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ABSTRACT
Most Information Retrieval models compute the relevance
score of a document for a given query by summing term
weights specific to a document or a query. Heuristic ap-
proaches, like TF-IDF, or probabilistic models, like BM25,
are used to specify how a term weight is computed. In this
paper, we propose to leverage learning-to-rank principles to
learn how to compute a term weight for a given document
based on the term occurrence pattern.

1. INTRODUCTION
Ad-hoc Information Retrieval aims at ranking documents

according to their relevance to a query. Many different mod-
els exist, such as BM25 [18] and language models [24]. The
core of most IR model is the term weighting formula, that
assigns a weight to each term of each document according to
its importance – how likely the document is relevant if such a
term appears in a query? Such term weighting functions are
crucial, even for state of the art learning-to-rank approaches
[12] – the fact that such approaches systematically use one
or more IR models as term weight-based features outlines
their importance.

Term weighting functions have been, from the very begin-
ning of research on IR models, a focus of many works. At-
tempts to improve the weighting scheme include developing
different models of the IR process [24, 1], estimating more
reliably some of its components [25], or, and this is the fo-
cus of this paper, learning the term weighting function [23].
As the latter leverages the same source of information as
learning-to-rank models, learning the term weight function
has a great potential, provided enough training data, and
expressiveness power for the function.

The approach we propose is inspired by recent work in
representation learning [2] whose main idea is to process
directly raw data rather than computing features. In In-
formation Retrieval, this corresponds to designing a model
that would take as input words, outputting a score for a
given document. This approach has been followed by some
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recent works like [16], using recurrent neural networks, and
[10], using convolutional neural networks. Those works aim
at embedding documents in a low-dimensional space, and
are thus comparable to latent space approaches like LSA [8],
sharing their properties [9] of increasing recall at the expense
of precision. This has been confirmed in tasks like question-
answering, where a query referring to a named entity should
be answered by documents containing it. In that case, ap-
proaches based on dimensionality reduction do not perform
well, even if trained in a supervised way [20]. Another draw-
back of such approaches is that they need great quantities
of data to set the different parameters of these models, since
rare terms will tend to have their representation badly esti-
mated. As rare terms might be good indicators of document
relevance, we believe this is a problem.

The main proposal of this paper is that a representa-
tion of a term be the positions it occurs in in the docu-
ments of the collection and in the document for which we
want to compute the term weight. We can then compare
terms based on their patterns of occurrences to determine
what their term weight should be. The advantages of doing
so, compared to actual neural network based approaches, is
that (1) less training data is needed since two terms might
share a common occurrence pattern while being semantically
not related; (2) inverted indices can still be used, allowing
fast retrieval. Finally, compared to standard IR weighting
schemes, no prior hypothesis on the functional form of the
term weighting function is made.

Using term occurrence pattern would help to distinguish
the cases of – the list is not exhaustive:

1. Terms occurring regularly, whatever the document,
would likely be unimportant words.

2. Terms occurring most of the time at the same posi-
tion (e.g. “Introduction” for scientific papers) could be
important when occurring at other places.

3. Terms occurring throughout a document would be
more important than those occurring only in one part.

In this paper, we present preliminary work that we have un-
dertaken in this direction, using a representation based on a
clustering of the term occurrence patterns. In the following,
we first present related work (Section 2), before introducing
our approach (Sections 3 and 4), giving some preliminary
experimental results (Section 5), and concluding (Section
6).

2. RELATED WORK
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Related work can be divided in two parts: (1) some works
have tried to learn various parts of the term weighting model
– ranging from hyperparameters to full term weighting func-
tions; (2) more recently, some approaches have tried to com-
pute the relevance score of a document for a given query, us-
ing neural networks. We describe those two lines of research
in turn.

Taylor et al. [23] proposed to learn the BM25 parameters
(k1 and b) using a pairwise RankNet loss function, and have
shown that this led to the best results achievable given ap-
propriate training. Schuth et al. [19] extended this approach
by leveraging user clicks rather than relevance assessments.

Rather than relying on a pre-established term weighting
function whose hyperparameters are learned, it can be in-
teresting to learn the term weighting function directly. This
has been explored by using genetic algorithms to evolve
term weighting functions (represented as trees) [7], using
terminals like term frequency and document frequency, and
non-terminals (functions) like sum, product and logarithm.
Closer to our work, Svore et al. [22] proposed to use a multi-
layer neural network to learn directly the term weight given
features like term frequency and document frequency. In
this work, we go further, and instead of using pre-defined
features, we propose to estimate the term weight directly
from the occurrences of a given term in the document and
its context (the document collection).

