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  In this paper, a priori model reduction methods via low-rank tensor approximation are introduced for the parametric study of a 

piezoelectric energy harvester (EH).  The EH, comprised of a cantilevered piezoelectric bimorph connected with electrical loads, is 

modeled using three dimensional finite elements (FEs). Solving the model for various excitation frequencies and electrical load using 

the conventional approach results in a large size problem that is costly in terms of CPU time. We propose an approach based on the 

proper generalized decomposition (PGD) that can effectively reduce the problem size with a good accuracy of the solutions. With the 

proposed approach, field variables of the coupled problem are decomposed into space, frequency and electrical load associated com-

ponents. To introduce PGD into the FE model, a method to model the electrodes and electrical charges in the EH is presented. Appro-

priate choice for stopping criterions in the method, as well as accelerating the convergence through updating after each enrichment 

are investigated. The proposed method is validated through a representative numerical example. 
 

Index Terms: Proper generalized decomposition, Model reduction, Finite element method, Piezoelectricity, Energy harvesting. 

 

I. INTRODUCTION 

HEN designing an energy harvester, it is crucial to 

investigate its performance under various conditions. 

Take the cantilevered piezoelectric EH for example, one 

usually seeks to calculate its output power when the excita-

tion frequency and electrical loads connected between its 

electrodes vary. The conventional approach is modeling the 

device with numerical methods such as the FE method while 

taking the varying variables as parameters. Such parametric 

modeling leads to high dimensional problems that require a 

vast amount of computational resource to solve. In practical 

applications, appropriate methods must be introduced to 

alleviate the computational complexity.  

Recently, researchers have developed various model re-

duction techniques, in either a posteriori [1] or a priori [2] 

fashion. The former consists in extracting from available 

solutions a reduced basis which alleviates the burden in sub-

sequent calculations. Algorithms like the singular value de-

composition (SVD), principle component analysis (PCA) and 

proper orthogonal decomposition (POD) are popular for the 

purpose. The second category, in contrast, is normally more 

challenging as it searches a reduced basis without knowing 

the solution a priori. The proper generalized decomposition 

is one of the dominant methods under this framework [3]. 

This work introduces applying the PGD method on the para-

metric model of a piezoelectric EH.   

The essential assumption of the PGD method is that the 

numerical solution can be expressed as low rank tensors, or a 

sum of rank-one tensors [4]. Each term in the sum is called a 

mode while the number of terms is referred to as the tensor 

rank [5]. From a numerical perspective, each mode is a mul-

ti-dimensional array in which every dimension is related to a 

physical quantity e.g. spatial dimensions and frequency. In 

practice, modes are calculated successively, which is termed 

as the enrichment procedure. During each enrichment, simul-

taneously determining all vectors in the array leads to a non-

linear problem that can be effectively computed using the 

alternating direction method (ADM) which is sometimes 

named the fixed point iteration procedure [6]. Advantage of 

the PGD approach is twofold. Firstly, instead of solving the 

high-dimensional problem through looping over each sample 

of the parameter (the conventional approach), it solves the 

problem with all samples of parameters at the same time, 

thus avoiding a large number of loops and reducing the CPU 

time. Secondly, the number of unknowns to be determined is 

generally dramatically reduced since PGD solutions actually 

form reduced basis of the conventional solutions. Indeed, for 

a vast range of problems, only moderate number of enrich-

ments and few iterations within each enrichment are re-

quired. Naturally, less solution data needs to be stored which 

is crucial in real-time simulations [7]. The PGD method also 

relies on the separability of the problem. Separability of the 

right hand side (r.h.s.) is usually feasible because excitations 

and boundary conditions based on which the r.h.s. is formed 

are normally known. For parameter dependent cases, a poste-

riori techniques e.g. SVD can be used to obtain a separated 

representation. On the contrary, separating the coefficient 

matrix in a general case is still an open problem, albeit some 

literatures are now available. For instance, in [8] operator 

separating in both linear and nonlinear cases are discussed. In 

[9], the same issue in high-dimensional cases are investigat-

ed. After separating, PGD formulations can be constructed 

using the Galerkin orthogonality criteria or residual minimi-

zation, depending on whether the operator is self-adjoint 

[10]. Convergence accelerating methods and optimality of 

the solution (i.e. attaining the same accuracy with as fewer 

modes as possible) are also discussed in the same reference. 

A recently developed approach named ideal minimal residual 

method is reported in [11] for improving optimality in high-

dimensional cases. It is based on measuring the residual and 

the target tensors with appropriately chosen norms. As theo-

retical framework of the PGD becoming more and more 

mature, its applications for specific problems are also in-

creasingly visible, such as uncertainty quantification in [12], 

mechanics in [13], magneto quasi-static problems in [14] and 

nonlinear magnetic dynamic problems in [15].  
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Although literatures introducing PGD for mechanics or 

electromagnetics are now available, those involving both 

mechanics and electromagnetics remain to be exploited. Such 

problems are particularly important in modeling energy har-

vesting devices in which energy conversion between me-

chanical and electromagnetic forms is considered, along with 

various working conditions and energy storing issues [16-

17]. It is generally much more computationally expensive to 

solve these multiphysics problems because the strong cou-

pling effect between physics can significantly increase the 

problem size, especially in large scale parametric FE models. 

Here, we propose to apply the PGD method on the FE model 

of a piezoelectric EH. Although based on appropriate simpli-

fications and developments, analytical models (see e.g. [18]) 

are less computationally intensive than FE models when 

dealing with devices of simple geometries and boundary 

conditions, they become less applicable when the model 

becomes more sophisticated. FE models, on the other hand, 

are advantageous due to their versatility in modeling compli-

cated geometry and its capability in obtaining full field solu-

tions under any boundary conditions. In [19], FE methods are 

utilized for analyzing piezoelectric energy generators using 

different commercial software modeling multiphysics fields 

and the electric circuits, individually. Dedicate loops are 

designed in order to pass results between software. In this 

paper, PGD is applied so that variables are decomposed into 

space, frequency and electrical load related components, and 

the original large-size system is solved through solving a 

sequence of smaller-size subsystems, thus reducing complex-

ity of the problem. We also introduce a method to incorpo-

rate electrodes and electrical loads in the piezoelectric model 

so that separability of the problem is straightforward which 

enables getting around separation of the coefficient matrix. In 

this manner, advantages of the FE model over its analytical 

counterpart are preserved while the CPU time is significantly 

decreased. The paper is divided as follows. In section II, 

formulations of the multiphysics model, with excitation fre-

quency and electrical load as parameters, are derived. In 

section III, how solution of the model can be approximated 

with low rank tensors using PGD is introduced. Implement-

ing details are then presented. In Section IV, properties of the 

proposed method are revealed through a set of numerical 

illustrations. It finishes with general summaries and conclu-

sions in section V. 

