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Abstract

In this paper we propose an approach to preference
elicitation that is suitable to large configuration
spaces beyond the reach of existing state-of-the-
art approaches. Our setwise max-margin method
can be viewed as a generalization of max-margin
learning to sets, and can produce a set of “diverse”
items that can be used to ask informative queries
to the user. Moreover, the approach can encourage
sparsity in the parameter space, in order to favor
the assessment of utility towards combinations of
weights that concentrate on just few features. We
present a mixed integer linear programming for-
mulation and show how our approach compares
favourably with Bayesian preference elicitation al-
ternatives and easily scales to realistic datasets.

1 Introduction

Preferences [Peintner et al., 2008] play an important role in a
variety of artificial intelligence applications and the task of
eliciting or learning preferences is a crucial one; typically
only limited information about the user’s preferences will be
available and the cost (cognitive or computational) of obtain-
ing additional preference information will be high.

The automated assessment of preferences has received
considerable attention, starting with pioneering works in the
OR community, such as [White III et al., 1984] and espe-
cially the UTA methodology [Jacquet-Lagrèze and Siskos,
1982] giving rise to a wide variety of extensions [Jacquet-
Lagreze and Siskos, 2001; Greco et al., 2008]. Within AI,
a number researchers have proposed interactive methods that
elicit preferences in an adaptive way [Chajewska et al., 2000;
Boutilier, 2002; Wang and Boutilier, 2003; Boutilier et al.,
2006; Guo and Sanner, 2010; Viappiani and Boutilier, 2010],
observing that, by asking informative questions, it is often
possible to make near-optimal decisions with only partial
preference information.

While most works assume that items or decisions are avail-
able in a (possibly large) dataset, in this paper we propose an
adaptive elicitation framework that takes a constructive view
on preference elicitation, enlarging its scope from the selec-
tion of items among a set of candidates to the synthesis of
entirely novel instances. Instances are solutions to a given

optimization problem; they are represented as combinations
of basic elements (e.g. the components of a laptop) subject to
a set of constraints (e.g. the laptop model determines the set
of available CPUs). A utility function is learned over the fea-
ture representation of an instance, as customary in many pref-
erence elicitation approaches. The recommendation is then
made by solving a constrained optimization problem in the
space of feasible instances, guided by the learned utility.

Preference elicitation in configuration problems has been
previously tackled with regret-based elicitation [Boutilier et
al., 2006; Braziunas and Boutilier, 2007], where minimax re-
gret is used both as a robust recommendation criterion and as
a technique to drive elicitation. The main limitation of their
approach is the lack of tolerance with respect to user incon-
sistency. Indeed, learning a user utility function requires to
deal with uncertain and possibly inconsistent user feedback.

Bayesian preference elicitation approaches deal with this
problem by building a probability distribution on candidate
functions (endowed with a response or error model to be
used for inference) and asking queries maximizing infor-
mativeness measures such as expected value of information
(EVOI) [Chajewska et al., 2000; Guo and Sanner, 2010;
Viappiani and Boutilier, 2010]. These approaches are how-
ever computationally expensive and can not scale to fully con-
structive scenarios, as shown in our experimental results.

We take a space decomposition perspective and jointly
learn a set of weight vectors, each representing a candidate
utility function, maximizing diversity between the vectors
and consistency with the available feedback. These two con-
flicting objectives tend to generate equally plausible alterna-
tive hypotheses for the unknown utility. Our approach to
elicitation works by combining weight vector learning with
instance generation, so that each iteration of the algorithm
produces two outcomes: a set of weight vectors and a set of
instances, each maximizing its score according to one of the
weight vectors. We evaluate the effectiveness of our approach
by testing our elicitation method in both synthetic and real-
world problems, and comparing it to state-of-the-art methods.

