime branches where all processing elements would be idle
(e.g. for a if-then-else statement: when all mask bits are zero the then branch can be skipped, and when
all mask bits are one the else branch can be skipped). When control flows diverge within a CPU SIMD
unit, mask registers are also used to handle divergence among the SIMD lanes. On AVX and SSE however,
all computations are always performed by all the SIMD lanes. The masks are used to prevent committing
results in memory for computations that should not have been performed (predication). Moreover, on CPUs
all this is handled explicitly in software by the compiler. This implies a general overhead compared to the
GPU hardware management, and can also be crucial for the SIMD performance of our specific application.
Both HR-case searches show indeed important static divergence (at compile time, in their control flow), but the
regular HR-case search presents low dynamic divergence (at runtime, in its execution flow). This low execution
flow divergence can thus be handled efficiently by the GPU hardware, while the CPU compiler has to set all
the required masks for predication according to the control flow divergence of the source code. As far as masks
with all zeros or all ones are concerned, it has to be noticed that recent work can detect these cases at runtime
in order to avoid using code with predication when possible on CPUs [30].

The second issue with the vectorization of the HR-case search on x86 CPUs is the lack of vector integer

2We are not aware of the exact 64-bit integer compute power of these GPUs, but their floating-point peak performances are
similar : 3520 SGflop/s (single precision) and 1170 DGflop/s (double precision) for the K20c, against 3789 SGflop/s and 947
DGflop/s for the 7970.

division instruction in SSE, in AVX2 [18] and even in the forthcoming AVX-512 [19]. The compiler therefore
uses the scalar integer division instruction, or emulates the vector integer division: e.g. with vector subtraction
instructions or with optimized intrinsics such as _mm_div_epu64, _mm256_div_epu64 or _mm512_div_epu64

(from the Intel Short Vector Math Library - SVML).
As far as our performance tests are concerned, the AVX2 server hosts an Intel Xeon E3-1275 v3 CPU, with

4 physical cores running at 3.50 GHz and 2-way SMT, and we use on this server the Intel SDK for OpenCL
2016 and the OpenCL Runtime 15.1. The SSE4.2 server hosts two Intel Xeon E5-2660 CPUs, totalizing 16
physical cores running at 2.20 GHz with 2-way SMT (and using SSE4.2 for integer SIMD operations), as well
as a Xeon Phi coprocessor: we use here the Intel SDK for OpenCL 2016 with the OpenCL Runtime 14.2 (latest
version for Xeon Phi coprocessors). On AVX and SSE, the OpenCL compiler relies on a heuristic3 to determine
if it is worth generating vector code. We use here the CL CONFIG CPU VECTORIZER MODE environment variable
to explicitly force or prevent the OpenCL implicit vectorization.

Figure 5.2(a) shows the performance results of both HR-case searches on the AVX2 server with both vector
and scalar codes generated. When inspecting the assembly code generated by the OpenCL compiler, one can
see that the vector codes contain AVX2 vector instructions for additions, multiplications and subtractions but
only scalar 64-bit integer divisions. No vector division, such as _mm256_div_epu64, are generated. Along with
the overhead required for masking, this leads to the vectorized versions being slower than the scalar ones. When
comparing the regular and Lefèvre HR-case searches, the regular HR-case search is then 1.5x faster in scalar
mode, and 1.4x faster in SIMD mode, which nevertheless shows the benefit of the regular HR-case search on
CPUs.

The same conclusions apply to the SSE4.2 server4 (cf. Fig. 5.2(b)): the use of scalar 64-bit integer division
and the cost of masking inhibit SIMD performance gains. On the SSE4.2 server, the regular HR-case search
delivers in the end the same performance gains over the Lefèvre one as on the AVX2 server.

As far as the SIMD division issue is concerned, it can be noticed that we also tried to use LOGMS = 64
(cf. Sect. 3) instead of the optimal LOGMS in order to implement divisions with SIMD subtractions and thus
try to avoid this issue: the scalar execution time will not be optimal, but the SIMD speedup could improve
performance in the end. This however only leads to the vector versions being almost as fast as the scalar ones
on both servers, the overhead of masking still inhibiting SIMD performance gains, and this thus results in an
overall performance loss.