 

II. FORMULATIONS OF THE MULTIPHYSICS MODEL 

In what follows, quantities of the same uses are expressed 

in uniform representations. Specifically, lower-case letters 

are used for scalars; plain capitals for vectors; bold capitals 

for matrices; and calligraphic letters for tensors of order 

higher than two.  

A. The model problem 

As in most piezoelectric FE models, only linear piezoelec-

tricity [20] is considered here. Assume that we have a three-

dimensional domain Ωφ ∈ ℝ3  with Lipschitz boundary 

Γφ = ΓφD
∪ ΓφN

 where ΓφD
 and ΓφN

 are the Dirichlet and 

Neumann electrical boundary conditions. The mechanical 

domain Ωu, which is a subdomain of Ωφ (Ωu ⊂ Ωφ), has its 

Lipschitz boundary Γu = ΓuD
∪ ΓuN

, ΓuD
 and ΓuN

 being, re-

spectively, the Dirichlet and Neumann mechanical boundary 

condition.  

 

Fig. 1. Electric and mechanical domains of the multiphysics problem 

 

A common practice of modeling piezoelectric materials is 

to choose Ωφ  coinciding with Ωu which, however, does not 

appropriately account for the fringing effect, from an electri-

cal modeling point of view. Here, domains are chosen so that 

Ωφ ∕ Ωu ≠ ∅, as shown in Fig. 1. Indeed, Ωφ ∕ Ωu represents 

an air domain surrounding the piezoelectric part. The strong 

form of the coupled problem (for detailed derivation refer to 

[21] and references therein) consists of finding fields of me-

chanical displacements and electrical potentials subjecting to 

certain boundary conditions and excitations, as shown in the 

coupled mechanical equilibrium equation 

cijkl
E uk,li + ekijφ,ki + fj = ρvüj in  Ωu (1.a) 

                                    ui = u̅ on ΓuD
 (1.b) 

                              niσij = t̅ on ΓuN
 (1.c) 

and the coupled electrostatic equation 

                ekijui,jk − εij
Sφ,ij = 0          in  Ωu   (2.a) 

                               − εij
Sφ,ij = 0 in  Ωφ ∕ Ωu (2.b) 

                                           φ = φ̅          on ΓφD
 (2.c) 

where the Einsteinian summation convention is employed. ρv 

is the mass density, [cE], [e], and [εS] are matrices of elastic, 

piezoelectric, and dielectric constants, respectively. The 

superscript E and S indicate that values are measured at con-

stant strain and electric field. {u}, {f}, and {σ} are respective-

ly, vectors of displacement, body force and stress. φ is the 

electric potential. u̅, t̅, and φ̅ are predefined values for re-

spectively, displacements, surface tractions, and electrical 

potentials. n  denotes the outward normal to the boundary. 

Repeated indices i, j, k, and l take values1, 2, and 3. A com-

ma subscript followed by an index number means a deriva-
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tion w.r.t. the corresponding direction. Two dots over a vari-

able indicates second order time derivative.  

Electrodes are deposited on the piezoelectric part and im-

pose equipotential electrical conditions. Influence of the 

electrodes are mechanically negligible since they are very 

thin. Therefore, electrodes can be considered as surfaces and 

involves merely imposing the equipotential condition. Elec-

trodes and electrical loads are introduced after the fields are 

approximated using FEs.  

 

B. Finite element approximation 

To approximate the coupled problem using FEs, consider 

the following weak form. Find ui ∈ 𝒰 and φ ∈ 𝒱 such that 

B𝑢𝑢(u′j , uj)Ωu
+ B𝑢𝜑(u′j , φ)

Ωu
=  

∀u′
j ∈ �̂� (3) 

−(u′
j , fj)Ωu

+ (u′
j , t̅)ΓuN

          

B𝜑𝜑(φ′ , φ)Ωφ
+ B𝜑𝑢(φ′ , ui)Ωu

= 0 ∀φ′ ∈ �̂� (4) 

where the integrals are defined as 

     B𝑢𝑢(u′j , uj)Ωu
: = ∫ u′j(cijkl

E uk,li − ρvüj)Ωu
dΩ  (5.a) 

  B𝑢𝜑(u′j , φ)
Ωu

: = ∫ u′jekijφ,ki
Ωu

dΩ                            (5.b) 

        (u′j , fj)Ωu
∶= ∫ u′

jfj
Ωu

dΩ                                      (5.c) 

  (u′j , t̅)ΓuN

 ≔ ∫ u′
jt̅

ΓuN

dΓ                                   (5.d) 

      B𝜑𝜑(φ′ , φ)Ωφ
 ≔ ∫ φ′εij

Sφ,ij
 Ωφ

dΩ                                (5.e) 

B𝜑𝑢(φ′ , ui)Ωu
 ≔ ∫ φ′ekijui,jk

 Ωu

dΩ                      (5.f) 

The admissible spaces are 

     𝒰 ∶=  {uj  ∈ H1(Ωu) | uj  = u̅ on ΓuD
, j = 1,2,3}  (6.a) 

�̂� ∶=  {u′j ∈ H1(Ωu) | u′j = 0 on ΓuD
, j = 1,2,3}     (6.b) 

𝒱 ∶=  {φ ∈ H1(Ωφ) | φ = φ̅ on ΓφD
}                     (6.c) 

�̂� ∶=  {φ′ ∈ H1(Ωφ) | φ′ = 0 on ΓφD
}                     (6.d) 

where H1 is the first order Sobolev space. 