This approach goes in the same direction as deep neural
architectures that have had a great success in the field of im-
age processing [2], one of the working hypothesis is to train
a neural network to predict a value given the raw represen-
tation of an object. In the field of natural language process-
ing and information access, this usually means that terms
are used as the input. Most models rely on low-dimensional
representation of words, such as those obtained by word2vec
[14], where each word is associated to one vector in a low-
dimensional latent space.

Huang et al. [10] proposed to use a convolutional neural
network. Instead of starting from word embeddings, they
did use letter tri-grams (so as to have a small size vocabu-
lary), i.e. each document is represented by the count of the
tri-grams occuring in it. The output is a fixed size repre-
sentation vector that is used to compute the relevance to a
query. Shen et al. [21] extended their work by first com-
puting the representation of word tri-grams, before using a
pooling layer (maximum over each dimension of the repre-
sentation space) to represent the full document. Finally, [16]
used a recurrent neural network (RNN), the representation
of a document or a query being the state of the RNN at
the end of the processed sequence. Compared to our work,
these approach need a great quantity of training data, and
we believe they are not suited for many IR tasks dealing with
precise named entities. In the context of question-answering,
[20] proposed to learn whether a sentence is an answer to a
given query using a convolutional neural network, but had
to introduce a set of query-document features to improve
their results, such as the word overlap count.

In parallel, Zheng and Callan [26] proposed a somehow
term-independent representation of query terms to define
the query weight of each term. The central idea of their
work is to represent each term of the query as the difference
between the term vector and the mean of the vectors repre-
senting the terms of the query thus capturing the semantic

difference between the term and the query. Our research is
direction is orthogonal, since we are interested by the docu-
ment weight and not the query one, but the idea of finding a
term-independent representation inspired our present work.

3. PROBLEM FORMULATION
We start by exposing briefly the overall learning-to-rank

optimization scheme. The relevance score of a document for
a given query is given as a weighted sum, over terms present
in the query, of their importance w (t, d), that is

sθ (q, d) =
∑
t∈q

fθ (t, q)wθ (t, d) (1)

where fθ(t, q) denotes the importance of the term(s) t in
the query q (we suppose in this paper that it is a constant
equal to 1) and wθ (t, d) is the computed term weight. Both
depend on the model parameters θ .

To learn the parameters θ, many different optimization
functions could be used. We choose the RankNet pairwise
criterion [3] because it is simple and was shown to perform
well on a variety of test collections. It supposes that the
probability that a document a is ranked before the document
b given a query q is given by

σ (sθ(q, a)− sθ(q, b))

where σ (x) is the sigmoid function 1/ (1 + exp(−x)). The
cross-entropy cost function is then used to optimize the pa-
rameters θ of the model. In our case, this gives

E

(
σ

(∑
t∈q

wθ(t, a)− wθ (t, b)

))
where the expectation is over all triplets (q, a, b) such that
a is more relevant than b – for binary relevance like in our
experiments, this corresponds to the cases where a is rele-
vant and b is not. We further suppose that wθ(t, d) = 0 if
the term t does not appear in the document d – this is a
common hypothesis made by all term weighting schemes.

We now turn to the problem of computing wθ (t, a). The
general model is presented in Figure 1, where the weight
of a term is computed by considering two sources of infor-
mation, the document (left) and the collection (right). We
would like to be able to compute a term-document repre-
sentation xtd ∈ Rn that captures the pattern of occurrence
of term t in document d, and of a term-collection represen-
tation xtc ∈ Rp that captures the pattern of occurrence of
term t in collection c. Given these two pieces of information,
a term weight can be computed through the function wθ.

4. PROPOSED MODEL
While we could learn directly the term weight given the

term occurrence pattern in the document and the collection,
we choose to decompose the problem in two parts: (1) com-
puting a faithful representation of the document/collection
term occurrence pattern and (2) computing the term weight.
End-to-end learning is a longer term objective, but we first
need to find the most promising options. While other choices
are possible and will be explored, we describe next a first
and simple instance of this model, using K-Means for (1)
and neural networks for (2).



Collection

...

collection rep-

resentation xt

Document

document rep-
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(MLN) wθ(xtd, xt)

Figure 1: General model for computing the weight of term t in document d. The term occurrences are marked
with a black bar, and are used to compute for a single term (left) the representation of a document (right)
the representation of the collection. Both representations can then be used to compute the final term weight.