5.3. The Xeon Phi coprocessor. Since masking hinders SIMD performance gains on CPUs, we now
target a Xeon Phi coprocessor (Knights Corner 5110P, with 60 cores with 4-way SMT at 1.053 GHz). Indeed
the overhead of masking for SIMD control flow divergence is lower on Xeon Phi than on AVX2 or SSE4.2 CPUs
since all Xeon Phi SIMD instructions directly support a 16-bit mask to control which lanes are active or not
during the instruction execution. This avoids the predication required for SSE or AVX, but still requires a
software management of the masks. However, there are no 64-bit integer SIMD arithmetic operations on the
current Xeon Phis. The compiler must therefore emulate these 64-bit SIMD operations with 32-bit integer
SIMD operations.

As far as SIMD 64-bit integer division is concerned, the assembly SIMD code generated from the OpenCL
kernel shows both scalar 64-bit integer divisions and calls to SVML 64-bit integer functions. Since we are unable
to determine which ones are indeed executed at runtime, we performed some micro-benchmarks of the 64-bit
integer division on the Xeon Phi as presented on table 5.2. All tests on the Xeon Phi have been performed with
the Intel SDK for OpenCL 2016 with the OpenCL Runtime 14.2 and the Intel Manycore Platform Software
Stack 3.4. Scalar code is obtained thanks to the CL CONFIG USE VECTORIZER environment variable. One can
see that the vectorized OpenCL kernel offers the same SIMD speedup and performance as the C+SVML code.
Even if our HR-case search kernels are thus likely to also use this SVML 64-bit integer division, the SIMD
speedup for this operation is actually low: only up to 2.7x, whereas we have obtained SIMD speedups between
7.2x and 7.7x for 64-bit additions and multiplications (8x being the maximum theoretical speedup for 64-bit
SIMD operations on the Xeon Phi). This shows that the SIMD 64-bit integer division is currently a potential
bottleneck for SIMD performance on the Xeon Phi.

3See: https://software.intel.com/en-us/node/540483
4Computation times are smaller on the SSE4.2 server than on the AVX2 server because of its higher number of CPU cores.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

Scalar SIMD

C
o
m

p
u
ta

ti
o
n
 t

im
e
 (

s
)

Lefèvre
 Regular

Gain
1.5x

Gain
1.4x

(a) AVX2 server

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

Scalar SIMD

C
o
m

p
u
ta

ti
o
n
 t

im
e
 (

s
)

Lefèvre
 Regular

Gain
1.5x

Gain
1.4x

(b) SSE4.2 server

 0

 200

 400

 600

 800

 1000

 1200

Scalar SIMD

C
o
m

p
u
ta

ti
o
n
 t

im
e
 (

s
)

Lefèvre
 Regular

Gain
2.4x

Gain
3.7x

(c) Xeon Phi coprocessor

Fig. 5.2. Performance results over I0..1023 for Lefèvre and regular HR-case searches, in scalar and SIMD modes.

Figure 5.2(c) shows the performance results of our HR-case searches on the Xeon Phi. Thanks to the more
efficient masking on the Xeon Phi, we notice a 13% performance gain for SIMD code over scalar code with the
regular HR-case search. This is an improvement over SSE and AVX CPUs, but the SIMD gain is very low: this
can be explained by the emulation of 64-bit SIMD operations by 32-bit SIMD operations (while 64-bit scalar
operations are not emulated), by the SIMD 64-bit integer division performance and by the software management
of the masks. Again, using LOGMS=64 to avoid the SIMD division issue does not improve these performance
results. The SIMD version of the Lefèvre HR-case search shows however a performance loss with respect to its
scalar version, probably due to its higher dynamic divergence. When comparing the two HR-case searches, the
SIMD regular HR-case search is 3.7x faster than the SIMD Lefèvre HR-case search, and 2.8x faster than the

Table 5.2

Micro-benchmarks of the 64-bit integer division on the Xeon Phi. Computations are repeated 106 times on two input arrays
of 1024 64-bit integers, with a scalar C code, a SIMD C+SVML code and an OpenCL kernel (vectorized or not).

C [+ SVML] OpenCL
Scalar 97.9 s 94.2 s
SIMD 36.7 s 39.9 s
SIMD speedup 2.7x 2.4x

scalar Lefèvre HR-case search on this architecture. This once again shows the interest of the regular HR-case
search.

5.4. Architecture comparison. Thanks to the OpenCL portability, we can now compare the following
different architectures for solving the TMD: the NVIDIA K20c and AMD 7970 GPUs, the SSE4.2 CPU server5

and the Intel Xeon Phi. We first emphasize that the maximum power comsumptions are nearly the same: 225W
for the K20c GPU, 250W for the 7970 GPU, 190W of TDP for the SSE4.2 server (with two Intel Xeon E5-2660
CPUs), and 225W of TDP for the Xeon Phi. In order to compute the 1024 intervals I0..1023, with the regular
HR-case search which performs best on all architectures, both GPUs require less than 40 s, whereas the SSE4.2
server and the Xeon Phi require at least 250 s. This 6.25x performance gap is clearly due to the inefficient
SIMD execution of the HR-case search on the SSE4.2 CPUs and on the Xeon Phi.