The discrete counterparts of Eq.(3) and Eq.(4) read: find 

ujh ∈ 𝒰h and φh ∈ 𝒱h such that 

B𝑢𝑢(ujh′ , ujh)Ωu
+ B𝑢𝜑(ujh′ , φh)Ωu

 

∀ujh′ ∈ �̂�h (7) 
= −(ujh′ , fj)Ωu

+ (ujh′ , t̅)ΓuN

 

B𝜑𝜑(φh′ , φh)Ωφ
+ B𝜑𝑢(φh′ , uih′)Ωu

 = 0 ∀φh
′ ∈ �̂�h (8) 

where 𝒰h ⊂ 𝒰 , �̂�h ⊂ �̂� , 𝒱h ⊂ 𝒱 , and �̂�h ⊂ �̂�  are finite 

dimensional spaces, with h  characterizing the triangulation 

resolution. Within a given finite element 𝑒  of domain Ωu
e  

(resp. Ωφ
e ),  the discretized mechanical (resp. electrical) test 

and trial functions can be constructed using the Galerkin 

method, as in Eq.(9) . 

ujh′ = ∑ Nm
(u)

nu

m=1
u′jm

e
    

(9) 

ujh = ∑ Nm
(u)

nu

m=1
ujm

e    

and Eq.(10) 

φh
′ = ∑ Nm

(φ)
nφ

m=1
φ′m

e   

(10) 

φh = ∑ Nm
(φ)

nφ

m=1
φm

e  

where nu and nφ are total number of nodes in the mechanical 

and electrical domain respectively. Nm
(u)

 and Nm
(φ)

 are shape 

functions and the same shape function Nm
(u)

 is used for all 

components. u′jm
e

, ujm

e , φ′m
e  and φm

e  are nodal values.  

In the implementation, it is more convenient to arrange 

ujh′s and φh′s in vectors. For instance, ujh′s can be written as 

Uh = [u1h u2h u3h]T. Re-writing the above equations in 

the compact form yields 

Uh
′ = 𝐍u

eU′,   Uh = 𝐍u
eU (11.a) 

φh
′ = Nφ

e Φ′,   φh = Nφ
e Φ (11.b) 

where  

U′ = [u′11
e

u′21
e

u′31

e
⋯ u′3nu

e
]
𝑇

 (12.a) 

U = [u11
e u21

e u31
e ⋯ u3nu

e ]
𝑇
   (12.b) 

Φ′ = [φ′1
e φ′2

e ⋯ φ′nφ

e ]
T
                (12.c) 

Φ = [φ1
e φ2

e  ⋯ φnφ

e
 ]

T
                (12.d) 

𝐍u
e = [N1

(u)
𝐈3 N2

(u)
𝐈3 ⋯ Nnu

(u)
𝐈3]     (12.e) 

Nφ
e = [N1

(φ)
N2

(φ) ⋯ Nnφ

(φ)
]              (12.f) 

and 𝐈3 is a 3 × 3 identity matrix. 

    The FE system can be obtained through substituting 

Eq.(11) into Eq.(7) and Eq.(8) and integrating. Matrices and 

vectors are then calculated element-wise: for the αth element 

eα ∈ Ωu 

𝐌u
(α)

Üα + 𝐊u
(α)

Uα + 𝐊uφ
(α)

Φα = FX
(α)

 (13.a) 

                  𝐊uφ
(α),T

Uα − 𝐊φ
(α)

Φα = 0         (13.b) 

and for the βth element eβ ∈ Ωφ ∕ Ωu 

−𝐊φ
(β)

Φβ = 0 (13.c) 
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where Uα and Φα (resp. Φβ) represent all nodal values within 

the element eα (resp. eβ). Without losing generality (w.l.g.), 

assume that linear tetrahedral elements are used. Then, the 

vector  Φα equal to[φα1
e φα2

e φα3
e φα4

e ] is of size 4 × 1 

and Uα is of size 12 × 1, α1 to α4 being node numerations in 

element α. The mass matrix 𝐌u
(α)

, stiffness matrices 𝐊u
(α)

 and 

𝐊φ
(α)

, coupling matrix 𝐊uφ
(α)

 and the mechanical load vector 

FX
(α)

 are calculated as follows. 

𝐌u
(α)

= ∫ 𝐍u
eα,T

ρ𝐍u
eα

Ωeα

dΩ                                         (14.a) 

𝐊u
(α)

= ∫ 𝐁u
eα,T[cE]𝐁u

eα

Ωeα

dΩ                                    (14.b) 

𝐊uφ
(α)

= ∫ 𝐁u
eα,T[e]𝑇𝐁φ

eα

Ωeα

dΩ                                   (14.c) 

𝐊φ
(α,β)

= ∫ 𝐁φ
eα,T

[εS]𝐁φ
eα

Ωeα,β

dΩ                                     (14.e) 

FX
(α) = ∫ 𝐍u

eα,T
ρ{f}

Ωeα

dΩ + ∫ 𝐍u
eα,T

ρt̅
ΓuN

∩∂Ωeα

dΓ  (14.e) 

in which the matrices are defined as 

𝐁u
eα = [𝐁u

eα1 𝐁u
eα2 𝐁u

eα3 𝐁u
eα4]                                          (15.a) 

𝐁φ
eα =

[
 
 
 
 
 
 
 ∂Nα1

(φ)

∂x1

∂Nα2
(φ)

∂x1

∂Nα1
(φ)

∂x2

∂Nα2
(φ)

∂x2

∂Nα1
(φ)

∂x3

∂Nα2
(φ)

∂x3

∂Nα3
(φ)

∂x1

∂Nα4
(φ)

∂x1

∂Nα3
(φ)

∂x2

∂Nα4
(φ)

∂x2

∂Nα3
(φ)

∂x3

∂Nα4
(φ)

∂x3 ]
 
 
 
 
 
 
 

                                 (15.b) 

𝐍u
eα = [Nα1

(u)
𝐈3 Nα2

(u)
𝐈3 Nα3

(u)
𝐈3 Nα4

(u)
𝐈3]                              (15.c) 

𝐁u
eαi =

[
 
 
 
 
 
 
 ∂Nαi

(u)

∂x1

0 0

0
∂Nαi

(u)

∂x2

0

0 0
∂Nαi

(u)

∂x3

∂Nαi
(u)

∂x2

0
∂Nαi

(u)

∂x3

∂Nαi
(u)

∂x1

∂Nαi
(u)

∂x3

0

0
∂Nαi

(u)

∂x2

∂Nαi
(u)

∂x1 ]
 
 
 
 
 
 
 
𝑇

 (15.d) 

To model the structural damping, Rayleigh damping can be 

added which introduces the damping matrix as a fraction of 

the mass and stiffness matrix using αdM and  βdK:  

𝐂u
(α)

= αdM𝐌u
(α)

+ βdK𝐊u
(α)

 (16) 

The parameters αdM and  βdK can be obtained from Eq.(17) 

where ξ  denotes the damping factor at resonant frequency 

ω0. Damping factors can be measured at the first two reso-

nant frequencies with which Rayleigh damping are calculated 

and used for the whole frequency range, approximately [18].  

