T. Diener, THE VIROID, The Pediatric Infectious Disease Journal, vol.3, issue.2, pp.137-184, 2001.
DOI : 10.1097/00006454-198403000-00041

R. H. Symons, Self-Cleavage of RNA in the Replication of Viroids and Virusoids, Journal of Cell Science, vol.1987, issue.Supplement 7, pp.303-318, 1987.
DOI : 10.1242/jcs.1987.Supplement_7.21

C. Hernandez, J. A. Daros, S. F. Elena, A. Moya, and R. Flores, through alternative double- and single-hammerhead structures, Nucleic Acids Research, vol.20, issue.23, pp.6323-6329, 1992.
DOI : 10.1093/nar/20.23.6323

C. J. Hutchins, P. D. Rathjen, A. C. Forster, and R. H. Symons, Self-cleavage of plus and minus RNA transcripts of avocado sunblotch viroid, Nucleic Acids Research, vol.14, issue.9, pp.3627-3640, 1986.
DOI : 10.1093/nar/14.9.3627

J. A. Daros, J. F. Marcos, C. Hernandez, and R. Flores, Replication of avocado sunblotch viroid: evidence for a symmetric pathway with two rolling circles and hammerhead ribozyme processing., Proceedings of the National Academy of Sciences of the United States of America 91, pp.12813-12817, 1994.
DOI : 10.1073/pnas.91.26.12813

G. Hui-bon-hoa, H. Kaddour, J. Vergne, S. G. Kruglik, and M. Maurel, Raman characterization of Avocado Sunblotch viroid and its response to external perturbations and self-cleavage, BMC Biophysics, vol.7, issue.1, pp.1-15, 2014.
DOI : 10.1016/S0006-3495(93)81263-3

URL : https://hal.archives-ouvertes.fr/inserm-00981316

C. J. Hutchins, Comparison of multimeric plus and minus forms of viroids and virusoids, Plant Molecular Biology, vol.137, issue.5, pp.293-304, 1985.
DOI : 10.1007/BF02418248

C. Delan-forino, Structural Analyses of Avocado sunblotch viroid Reveal Differences in the Folding of Plus and Minus RNA Strands, Viruses, vol.6, issue.2, pp.489-506, 2014.
DOI : 10.3390/v6020489

URL : https://hal.archives-ouvertes.fr/hal-01343316

C. Delan-forino, M. Maurel, and C. Torchet, Replication of Avocado Sunblotch Viroid in the Yeast Saccharomyces cerevisiae, Journal of Virology, vol.85, issue.7, pp.3229-3238, 2011.
DOI : 10.1128/JVI.01320-10

D. I. Svergun, M. H. Koch, P. A. Timmins, and R. P. May, Small Angle X-Ray and Neutron Scattering from Solutions of Biological Macromolecules, 2013.
DOI : 10.1093/acprof:oso/9780199639533.001.0001

B. Jacrot and G. Zaccai, Determination of molecular weight by neutron scattering, Biopolymers, vol.19, issue.11, pp.2413-2426, 1981.
DOI : 10.1002/bip.1981.360201110

Y. Takagi and K. Taira, Temperature-dependent change in the rate-determining step in a reaction catalyzed by a hammerhead ribozyme, FEBS Letters, vol.21, issue.2-3, pp.273-276, 1995.
DOI : 10.1016/0014-5793(95)00192-C

N. El-murr, Behavior of a hammerhead ribozyme in aqueous solution at medium to high temperatures, Naturwissenschaften, vol.276, issue.9, pp.731-738, 2012.
DOI : 10.1007/s00114-012-0954-9

J. C. Penedo, T. J. Wilson, S. D. Jayasena, A. Khvorova, and D. M. Lilley, Folding of the natural hammerhead ribozyme is enhanced by interaction of auxiliary elements, RNA, vol.10, issue.5, pp.880-888, 2004.
DOI : 10.1261/rna.5268404

R. Flores, J. A. Daros, and C. Hernandez, Avsunviroidae family: Viroids containing hammerhead ribozymes Advances in virus research 55, pp.271-323, 2000.