4.1 Document and collection representation
with K-means

In this preliminary work, we experimented with a simple
method where we used k-means to compute the term docu-
ment and collection representations. We followed a standard
approach for representing object with k-means [6]: we first
clustered patterns of occurrences of all the terms into k clus-
ters; then, each document is represented by a vector in Rk
where each component is the distance of the corresponding
centroid to the document representation. We now describe
more in details the methodology.

The initial document representation is a probability distri-
bution over the positions in a document, i.e. the probability
of a term t occurring at a given position p in document d is
given by:

P (p|d) =
1

#d
δpd

where #d is the number of term occurrences in documents
(i.e. its length), δpd is the Dirac function that is 1 when the
term appears at position p. The position p can be normalized
or not: if normalized, p ranges from 0 to 1, otherwise from
0 to the length of the document. The interest of normal-
izing is that documents of different lengths can be directly
compared, and more meaningful clusters be found.

To compute the distance between two document distri-
butions, we use the quadratic Wasserstein metric W2 [17]
which amounts at computing the minimum “move of prob-
ability mass” (squared distance × probability mass) so that
one (continuous) distribution can be transformed in another
– it is related to the Earth Mover Distance (EMD) — using
the square of the distance rather than the distance itself,
and has interesting computational properties for k-means.
This distance seems also more adapted than a L2 distance
(in the vector space defined by quantized positions) since it
takes into account the proximity of one position to another.

Unfortunately, for computational reasons, we had to rep-
resent the distribution by vectors of fixed size (we used a
dimension D =100 in the experiments), i.e. a document is
represented as a vector pd ∈ RD. The distribution probabil-

ity can then be defined from the vector pd as:

P̃ (p|d) =
1

d
# {j|pdj = p}

which is an approximation of the original probability – the
pdj were computed so as to minimized the W2 distance be-

tween P̃ and P . If the pdj are increasing (i.e. pdj ≥ pdj′ if

j ≥ j′), the L2-norm can be used directly to compute the
W2 distance between two distributions while the mean can
be used to compute the centroid [17].

The representation xtd of a term for a document is then
given by its distance to the corresponding centroid, that is
the ith component of the vector representing the term t in
document d is given by:

xtdi = W2 (pd, ci)

where ci is the ith cluster.
For the term-collection representation xt, we chose to ei-

ther compute the mean of the document vectors for the cor-
responding terms, or to compute the sum. The interest of
the latter is that the sum captures somehow the number of
occurrences of a term in the document collection. Formally,

x
(sum)
t =

∑
d/t∈d

xtd

and

x
(mean)
t =

1

# {d/t ∈ d}
∑
d/t∈d

xtd

4.2 Term weighting
Knowing xt and xtd, we then used a multi-layer network

to compute the score of a term given its document and col-
lection representation. Each layer was composed by a lin-
ear transformation followed by an activation function – we
choose the ReLU activation [15], which was shown in many
cases to facilitate learning. Each layer corresponds to the
function

y = max (0, Ax+ b)



where x is the input, y the output, A/b the parameters,
and the maximum is component-wise. The first layer had
2k inputs, corresponding to the size of the vectors xt and
xtd. The last layer has one output, which corresponds to
the term weight. In this work, we only experimented with
one hidden layer (of size 50).

5. PRELIMINARY EXPERIMENTS
Test collections. We used the TREC 1 to 8 collections.

We split the dataset in two parts (TREC 1-4, TREC 5-
8), and use one part to train the models (TREC 1-4, resp.
TREC 5-8), and the other (TREC 5-8, resp. TREC 1-4)
to evaluate its performance using mean average precision
(MAP). Experiments were conducted using the title field
of the TREC topics (except for TREC-4 where only long
versions are available, and were thus used).

Models. In this preliminary set of experiments, we com-
pared three models – it would be useful to compare the re-
sults to neural networks approaches trained on the same
dataset to get a full picture of the method potential, but in
this preliminary work we were more interested in bringing
our model up to the standard IR models:

1. BM25 with hyperparameters set to their default val-
ues, i.e k1 = 1.2 and b = 0.75

2. BM25 whose hyperparameters k1 and b were learnt,
following the work described in [23]. The weighting
function is

w(t, d) =
tf(t, d) · (k1 + 1)

tf(t, d) + k1

(
1− b+ b · ld

l̄

)
× log

N − df(t) + 0.5

df(t) + 0.5

where k1 that controls the bustiness of words (how
likely a term occur again) and b that controls the
verbosity of documents (are the documents mono or
multi-topical?). We left out the parameter k3 of our
study since it is not useful when query terms occur
only once (in queries).

3. K-Means + MLN as described in Sections 4.1 (K-
Means) and 4.2. We experimented with the following
parameters:

(a) Dimension of the document and collection repre-
sentations was varied, taking the values K =10,
50, 100 and 200.