ξ =
1

2
(
αdM

ω0
+ βdKω0) (17) 

Adding Eq.(16) into Eq.(13.a) leads to  

𝐌u
(α)

Üα
e + 𝐂u

(α)
U̇α

e + 𝐊u
(α)

Uα
e + 𝐊uφ

(α)
Φα

e = FX
(α)

 (18) 

Numerically, damping also prevents singularity when 

Eq.(18) is solved near frequencies of resonance in the fre-

quency domain. Before assembling elementary matrices into 

a global system that applies to the whole domain, modeling 

of the electrodes is addressed.  

 

C. Modeling the electrodes and electrical loads 

Denote the surface of the kth electrode as Se
k. The equipo-

tential condition imposed by the electrode means φ(X) =

φconst for X ∈ Se
k. When the electric potential is prescribed, it 

can be fulfilled by imposing Dirichlet boundary conditions. 

However, when φconst is not prescribed it needs to be treated 

with caution. Suppose there are ne
k mesh nodes on Se

k . The 

number of electrical degree of freedoms (dofs) is reduced to 

one for the ne
k nodes. Denote the mapping that defines nu-

meration of the electrical dof for each node as ℳdof
φ

.W.l.g., 

assume that all ne
k electrical dofs are assigned with the num-

ber k (ℳdof
φ

(X ∈ Se
k) = k). If there are me  electrodes, then 

the total number of electrical dofs that are not on electrodes 

is nφ − ∑ ne
kme

k=1 . These dofs can be assigned with number 

from me + 1  to me + nφ − ∑ ne
kme

k=1 − nφ̂ , nφ̂  denoting the 

number of nodes on ΓφD
. Meanwhile, the mechanical map-

ping ℳdof
u  can be such defined that the jth component of the 

dofs at the lth  mesh node is assigned 3 × l + j − 1  with 

j = 1,2,3. Hence, the total number of mechanical and electri-

cal dofs Nu  and Nφ  are respectively, 3nu − nû  and me +

nφ − nφ̂ − ∑ ne
kme

k=1 , nû being the number of nodes on ΓuD
. In 

assembling, positions of each elementary matrix and vector 

in the global system are determined by the mapping results. 

The global system can be written as 

𝐌uÜ + 𝐂uU̇ + 𝐊uU + 𝐊uφΦ = FX (19.a) 

                                 𝐊uφ
T U − 𝐊φΦ = 0         (19.b) 

where 𝐌u ∈ ℝNu×Nu , 𝐂u ∈ ℝNu×Nu , 𝐊u ∈ ℝNu×Nu , 𝐊uφ ∈

ℝNu×Nφ,𝐊φ ∈ ℝNφ×Nφ , and FX ∈ ℝNu×1.  

Eq.(19) can be transformed from the time domain to the 

frequency domain. For a time-harmonic excitation at angular 

frequency ω, the transforming yields 

(−ω2𝐌u + jω𝐂u + 𝐊u)U + 𝐊uφΦ = FX (20.a) 

                                            𝐊uφ
T U − 𝐊φΦ = 0        (20.b) 

where j is the imaginary unit.  

Incorporating electric circuits into Eq.(20) can be achieved 

via describing each circuit element with the so called equiva-

lent capacitance matrix [22] and adding the resultant matri-

ces into the dielectric matrix of Eq.(20.b). To be more pre-

cise, 𝐊φ  is replaced with 𝐊φ + �̂�φ  in which the effective 
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capacitance matrix �̂�φ is initially null. For each circuit ele-

ment x̌ connected between the pth and qth electrode, define a 

vector Vx̌ that is of size Nφ × 1 and its  pth and qth  compo-

nent are respectively 1 and -1 while others are zero.  

 

Fig. 2. Piezoelectric EH connected to electrical loads in series 

Denote �̆�φx̌ as the product Vx̌Vx̌
T (the incident matrix) for 

conciseness. Then the matrix − j ωZ̃x̌⁄ �̆�φx̌ is added to �̂�φ. 

�̂�φ = ∑
j

ωZ̃x̌

�̆�φx̌
x̌

 (21) 

Z̃x̌ equals to −Zx̌ when x̌ is a capacitor; while Z̃x̌ = Zx̌ when 

x̌ is a resistor or an inductor, with Zx̌ denoting the impedance 

of x̌. The new global system can be expressed as 

(−ω2𝐌u + jω𝐂u + 𝐊u)U + 𝐊uφΦ = FX (22.a) 

                            𝐊uφ
T U − (𝐊φ + �̂�φ)Φ = 0      (22.b) 

For EH design, one of the most frequently used configura-

tion is that composed of a piezoelectric bimorph connected 

with a resistor in series, as represented in Fig.2. In this case, 

the electrodes 2 and 3 are grounded while the resistor is con-

nected between electrodes 1 and 4. Consequently, the effec-

tive capacitance matrix can be simplified as − j ωr⁄ �̆�φ. This 

configuration is condidered in the following. 

The above equation is multi-parametric, depending on ω 

and r. Usually, results of the FE model for a wide range of 

these parameters are of interest. For instance, one may seek 

the EH output for all combinations of ω in the Nω × 1 vector 

Vω ≔ [ω1 ω2 ⋯ ωNω]  and r  in the Nr × 1  vector 

Vr ≔ [r1 r2 ⋯ rNr], so as to find the optimal working 

condition. A conventional approach to solve the problems is 

to solve Eq.(22) with two loops for ω and r, one comprised 

in the other. This approach leads to the model complexity 

increasing exponentially with the number of parameters. This 

approach takes a huge amount of time, especially when the 

total number of parameters is large.  