2 Background

We first introduce some notation. We use boldface letters
x to indicate vectors, uppercase letters X for matrices, and
calligraphic capital letters X for sets. We abbreviate the set
{xi}ni=1 as {xi} whenever the range of the index i is clear

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

2067



from the context, and use [n] as a shorthand for {1, . . . , n}.
We write kxk1 :=

P
z |xz| to indicate the `1 vector norm,

h·, ·i for the usual dot product, X 0 for matrix transposition.
We assume to have a multi-attribute feature space X of

configurations x = (x1, . . . , xm) over m features. For
the sake of simplicity we focus on binary features only,
i.e. xz 2 {0, 1} for all z 2 [m], assuming a one-hot en-
coding of categorical features. This is a common choice
for preference elicitation methods [Guo and Sanner, 2010;
Viappiani and Boutilier, 2010]. Support for linearly depen-
dent continuous features will be discussed later on.

We further assume that the set of feasible configurations,
denoted by Xfeasible, is expressed as a conjunction of linear
constraints. This allows to formulate both arithmetic and log-
ical constraints, e.g. under the canonical mapping of True
to 1 and False to 0, the Boolean disjunction of two binary
variables x1 _ x2 can be rewritten as x1 + x2 � 1.

Consistently with the experimental settings of previous
work [Guo and Sanner, 2010; Viappiani and Boutilier, 2010],
we model users with additive utility functions [Keeney and
Raiffa, 1976]; the user’s preferences are represented by a
weight vector w 2 Rm and the utility of a configuration x

is given by hw,xi =

Pm
z=1 wzxz . In the remainder of the

paper we require all weights to be non-negative and bounded:
the per-attribute weights wz must lie in a (constant but oth-
erwise arbitrary) interval [w?

z , w
>
z ], with w?

z � 0. Both
requirements are quite natural1, and enable the translation
of our core optimization problem into a mixed-integer linear
problem (as done in Section 3).

During learning, the actual weight vector w is unknown
to the learning system, and must be estimated by interact-
ing with the user. We mostly focus on pairwise comparison
queries, which are the simplest of the comparative queries.
These can be extended to choice sets of more than two options
[Viappiani and Craig, 2009; Viappiani and Boutilier, 2010]
and are common in conjoint analysis [Louviere et al., 2000;
Toubia et al., 2004]. For a pairwise comparison between two
configurations x and x

0: either x is preferred to x

0 (written
x � x

0), x0 is preferred to x (x � x

0), or there is no clear
preference between the two items (x ⇡ x

0). We write D to
denote the set of preferences (answers to comparison queries)
elicited from the user.

In the next Section we describe how informative queries
can be generated using our setwise maxmargin learning.

3 Setwise Max-margin Learning

Non-linear Formulation. We first introduce the problem
formulation as a non-linear optimization problem, and then
show how to reduce it to a mixed integer linear program.

The goal of our setwise max-margin approach is twofold.
First, for any given set size k � 1, we want to find a set
of k weight vectors w

1, . . . ,wk, chosen so that all user-
provided preferences are satisfied by the largest possible mar-
gin (modulo inconsistencies) and so that they are maximally

1Utility values are defined on an interval scale, thus it is always
possible to scale the values appropriately (see for instance [Torra and
Narukawa, 2007] and [Keeney and Raiffa, 1976]).

diverse. Second, we want to construct a set of k configura-
tions x

1, . . . ,xk, so that each configuration x

i is the “best”
possible option when evaluated according to the correspond-
ing w

i and configurations are maximally diverse among each
other. These options will be later used to formulate queries.