6. Conclusion. In this paper, we have shown that handling efficiently the divergence on SIMD architec-
tures for the most time consuming step of the Table Maker’s Dilemma solving requires to use regular algorithms,
with the relevant programming model, but also depends on the hardware. Using algorithmic changes, we can
strongly reduce the divergence in the conditional statements within the main loop, as well as reduce the exe-
cution flow divergence on this main loop. Using OpenCL with its SPMD-on-SIMD programming model and
its implicit vectorization feature, our massively parallel algorithm can be easily implemented and deployed on
various GPUs and CPUs, as well as on the Intel Xeon Phi coprocessor.

Compared to the previous CUDA implementation, our OpenCL implementation shows similar performance
gains (2.9x) for our regular algorithm on NVIDIA GPUs. This regular algorithm is even more decisive on AMD
GPUs, with 10.5x performance gains, since their SIMD execution width is larger. However, when considering
the SIMD units of CPUs and of the Xeon Phi, we show no or low performance gains for the SIMD execution
over the scalar one. This is due the SIMD integer division implementation, to the lack of SIMD 64-bit integer
instructions on the Xeon Phi, as well as to the static software handling of divergence on CPUs. This latter
implies indeed an overhead compared to the dynamic hardware handling of divergence on GPUs, and cannot
take full advantage of our regular algorithm, which presents important divergence in its control flow, but low
divergence in its execution flow. However, it has to be noticed that the regular HR-case search still offers
performance gains ranging between 1.5x and 2.8x on CPUs and on the Xeon Phi.

Currently, the solving of the Table Maker’s Dilemma is thus more efficiently performed on GPU architectures
due to their divergence handling. However, more efficient emulations of the SIMD integer division could be
possible, and the forthcoming Xeon Phi processors (Knights Landing with AVX-512 SIMD instruction set) will
support SIMD 64-bit integer instructions while maintaining a lower masking overhead than CPUs. This could
lead to better SIMD performance gains on this architecture, especially for our regular algorithm.

Finally, it can also be noticed that FPGA vendors like Xilinx and Altera now support OpenCL. Our
OpenCL implementation could thus straightforwardly be deployed on FPGA, tailoring the FPGA hardware
to our algorithm. The performance of this FPGA deployment could then be compared with GPU and CPU
deployments, as well as with other FPGA implementations for solving the TMD.

Acknowledgments. This work was supported by the TaMaDi project of the French ANR (grant ANR
2010 BLAN 0203 01). The authors would like to thank A. Zaks and A. Narkis from Intel for helpful discussions
on the Xeon Phi and on OpenCL. The authors would also like to thank Pierre-Emmanuel Le Roux (LIP6) for

5The AVX2 server has only 4 CPU cores, and no speedup is obtained on CPU thanks to vectorization (in AVX2 as in SSE4.2):
we therefore only consider the SSE4.2 server here.

managing the compute servers, and the SFPN specialty (numerical security, reliability and performance) of the
master in computer science at Université Pierre et Marie Curie for providing access to the AVX2 server.

REFERENCES

[1] AMD, 3DNow! Technology Manual, 2000.
[2] AMD, Accelerated Parallel Processing OpenCL Programming Guide, revision 2.7, November 2013.
[3] N. Brunie, S. Collange and G. Diamos, Simultaneous Branch and Warp Interweaving for Sustained GPU Performance,

in Proceedings of the International Symposium on Computer Architecture (ISCA’12), 4960, 2012.
[4] M. Cornea, IEEE 754-2008 Decimal Floating-Point for Intel, ARITH, IEEE Symposium on Computer Arithmetic,

2009, pp. 225-228.
[5] K. Diefendorf, Altivec extension to Power PC accelerates media processing, 2001.
[6] F. de Dinechin, J.-M. Muller, B. Pasca and A. Plesco, An FPGA architecture for solving the Table Maker’s Dilemma,

in Proceedings of the 22nd IEEE International Conference on Application-Specific Systems, Architectures and Processors,
187194, 2011.