 

III. PGD BASED MODEL ORDER REDUCTION 

In this section, a novel approach that enables the com-

plexity increase linearly with the number of parameters is 

introduced. Note that when Eq.(22) is solved for values of ω 

and r, solutions can be arranged as three-way arrays 𝔘 and 

𝔙, respectively for the displacements and potentials. Each 

dimension in the array relates to either the spatial coordi-

nates, frequencies or resistors. The goal with the novel ap-

proach is to approximate 𝔘 and 𝔙 in terms of low rank ten-

sors in the canonical form [23], as depicted in Fig.3 where 𝔜 

stands for 𝔘 or 𝔙. 

 

Fig. 3. Approximation of the solution via low rank tensors 

 

A. Separated representations 

    Expressing the above figure in equations yields 

𝔘(X,ω, r)  ≈ ∑ UXi ⊗ Uωi ⊗ Uri

R

i=1
 (23.a) 

𝔙(X,ω, r)  ≈ ∑ ΦXi ⊗ Φωi ⊗ Φri

R

i=1
 (23.b) 

where UXi ∈ ℂNu×1 , ΦXi ∈ ℂNφ×1 , Uωi, Φωi ∈ ℂNω×1 , and 

Uri, Φri ∈ ℂNr×1 . ‘⊗’ denotes the Kronecker product. R is 

the total number of modes.  

Note that decompositions in Eq.(23) is the solution of a 

system obtained by expanding Eq.(22) for all samples of the 

parameters. To obtain this system, Eq.(22) needs to be ex-

panded in tensor form. For the r.h.s., w.l.g., assume that 

identical mechanical excitations are applied in all cases of ω 

and r. Thus, r.h.s. in Eq.(22.a) is expanded as FX ⊗ Fω ⊗ Fr 

where Fω and Fr, whose components are all equal to 1, are 

vectors of size Nω × 1 and Nr × 1, respectively. Expanding 

matrices in Eq.(22) in tensor form is straightforward as vari-

ables related to X, ω and r are individual terms in products, 

thanks to the method modeling electrodes and electrical 

loads. The resulting tensor comprises four blocks 

 

𝔄 = [
𝔄11 𝔄12

𝔄21 𝔄22
] (24) 

with 

𝔄11 = −𝐌u ⊗ 𝐀ω ⊗ 𝐃r + j𝐂u ⊗ 𝐁ω ⊗ 𝐃r    

+𝐊u ⊗ 𝐃ω ⊗ 𝐃r 
(25.a) 

𝔄12 =   𝐊uφ ⊗ 𝐃ω ⊗ 𝐃r                                      (25.b) 

𝔄21 =   𝐊uφ
T ⊗ 𝐃ω ⊗ 𝐃r                                      (25.c) 

𝔄22 =     𝐊φ ⊗ 𝐃ω ⊗ 𝐃r − j�̆�φ ⊗ 𝐆ω ⊗ 𝐆r (25.d) 

where 𝐃ω  (resp. 𝐃r ) equals to 𝐈Nω
 (resp. 𝐈Nr

), the identity 

Nω × Nω (resp. Nr × Nr) matrix. The others are defined as 

𝐀ω ≔ diag{ω1
2 ω2

2 ⋯ ωNω

2 } ∈ ℝNω×Nω                 (26.a) 

𝐁ω ≔ diag{ω1 ω2 ⋯ ωNω} ∈ ℝNω×Nω                 (26.b) 

𝐆ω ∶= diag{1 ω1⁄ 1 ω2⁄ ⋯ 1 ωNω
⁄ } ∈ ℝNω×Nω   (26.c) 

𝐆r ∶= diag{1 r1⁄ 1 r2⁄ ⋯ 1 rNr
⁄ } ∈ ℝNr×Nr         (26.d) 
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To keep notations neat, modes in Eq.(23) are designated as  

𝔵i ≔ [𝔵1
i , 𝔵2

i ]
T

= [UXi ⊗ Uωi ⊗ Uri, ΦXi ⊗ Φωi ⊗ Φri]
T (27) 

and the expanded r.h.s.s as   

      𝔟 ≔ [𝔟1, 𝔟2]
T = [FX ⊗ Fω ⊗ Fr, 0]T (28) 

Subscript 1 and 2 indicate association with mechanical and 

electrical variables, respectively. Components associated 

with X, ω and r are accessed with an additional subscript κ 

with κ = 1, 2 and 3, respectively. For instance, 𝔵11
i  represents 

UXi , 𝔵23
i  represents Φri  and 𝔟12  represents Fω , and so forth. 

To accesses matrices in the blocks of Eq.(25), a superscript κ 

is added to 𝔄  so that 𝔄ij
κ  depicts matrices in the block 𝔄ij 

relating to the space, frequency and resistor when κ equals to 

respectively, 1, 2 and 3. The expanded system of Eq.(22) is 

𝔄 ∑ 𝔵i
R

i=1
≈ 𝔟 (29) 

The PGD method suggests calculating each 𝔵i successively. 

Namely, in the m
th

 enrichment for m = 1,⋯ , R, 𝔵m is calcu-

lated on the basis of sum of all its m − 1 preceding terms. 

Components 𝔵λκ
m  in 𝔵m  are calculated individually through 

e.g. fixed point iterations. 

 

B. PGD interpreted as an optimization problem 

Firstly, define suitable subspaces 𝒮λκ  so that 𝔵λκ
m ∈ 𝒮λκ . 

Examples of such subspaces are 𝒮11 ⊂ ℂNu×1  and 𝒮23 ⊂

ℂNr×1 . As a result, 𝔵λ
m  belongs 𝒮λ ≔ 𝒮λ1 × 𝒮λ2 × 𝒮λ3  and 

𝔵m ∈ 𝒮 ≔ {{𝔷1  𝔷2}
T;  𝔷λ ∈ 𝒮λ for λ = 1,2}. Denote the resid-

ual 𝔟λ − 𝔄(λ, : )(𝔵{m−1} + 𝔵m) by 𝔯λ
m where the “colon nota-

tion” in MATLAB is used to designate the λth row of 𝔄 in 

𝔄(λ, : ). The new mode 𝔵m  can be calculated from Eq.(30) 

which is sometimes referred to as the nearest Kronecker 

product problem [24]. 