The first goal is achieved by translating all pairwise pref-
erences D into ranking constraints: preferences of the form
y

h
+ � y

h
� become linear inequalities of the form hwi,yh

+ �
y

h
�i � µ, where µ is the margin variable (which we aim at

maximizing) and h ranges over the responses. Non-separable
datasets, which occur in practice due to occasional inconsis-
tencies in user feedback, are handled by introducing slack
variables (whose sum we aim at minimizing) in a way similar
to UTA and its extensions [Jacquet-Lagrèze and Siskos, 1982;
Greco et al., 2008]. When augmented with the slacks, the
above inequalities take the form hwi,yh

+ � y

h
�i � µ � "ih

where "ih is the penalty incurred by weight vector wi for vi-
olating the margin separation of pair h. Indifference prefer-
ences, i.e. yh

1 ⇡ y

h
2 , are translated as |hwi,yh

1 � y

h
2 i| < "ih;

the slack increases with the difference between the estimated
utility of the two options.

The second goal requires to jointly maximize the utility of
each x

i according to its corresponding weight vector wi and
its scoring difference with respect to the other configurations
x

j in the set. We achieve this by maximizing the sum of
utilities

Pk
i=1hwi,xii and adding ranking constraints of the

form hwi,xi � x

ji � µ for all i, j 2 [k], i 6= j.
A straightforward encoding of the above desiderata leads to

the following mixed integer non-linear optimization problem
over the non-negative margin µ 2 R�0 and vectors {wi 2
Rm}, {xi 2 {0, 1}m}:

max µ� ↵

kX

i=1

k"ik1 � �

kX

i=1

kwik1 + �

kX

i=1

hwi
,x

ii

s.t. 8 i 2 [k], 8 h 2 [n] hwi
,y

h
+ � y

h
�i � µ� "

i
h (1)

8 i, j 2 [k], i 6= j hwi
,x

i � x

ji � µ (2)

8 i 2 [k] w

?  w

i  w

> (3)

8 i 2 [k] x

i 2 Xfeasible , "

i � 0 (4)
Let us illustrate the above piece by piece. The objective is

composed of four parts: we maximize the shared margin µ
(first part) and minimize the total sum of the ranking errors
"

i incurred by each weight vector w

i (second part), while
at the same time regularizing the magnitude of the weights
(third part) and the quality of the configurations {xi} (last
part). The non-negative hyperparameters ↵,�, � control the
influence of the various components. The weight regular-
ization term copes with the common scenario in which the
user has strong preferences about some attributes, but is in-
different to most of them. The `1 penalty is frequently used
to improve the sparsity of learned models [Tibshirani, 1996;
Zhang and Huang, 2008; Hensinger et al., 2010], with conse-
quent gains in generalization ability and efficiency, as con-
firmed by our empirical findings (see Section 4). Con-
straint (1) enforces the correct ranking of the observed user
preferences, while (2) ensures that the generated configu-
rations are diverse in terms of the weight vectors they max-
imize. Constraints (3) and (4) ensure that the weights and
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Figure 1: Optimization of setwise max-margin; the black
lines corresponds to preference constraints D, the red points
are utility vectors w1 and w

2, the red line corresponds to the
hyperplane hw,x1 � x

2i = 0.

configurations are feasible and guarantees the non-negativity
of the slacks. Since we require w? � (0, . . . , 0), Eq. (3) also
enforces the weights to be non-negative.

Note that we are choosing the configurations {xi} and the
weight vectors {wi} simultaneously. We look for wi so that
the utility loss (see constraint 2) of choosing x

j instead of
x

i, j 6= i, is large (at least µ). Look at Figure 1, where, for
simplicity, we need to choose a pair (k = 2). Eq. 2 is repre-
sented by a red line, that partitions the space of feasible utility
weights in two parts (in general, there will be k subregions).
Since we maximize the margin µ, the optimizer will prefer a
set of configurations {x1,x2} that partitions the weight space
in an “even” way.2 In each subregion, we have correspond-
ing w

i lying “close” to its centre. If, for example, the user
indicates a preference for x1 over x2, the feasible region will
then become the part of the polytope to the left of the red
line; moreover the vector w1 will maximize the margin in the
classic (k = 1) sense in the new feasible region.