[7] B. Gaster, L. Howes, D.R. Kaeli, P. Mistry and D. Schaa, Heterogeneous Computing with OpenCL: Revised OpenCL
1.2 Edition, Newnes, 2012.

[8] P. Fortin, M. Gouicem and S. Graillat, Towards solving the Table Maker’s Dilemma on GPU, in Proceedings of the 20th
Euromicro International Conference on Parallel, Distributed and Network-Based Processing, pp. 407-415, 2012.

[9] P. Fortin, M. Gouicem and S. Graillat, GPU-accelerated generation of correctly-rounded elementary functions, ACM
Transactions on Mathematical Software (to appear).

[10] P. Fortin, M. Gouicem and S. Graillat, GPU-accelerated generation of correctly-rounded elementary functions, Research
Report hal-00751446 v2, https://hal.archives-ouvertes.fr/hal-00751446

[11] S. Frey, G. Reina and T. Ertl, SIMT Microscheduling: Reducing Thread Stalling in Divergent Iterative Algorithms, in
Proceedings of the 20th Euromicro International Conference on Parallel, Distributed and Network-based Processing,
399406, 2012.

[12] W. W. L. Fung, I. Sham, G. Yuan and T. M. Aamodt, Dynamic Warp Formation: Efficient MIMD Control Flow on
SIMD Graphics Hardware, ACM Trans. Archit. Code Optim. 6(2), Article 7, 2009.

[13] T.D. Han and T.S. Abdelrahman, Reducing branch divergence in GPU programs, in Proceedings of the Fourth Workshop
on General Purpose Processing on Graphics Processing Units, 3:13:8, 2011.

[14] J.L. Hennessy, D.A. Patterson, Computer Architecture, Fifth Edition: A Quantitative Approach, The Morgan Kaufmann
Series in Computer Architecture and Design, 2011

[15] IEEE Computer Society, IEEE Standard for Floating-Point Arithmetic, 2008.
[16] Intel Developer Services, MMX Technology Technical Overview, 1996.
[17] Intel, Intel SSE4 Programming Reference, Reference number: D91561-003, 2007.
[18] Intel, Intel Architecture Instruction Set Extensions Programming Reference, Number: 319433-012A, 2012.
[19] Intel, Intel Architecture Instruction Set Extensions Programming Reference, Number: 319433-024, 2016.
[20] Intel, A Guide to Vectorization with Intel C++ Compilers, 2012
[21] V. Lefèvre, J.-M. Muller and A. Tisserand, Toward correctly rounded transcendentals, IEEE Transactions on Computers,

47(11), pp. 1235-1243, 1998.
[22] V. Lefèvre, New Results on the Distance between a Segment and Z

2. Application to the Exact Rounding, Proceedings of
the 17th IEEE Symposium on Computer Arithmetic, pp. 68-75, 2005.

[23] L. D. McFearin, D. W. Matula, Generation and Analysis of Hard to Round Cases for Binary Floating Point Division,
ARITH, IEEE Symposium on Computer Arithmetic, 2001.

[24] J. Meng, D. Tarjan and K. Skadron, Dynamic Warp Subdivision for Integrated Branch and Memory Divergence Tolerance,
in Proceedings of the International Symposium on Computer Architecture (ISCA’10), 2010.

[25] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé

and S. Torres, Handbook of floating-point arithmetic, Springer, 2010.
[26] M. Pharr and W.R. Mark, ispc: A SPMD compiler for high-performance CPU programming, In Innovative Parallel

Computing (InPar), pp. 1-13, 2012.
[27] N. Rotem, Intel OpenCL Implicit Vectorization Module, 2011 LLVM Developers’ Meeting
[28] T. Schaub, S. Moll, R. Karrenberg and S. Hack, The Impact of the SIMD Width on Control-Flow and Memory Diver-

gence, ACM Trans. Archit. Code Optim., 11(4), 2015.
[29] D. Stehlé, V. Lefèvre and P. Zimmermann, Searching Worst Cases of a One-Variable Function Using Lattice Reduction,

IEEE Trans. Comput., 54, 340346, 2005
[30] S. Timnat, O. Shacham and A. Zaks, Predicate Vectors If You Must, Workshop on Programming Models for SIMD/Vector

Processing, 2014, colocated with the 19th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP), 2014

[31] E. Z. Zhang, Y. Jiang, Z. Guo and X. Shen, Streamlining GPU Applications On the Fly: Thread Divergence Elimination
through Runtime Thread-Data Remapping, in Proceedings of the 24th ACM International Conference on Supercomputing
(ICS ’10), 2010.