S. E. Mcdowell, J. M. Jun, and N. G. Walter, Long-range tertiary interactions in single hammerhead ribozymes bias motional sampling toward catalytically active conformations, RNA, vol.16, issue.12, pp.2414-2426, 2010.
DOI : 10.1261/rna.1829110

S. M. O-'rourke, W. Estell, and W. G. Scott, Minimal Hammerhead Ribozymes with Uncompromised Catalytic Activity, Journal of Molecular Biology, vol.427, issue.14, pp.2340-2347, 2015.
DOI : 10.1016/j.jmb.2015.05.005

A. Mir, Two Divalent Metal Ions and Conformational Changes Play Roles in the Hammerhead Ribozyme Cleavage Reaction, Biochemistry, vol.54, issue.41, pp.6369-6381, 2015.
DOI : 10.1021/acs.biochem.5b00824

M. Martick and W. G. Scott, Tertiary Contacts Distant from the Active Site Prime a Ribozyme for Catalysis, Cell, vol.126, issue.2, pp.309-320, 2006.
DOI : 10.1016/j.cell.2006.06.036

M. Martick, T. Lee, D. M. York, and W. G. Scott, Solvent Structure and Hammerhead Ribozyme??Catalysis, Chemistry & Biology, vol.15, issue.4, pp.332-342, 2008.
DOI : 10.1016/j.chembiol.2008.03.010

A. Busch, A. S. Richter, and R. Backofen, IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions, Bioinformatics, vol.24, issue.24, pp.2849-2856, 2008.
DOI : 10.1093/bioinformatics/btn544

D. Lai and I. M. Meyer, A comprehensive comparison of general RNA???RNA interaction prediction methods, Nucleic Acids Research, vol.44, issue.7, p.1477, 2015.
DOI : 10.1093/nar/gkv1477

X. Sun, J. M. Li, and R. M. Wartell, Conversion of stable RNA hairpin to a metastable dimer in frozen solution, RNA, vol.13, issue.12, pp.2277-2286, 2007.
DOI : 10.1261/rna.433307

A. C. Forster, C. Davies, C. C. Sheldon, A. C. Jeffries, and R. H. Symons, Self-cleaving viroid and newt RNAs may only be active as dimers, Nature, vol.334, issue.6179, pp.265-267, 1988.
DOI : 10.1038/334265a0

C. Davies, C. C. Sheldon, and R. H. Symons, Alternative hammerhead structures in the self-cleavage of avocado sunblotch viroid RNAs, Nucleic Acids Research, vol.19, issue.8, pp.1893-1898, 1991.
DOI : 10.1093/nar/19.8.1893

G. Porod, O. Glatter, and O. Kratky, Small-Angle X-ray scattering: Section I. The Principles of diffraction, General theory, 1982.

R. Lorenz, ViennaRNA Package 2.0. Algorithms for molecular biology, p.26, 2011.

F. Tama, M. Feig, J. Liu, C. L. Brooks, and K. A. Taylor, The Requirement for Mechanical Coupling Between Head and S2 Domains in Smooth Muscle Myosin ATPase Regulation and its Implications for Dimeric Motor Function, Journal of Molecular Biology, vol.345, issue.4, pp.837-854, 2005.
DOI : 10.1016/j.jmb.2004.10.084

J. E. Johnson, F. E. Reyes, J. T. Polaski, and R. Batey, B12 cofactors directly stabilize an mRNA regulatory switch, Nature, vol.40, issue.7427, pp.133-137, 2012.
DOI : 10.1038/nature11607

E. Mayaan, A. Moser, A. D. Mackerell, and D. M. York, CHARMM force field parameters for simulation of reactive intermediates in native and thio-substituted ribozymes, Journal of Computational Chemistry, vol.8, issue.2, pp.495-507, 2007.
DOI : 10.1002/jcc.20474

F. Leclerc and M. Karplus, MCSS-based predictions of RNA binding sites. Theoretical Chemistry Accounts: Theory, Computation, and Modeling, Theoretica Chimica Acta), vol.101, pp.131-137, 1999.

J. Lee, CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field, Journal of Chemical Theory and Computation, vol.12, issue.1, pp.405-413, 2016.
DOI : 10.1021/acs.jctc.5b00935

J. C. Phillips, Scalable molecular dynamics with NAMD, Journal of Computational Chemistry, vol.84, issue.16, pp.1781-1802, 2005.
DOI : 10.1002/jcc.20289