MILP Formulation. This initial formulation is problem-
atic to solve, as Eq. (2) involves quadratic terms over mixed
continuous integer variables. However, the problem can be
reformulated as a mixed integer linear program (MILP) by a
suitable transformation. This technique is rather common in
operational research, see e.g. [Boutilier et al., 2006].

Our goal is to replace Eq. (2) with a set of linear con-
straints. In order to do so, we introduce a set of fresh vari-
ables pi,jz for every i, j 2 [k] and z 2 [m]. Assuming for
the time being that the new variables do satisfy the equation
pi,jz = wi

zx
j
z , we rewrite the fourth component of the objec-

tive function in terms of the new variables as:

�
kX

i=1

mX

z=1

pi,iz

and, similarly, Eq. (2) as:

8 i, j 2 [k], i 6= j .
mX

z=1

pi,iz � pi,jz � µ (5)

2This bears similarity with volumetric approaches [Iyengar et al.,
2001], but there are important differences: first here we consider real
items to find the best separator, second the margin is also expressed
in utility terms, third the query is found via an optimization process.

The fact that pi,jz = wi
zx

j
z is achieved by setting the following

additional constraints. We distinguish between two cases: (i)
pi,iz and (ii) pi,jz for i 6= j. Recall that we are maximizing the
margin µ. Now, due to Eq. (5), the optimizer will try to keep
pi,iz as large as possible and pi,jz as small as possible.

(Case i) We add an explicit upper bound: pi,iz 
min{wmaxx

i
z, w

i
z}, where wmax is a sufficiently large con-

stant. On one hand, if xi
z = 0 the product wi

zx
i
z evaluates

to 0, and so does the upper bound wmaxx
i
z = 0. On the other

hand, if xi
z = 1 then the product wi

zx
i
z amounts to wi

z , while
the upper bound reduces to min{wmax, w

i
z}. By taking a suf-

ficiently large constant wmax (e.g. wmax := maxz w
>
z ) the

upper bound simplifies to wi
z . Since pi,iz is being maximized,

in both cases it will attain the upper bound, and thus satisfy
pi,jz = wi

zx
i
z .

(Case ii) We add an explicit lower bound: pi,jz �
max{0, wi

z � wmax(1 � xj
z)}. If xj

z = 1 the lower bound
simplifies to max{0, wi

z} = wi
z , due to the non-negativity

of wi
z . Otherwise, if xj

z = 0 then the lower bound becomes
max{0, wi

z�wmax}, where the second term is at most 0. Since
pi,jz is being minimized, in both cases it will attain the lower
bound, and thus satisfy pi,jz = wi

zx
j
z .3

We thus obtain the following mixed-integer linear problem:

max µ� ↵

kX

i=1

k"ik1 � �

kX

i=1

kwik1 + �

kX

i=1

mX

z=1

p

i,i
z

s.t. 8 i 2 [k], 8 h 2 [n] hwi
,y

h
+ � y

h
�i � µ� "

i
h

8 i, j 2 [k], i 6= j

mX

z=1

p

i,i
z � p

i,j
z � µ (6)

8 i, j 2 [k], i 6= j, 8 z 2 [m]

p

i,i
z  min{wmaxx

i
z, w

i
z} (7)

p

i,j
z � max{0, wi

z � wmax(1� x

j
z)} (8)

8 i 2 [k] w

?  w

i  w

> (9)

8 i 2 [k] x

i 2 Xfeasible , "
i � 0

which can be solved by any suitable MILP solver.

Set-wise max-margin. The full SETMARGIN algorithm
follows the usual preference elicitation loop. Starting from an
initially empty set of user responses D, it repeatedly solves
the MILP problem above using D to enforce ranking con-
straints on the weight vectors {wi}. The generated configu-
rations {xi}, which are chosen to be as good as possible with
respect to the estimated user preferences, and as diverse as
possible, are then employed to formulate a set of user queries.
The new replies are added to D and the whole procedure is re-
peated. Termination can be after a fixed number of iterations,
when the difference between utility vectors is very small, or
might be left to the user to decide (e.g. [Reilly et al., 2007]).