𝔵m = argmin
𝔵m∗

 ‖𝔯λ
m(𝔵m∗)‖

2
  for λ = 1,2 (30) 

Or find 𝔵m ∈ 𝒮 such that for λ = 1,2 

(𝔄(λ, : )𝔵m, 𝔵λ
m′

)
𝒮λ

= (𝔯λ
m−1, 𝔵λ

m′
)
𝒮λ

  ∀ 𝔵λ
m′

∈ 𝒮λ  (31) 

where (⋆,⋆)𝒮λ
 is the inner product on 𝒮λ and it is calculated 

as (⋆,⋆)𝒮λ
: = ∏ (⋆κ,⋆κ)𝒮λκ

3
κ=1  [23]. Since the vector ⋆κ  is 

complex valued, the inner product (⋆κ,⋆κ)𝒮λκ
 is ⋆κ

H ∙ ⋆κ  in 

which H denotes the conjugate transpose. When 𝔄 is Hermit-

ian, the above equation can be reformulated as 

𝔵λ
m′H

𝔄(λ, : )𝔵m = 𝔵λ
m′H

𝔯λ
m−1  (32) 

Unfortunately, in our case the operator is symmetric but non- 

Hermitian because matrices in Eq.(25) are symmetric and 

real-valued, terms involving multiplication of this matrix 

with the imaginary unit make 𝔄 non-Hermitian. Consequent-

ly, Eq.(30) needs to be calculated using, e.g. the least square 

method. This is achieved by replacing 𝔄 in Eq.(32) by �̃�, 

being �̃�: = 𝔄T𝔄. However, it is not recommended because 

first, �̃�  becomes dense rather than sparse as 𝔄  is. Second, 

convergence rate of the resultant PGD system is significantly 

slowed down [10]. Nevertheless, as reported in [12], the 

approach based on Eq.(32) proves efficient to capture good 

approximations in many cases even 𝔄 is non-Hermitian. We 

consider Eq.(32) in the following.  

 

C. Implementing details 

Solving Eq.(32) is a nonlinear problem as products of un-

knowns are involved. With the ADM, it is assumed that the 

two components other than the μth
 in the mth

 mode are known 

when calculating for 𝔵λμ
m , as in Eq.(33). Assumed known 

variables need to be initialized where for the first step they 

can be arbitrary (or simply taken as ones) and for the subse-

quent, solutions of the former enrichment can be taken.  

𝔵λ
m′

= 𝔵λμ
m ′

⊗
κ≠μ

𝔵λκ
m   (33) 

Substituting Eq.(33) into Eq.(32) and cancelling 𝔵λμ
m ′

 on each 

side yields a linear system for 𝔵λμ
m  

( ⊗
κ≠μ

𝔵λκ
m )

H

𝔄(λ, : )𝔵m = ( ⊗
κ≠μ

𝔵λκ
m )

H

𝔯λ
m−1 

 
(34) 

Recall that vectors associated with X, ω and r are calcu-

lated when μ takes value from 1 to 3 while mechanical dis-

placements and electrical potentials are calculated when λ 

takes 1 and 2. This process enforces orthogonality between 

the residual 𝔯λ
m and the subspace 𝒮λ. Iterations are involved 

using the ADM. Denote the iteration counter as p and the 

value of 𝔵λμ
m  calculated at the pth

 iteration as 𝔵λμ
m,p

. Iterations 

are terminated when either a maximum number nIn for p is 

attained or the following convergence criterion is met 

max
λ

∏
‖𝔵λμ

m,p
− 𝔵λμ

m,p−1
‖

F

‖𝔵λμ
m,p−1

‖
F

3

μ=1
< εIn 

 

(35) 

where ‖⋆‖F stands for the Frobenius norm and εIn is a prede-

fined criterion. It is noted that calculating 𝔵λ
m,p

 as 𝔵λ1
m,p

⊗

𝔵λ2
m,p

⊗ 𝔵λ3
m,p

 and then comparing the difference between 𝔵λ
m,p

 

and 𝔵λ
m,p−1

 is less practical as it is memory intensive and 

reduces the speed. Indeed, the relation ‖𝔵λ
m,p

‖
F

=

∏ ‖𝔵λμ
m,p

‖
F

3
μ=1  indicates that it has the same effect as what 

described above. 

The enriched vectors associating with the space and fre-

quency are normalized before they are added into the new 

mode. Actually, one can normalize any two in the three vec-

tors. The purpose is to prevent cases where one vector tends 
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to infinity while another tends to zero, which causes numeri-

cal overflow. Normally, both ϵIn and np are set to ensure that 

iterations do not take too long. 

The enrichment proceeds till m > 𝑅 , the maximum en-

richment number or the following criterion is met 

max
λ

‖𝔵λ
m‖F

‖𝔵λ
1‖

F

< εout 
 

(36) 

which means the last mode is small enough compared with 

the first mode. Eq.(36) is rudimentary whereas it is efficient. 

Deciding the values for εout is problem dependent. 

Once the enrichment process is finished, an approximation 

𝔵pgd with the R rank-one tensors {𝔵λ
1 | ⋯ | 𝔵λ

R} (denot-

ed as 𝔵λ
{R}

)  to the real solution can be recovered using 

Eq.(23). To evaluate the accuracy of 𝔵pgd, its relative error 

εrel  w.r.t. the solution obtained using the conventional ap-

proach 𝔵con ≔ {𝔵1
con  𝔵2

con}Tcan be calculated. 

εrel = max
λ

‖𝔵λ
pgd

− 𝔵λ
con‖

F

‖𝔵λ
con‖

F

 

 

(37) 

 

D. Updating strategy 

In [10] the above process is referred to as the progress Ga-

lerkin PGD. Its convergence can be accelerated via updating 

the results after each enrichment. The idea is to impose or-

thogonality between 𝔯λ
m  and the subspace (𝒮λ)

m ≔

×μ=1,2,3(𝒮λμ)
m

, as expressed in Eq.(38). 

𝔵λ
l H

(𝔟λ − 𝔄(λ, : )𝔵{m}) = 0,   l = 1,2,… ,m  (38) 

The ADM can be employed which consists in solving all m 

components 𝔵λμ
l  while fixing the other two set of m compo-

nents 𝔵λκ
l  for κ ≠ μ and take μ = 1,2,3 in turn. However, it is 

found in our numerical tests that the convergence rate can be 

extremely slow, especially for a large  m . In other words, 

increasing iteration numbers has insignificant effects on the 

improvement of convergence. Hence, only one iteration in 

the updating is considered here. It also worthies noting that 

when fixing all frequency and resistor related vectors and 

updating space related vectors, the size of the system to be 

solved is the square of m × (Nu + Nφ) that quickly becomes 

too large to be tractable as m increases. Therefore, vectors of 

a large number of dofs (spatial components) are not updated. 