(b) The position was normalized or not (i.e. divided
or not by the length of the document).

(c) The MLP hidden layer was composed of 50 units

Both models were trained with the ADAM optimizer that
takes into account second order information [11], with ε
set to respectively 1e-4 (BM25) and 1e-8 (our model), and
other hyperparameters set to their default values. They were
found to decrease the training cost in our preliminary exper-
iments. We used 1000 iterations for learning, where during
each iterations we computed the loss with respect to a sam-
ple of 50 000 triples (query, document a and b).

We report the results in Table 1. As the behavior of the
different systems was stable over these collections, we av-
erage the MAP over TREC-1 and TREC-8. Experimental

results confirm the fact that learning the BM25 parame-
ters using a learning-to-rank cost function is effective [23].
When comparing the performance of BM25 to our proposed
model, the results were disappointing, but we can formulate
the following observations:

1. We observed that in some cases the learning process
did not converge, so actual results might be higher
than presented;

2. Normalized length seem to provide better results than
non-normalized when the dimension is low (10-100)
and then the performance is matched when k = 200.
This is consistent with the fact that when positions are
not normalized, more clusters are necessary to distin-
guish different patterns of occurrence in documents of
varying lengths. Experiments will be run with higher
dimensions to explore whether this trend holds;

3. Increasing the representation dimension seems to im-
prove results for all models but the normalized/sum
one – we have no clear explanation for this observa-
tion;

4. There is no clear effect of using a sum or a mean for
the document collection representation, but looking at
the learned parameters will help in determining the
usefulness of each part of the representation.

We also looked at the clusters. In the case of not normal-
ized positions, the discovered clusters were mostly positions
within the document (i.e. the distribution corresponds to a
single Dirac function); this shows that there was not pattern
discovered with such an approach. Normalized positions led
to better clusters as shown in Figure 2. In this case, we have
5 clusters corresponding to specific positions in a document
which are evenly spaced. We have then 5 different clusters,
corresponding for example to terms occurring throughout
the document, or at the beginning and the end. Even in
this case, the information captured might not reflect the
true diversity of word occurrences – a better way to com-
pute document and collection term representations could be
necessary.

6. CONCLUSION AND FUTURE WORK
In this paper, we proposed to learn the term weight di-

rectly from the occurrences of terms in documents. This
has the potential to capture patterns of occurrences that
are linked with the importance of a term in a document and
a collection. Once learned – and provided the model is im-
proved, indexing a full collection could be performed with a
low penalty compared to other weighting schemes like e.g.
BM25.

Preliminary results have shown that there is still an im-
portant gap between standard IR models and this type of
approach. We believe that this is due to several reasons,
the first one being the poor representation as computed by
k-means with the Wasserstein distance. Besides increasing
the model expressiveness (dimension, size and number of
hidden layers in the MLP), we believe that this is due to the
fact that (1) we did use rough approximations (for position
distribution), and (2) the Wasserstein distance is not really
adapted to the IR setting. For instance, it does not prop-
erly model the burstiness of a term [4] that seems to be an



BM25 BM25+
Not Normalized Normalized
Mean Sum Mean Sum k

0.18 0.19

0.03 0.03 0.10 0.11 10
0.06 0.07 0.10 0.10 50
0.07 0.09 0.11 0.09 100
0.10 0.09 0.11 0.09 200

Table 1: Results for all models – averaged over all TRECs

Figure 2: Discovered clusters (k = 10, normalized
length)

important property of word occurrences. We are working on
a recurrent neural network model that would maximize the
probability of observing a series of positions in a document:

P (p1|xtd) . . . P (pn|p1, . . . , pn−1, xtd)P (xtd|xd)

where the probability P (xtd|xd) would model the distribu-
tion probability of the positions of a term/document repre-
sentation knowing the term/collection representation. Both
vectors xt and xtd would be learned, and the various models
could be compared on their likelihood before using one for
term weight prediction.

To further strengthen the model, we could furthermore
try to integrate constraints formulated in [5] to regularize or
constrain the functional form of the computation of a term
weight. Semantic proximity between terms could be used to
increase the accuracy of the term weighting function. This
could be achieved by encoding not only the position of a
term, but the positions of related terms.

Finally, we believe that this approach could be extended
in several interesting ways: (1) by computing term weights
for frequent bi or tri-grams, in order to capture concepts like
“information retrieval”; (2) by computing the full RSV of a
document given the pattern of occurrence of the different
query terms. In the latter case, we could capture the fact
that some query terms occur close to each other – extending
approaches like e.g. positional language models [13].
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