The implementing is summarized in the algorithm chart. 

 

IV. NUMERICAL EXAMPLES 

A. Model description 

Consider a cantilevered piezoelectric EH that is fixed onto 

a base. Acceleration are applied on the base which makes the 

EH deform, acting as mechanical excitation for the EH. To 

model the device, it is more convenient to consider dis-

placements of the EH w.r.t. the base. Thus, we assume that 

the EH is fixed on the left while subject to an acceleration in 

the vertical direction (Fig.4a). Dimensions of the bimorph are 

adopted from [18] where two PZT-5H layers of 

27 × 3.2 × 0.258 mm3  and a brass substrate of size 

27×3.2×0.115mm3  are connected in series. Their material 

properties are summarized in Table I.  

Six hundred excitation frequencies equally spaced be-

tween 0 and 3kHz are considered. The acceleration is taken 

constant (9.81 m/s
2
) for all frequencies. To compare simula-

tion results  with measurements reported in [18], a set of six 

resistors are chosen (being 100Ω , 1  kΩ , 10  kΩ , 91  kΩ , 

500 kΩ and 910 kΩ). An area representing the air is added 

surrounding the EH. In the mesh, the air area is set to be 

relatively larger than the EH domain. A total of 76824 tetra-

hedral elements with 14783 vertices are generated (Fig.4b). 

Not that only half of the domain needs to be calculated due to 

the vertical symmetric surface in the middle. 

 

Algorithm for parametric studies of the EH 

1 : Initialize 𝔵λμ
0  with λ = 1,2;  μ = 1,2,3 

2 : for iout = 1 to R do 

3 :       for iin = 1 to nIn do 

4 :          Compute 𝔵λκ
iin from Eq.(34) 

5 :          Check convergence in Eq.(35) 

6 :       end for 

7 :       Normalize 𝔵λκ
iin (λ = 1,2;  μ = 1,2) 

8 :       Update 𝔵λ
l  from Eq.(38) 

9 :       Check convergence in Eq.(36) 

10 : end for 

11 : Recover the approximated solution using Eq.(23) 

12 : end of the algorithm 

 

Fig. 4. Model configuration (a) the cantilevered piezoelectric EH, (b) mesh 
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B. Simulation results 

     In the first test, parameters for the PGD approach are set 

so that the fixed point iteration stopping criterion is 10−3 

while that of the enrichment process is 10−5 . Maximum 

number of iterations and enrichments are set to 10 and 100, 

respectively (influence of different criterions are addressed in 

the next section). The same model is also solved using the 

conventional approach in which one loop for all samples of 

the resistor and the other for frequency are included. Both 

simulations are carried out in MATLAB on a workstation of 

32G RAM and an Intel Xeon 3.5 GHz processor.  

 

TABLE I 

MATERIAL PROPERTIES 

 Substrate (brass) 

Mass density 9000 (kg m−3) 

Young’s Modulus 105 × 109 (N m−2) 

Poisson’s ratio 0.23 

Piezoelectric (PZT-5H) 

Mass density 7500 (kg m−3) 

Elastic constants 

𝑐11 = 12.72  𝑐12 = 8.02  

𝑐13 = 8.47  𝑐33 = 11.74  

𝑐44 = 2.30  (× 1010N m−2) 

Piezoelectric constants 
𝑒31 = −6.62  𝑒33 = 23.24  

𝑒15 = 17.03  (Cm−2) 

Relative permittivity 

permittivities 

𝜀𝑟11
= 1704.40  𝜀𝑟33

= 1433.61  

 

TABLE II 

CPU TIME, SOLUTION SIZE AND RESULTS OF DIFFERENT APPROACHES 

   CPU time 

(s) 

 Solutions 

size (Mb) 

 Relative 

error 

Conventional 

 

11228 

 
1144 

 
reference 

P-Conventional 5125 

PGD 3094 
30.72 

0.178  

U-PGD  2483   8.01*10-6  

 

The total consumed CPU time, memory required to store the 

solutions for both approaches and relative error between 

them are presented in Table II. The conventional approach is 

carried out both in serial and parallel (the latter is referred to 

as P-Conventional where the parfor function in MATLAB is 

used). For the PGD approach, both PGD with and without 

updating are tested. The former is referred to as U-PGD. 

PGD and U-PGD undergoes the same amount of enrichments 

and have solutions of the same size. Solutions of the conven-

tional approaches are taken as the reference for evaluating 

accuracy of the PGD solutions, based on Eq.(37). 

     As can be observed, parallel implementation of the con-

ventional approach shortens the calculating time to less than 

half of the serial counterpart, meanwhile CPUs are fully 

charged throughout, unlike in other cases where CPUs are 

only slightly charged. On the other hand, both PGD simula-

tions take less time than P-Conventional in which U-PGD 

consumes less than half CPU time as the P-Conventional 

does (that is less than one quarter of the serial conventional 

version). Differences in CPU time between the PGD and 

conventional approaches can be explained from their algo-

rithm complexities. Define 𝒪S as the complexity to solve the 

FE system Eq.(22) for one combination of ω and r. Thus, 

complexity of the conventional approach is Nω × Nr × 𝒪S . 

For the PGD approach, the most time-consuming part is 

calculating the space associated components since Nω and Nr 

are much smaller than Nu  and Nφ . Its complexity can be 

estimated as ∑ ñin
iR

i=1 × 𝒪S where ñin
i  is the number of itera-

tions in the ith enrichment. Therefore, the ratio of complexi-

ties of the two approaches is Nω × Nr ∑ ñin
iR

i=1⁄ . Larger this 

ratio is more time shall be saved with the proposed approach. 

Another advantage with the PGD approach is that only space 

of orders of magnitude less is demanded to store the simula-

tion results (in our case the ratio of required space for the 

conventional and PGD approach is (Nu + Nφ) × Nω × Nr 

versus (Nu + Nφ + 2Nω + 2Nr) × R ). It is also observed 

that the updating plays an important role in accelerating 

convergence rate of the PGD (see Fig.5) which leads to more 

accurate solutions.  

 

Fig. 5. Convergence of enrichment for with and without updating 

 

     In Fig.6 and Fig.7, space and frequency components for 

the first eight modes are depicted, respectively. As can be 

seen, only bending modes (none torsion nor other high order 

modal shapes) appear in the space components which is due 

to the fact that frequencies chosen in our example only cover 

the first two eigen frequencies of the bimorph. For the fre-

quency components, most peak values locate near the eigen 

frequencies of the system. In Fig.8 are presented impedance 

components for 𝑅 = 91𝑘Ω  whose counterparts for other 

values show a similar trend.   
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Fig. 6. Space components of the 1st to the 8th enrichment (displacements are depicted by the deformation from the original positions while potentials are repre-

sented by the color; the area for air is not shown) 

 

 

Fig. 7. Frequency components of the 1st to the 8th enrichment 

 

     For the validation of our results obtained with 100 en-

richments, voltages between electrode 1 and 4 are extracted 

from the PGD results. This voltage under different frequen-

cies and resistors are shown in Fig.9a. It is found that our 

simulated results compare favorably with the experimental 

results in the literature (c.f. Fig.4a in [18]). In Fig.9b, the 

harvested power, or power consumed on the resistors are 

depicted. As can be seen, the resistor of 91kΩ is optimal.  
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Fig. 8. Impedance components for R = 91kΩ Fig. 9. Output of the energy harvester (a) generated voltage, (b) power consumed by the electrical load 

 

TABLE III 

STUDY ON PARAMETERS OF THE INNER LOOPS  (NOUT = 100, ΕOUT = 10−5) 

   𝑛IN = 5  𝑛IN = 10  𝑛IN = 20  𝑛IN = 30 

𝜀IN   
𝑛ite 

𝜀conv 

× 10−5 

𝜀rel 

× 10−5 
 𝑛ite 

𝜀conv 

× 10−5 

𝜀rel 

× 10−5 

 
𝑛ite 

𝜀conv 

× 10−5 

𝜀rel 

× 10−5 
 𝑛ite 

𝜀conv 

× 10−5 

𝜀rel 

× 10−5 

10−2   480 2.2 7.2  624 2.0 6.8  608 0.82 5.6  609 0.97 5.6 

10−3   495 3.7 7.8  839 3.9 8.0  798 0.88 5.8  999 0.98 5.8 

10−4   498 2.0 6.7  937 2.2 6.5  1052 0.95 6.1  1575 0.99 6.0 

10−5   500 52 44  863 0.96 7.7  1119 0.97 5.6  1706 0.88 5.6 

 

TABLE IV 

STUDY ON PARAMETERS OF THE OUTER LOOPS  (NIN = 10, ΕIN = 10−3) 

  𝑛OUT = 30  𝑛OUT = 50  𝑛OUT = 100  𝑛OUT = 200 

𝜀OUT   
𝑛ite 

𝜀conv 

× 10−2 

𝜀rel 

× 10−2 
 𝑛ite 

𝜀conv 

× 10−3 

𝜀rel 

× 10−3 

 
𝑛ite 

𝜀conv 

× 10−4 

𝜀rel 

× 10−4 
 𝑛ite 

𝜀conv 

× 10−5 

𝜀rel 

× 10−4 

10−2   228 0.72 4.8  228 7.2 48  228 72 480  228 720 480 

10−3   254 5.7 5.4  417 2.7 1.9  425 8.2 18  425 82 18 

10−4   254 5.7 5.4  417 2.7 1.9  623 0.92 3.6  623 9.2 3.6 

10−5   254 5.7 5.4  417 2.7 1.9  835 0.17 0.69  948 0.82 0.58 

 

C. Influence of the algorithm parameters 

         Additional simulations (U-PGD version) are carried out 

in order to investigate the influence of different parameters in 

the novel approach. Results are grouped and presented in 

tables, one for the maximum loop number and stopping crite-

rion of the fixed point iterations (referred to as inner loops) 

and the other for enrichments (referred to as outer loops). 

Results are compared in terms of three items: the total itera-

tion number nite , the convergence indicator in the last en-

richment 𝜀conv calculated with Eq.(36), and the relative error 

𝜀rel  obtained with Eq.(37). It is to be noted that only the  

order of magnitudes are of concern, because the convergence 

is not monotone and the values may locally oscillate.  

In Table III, the maximum enrichment number is fixed at 

100 and the convergence criterion is set to 10−5. It is found 

that increasing the maximum iteration number nIN does not 

significantly improve the accuracy while the complexity 

increases dramatically. It is recommended to take nIN  as 

small as possible e.g. 5 or 10 whenever possible. However, it 

is more tricky with εIN. When it is too large, solutions in step 

4 of the algorithm can be far from the exact ones for which 

more enrichments are required to keep the approximation 

precision. However, if it is too small the results can be dete-

riorated, because more iterations are needed for small εIN’s 

and it can diverge after certain iterations. Consequently, the 
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solved modes are not necessarily more accurate albeit the 

larger number of iterations. 

In Table IV, the maximum iteration number is 10 and the 

iteration convergence criterion is 10−3  for all cases. Influ-

ences of the outer loop parameters are more evident. As 

suggested in Eq.(23), a larger 𝑅 normally leads to a better 

approximation to the exact solution. Therefore, both smaller 

εOUT and larger nOUT can hopefully lead to better approxima-

tions. However, it is important to realize that the limit of the 

approximation precision is decided by various factors, such 

as parameters of both inner and outer loops, and the updating 

strategy. As a result, the results are no longer improved to 

some limit by increasing the number of modes. In our case, a 

maximum number of 50 at 10−5 is found to be appropriate.  

 

V. SUMMARY AND CONCLUSIONS 

A PGD based approach for the parametric study of EH 

numerical models is proposed in this paper. Compared with 

conventional approaches, the novel approach is capable to 

obtain numerical results of almost the same quality while at a 

much reduced complexity. Using the proposed approach, 

CPU time for solving parametric problems is effectively 

reduced along with less required space to store the results. In 

addition, the proposed approach can be readily implemented. 

Nevertheless, there is still much space for improvements of 

the proposed method such as effective methods to solve high 

dimensional problems in updating and more rigorous error 

estimators for convergence check. Additionally, solving the 

three dimensional spatial components dominates the simula-

tion process which can be reduced by PGD based decomposi-

tion of the full spatial fields into lower dimensional ones [25] 

though extra efforts than in a pure structural problem are 

needed due to the piezoelectric coupling.  Such problems 

offer tantalizing prospects for future extensions of this work.  
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