The procedure is sketched in Algorithm 1. Note that at the
end of the preference elicitation procedure, a final recommen-
dation is made by solving the MILP problem for k = 1.

3Since µ is upper-bounded by Eq. (1), in some cases the p

i,j
z

variables do not attain the lower bound. As a consequence, the MILP
reformulation of Eq. (2) is a (tight) approximation of the original
one. This has no impact on the quality of the solutions.
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Algorithm 1 The SETMARGIN algorithm. Here k is the set
size, ↵,�, � are the hyperparameters, and T is the maximum
number of iterations. The values of Xfeasible, w> and w

? are
left implicit.
1: procedure SETMARGIN(k,↵,�, �, T )
2: D  ;
3: for t = 1, . . . , T do

4: {wi
,x

i}ki=1  SOLVE(D, k,↵,�, �)

5: for x

i
,x

j 2 {x1
, . . . ,x

k} s.t. i < j do

6: D  D [ QUERYUSER(xi
,x

j
)

7: end for

8: end for

9: w

⇤
,x

⇤  SOLVE(D, 1,↵,�, �)

10: return w

⇤
,x

⇤

11: end procedure

Linearly dependent real attributes. In many domains of
interest, items are composed of both Boolean and real-valued
attributes, where the latter depend linearly on the former. This
is for instance the case for the price, weight and power con-
sumption of a laptop, which depend linearly on the choice of
components. In this setting, configurations are composed of
two parts: x = (xB ;xR), where xB is Boolean and xR is
real-valued and can be written as xR = CxB for an appropri-
ately sized non-negative cost matrix C. It is straightforward
to extend the MILP formulation to this setting. We rewrite
the weight vector as w = (wB ;wR). The utility becomes:

hw,xi = hwB ,xBi+ hwR, CxBi = hwB + C 0
wR,xBi

The generalized problem is obtained by substituting w

i with
v

i
:= w

i
B + C 0

w

i
R. All constraints remain the same. The

only notable change occurs in Eq. (9), which becomes:

8 i 2 [k] . (w?
B + C 0

w

?
R)  v

i  (w

>
B + C 0

w

>
R)

4 Experiments

We implemented the SETMARGIN algorithm us-
ing Python, leveraging Gurobi 6.5.0 for solving the
core MILP problem. Both the SETMARGIN source
code and the full experimental setup are available at
https://github.com/stefanoteso/setmargin.

We compare SETMARGIN against three state-of-the-art
Bayesian approaches: i) the Bayesian approach from [Guo
and Sanner, 2010], selecting queries according to restricted
informed VOI (RIVOI), a computationally efficient heuristic
approximation of value-of-information, and inference using
TrueSkillTM [R. et al., 2006] (based on expectation propa-
gation [Minka, 2001]); ii) the Bayesian framework of [Viap-
piani and Boutilier, 2010] using Monte Carlo methods (with
50,000 particles) for Bayesian inference and asking choice
queries (i.e. selection of the most preferred item in a set) se-
lected using a greedy optimization of Expected Utility of a Se-
lection (a tight approximation of EVOI, hereafter just called
EUS); iii) Query Iteration (referred as QI below), also from
[Viappiani and Boutilier, 2010], an even faster query selec-
tion method based on sampling sets of utility vectors.

We adopt the indifference-augmented Bradley-Terry user
response model introduced in [Guo and Sanner, 2010]. The

probability that a user prefers configuration x

i over x

j

is defined according to the classical (without indifference)
Bradley-Terry model [Bradley and Terry, 1952] as (1 +

exp(��1hw,xi � x

ji))�1, where w is the weight vector of
the true underlying user utility. Support for indifference is
modelled as an exponential distribution over the closeness of
the two utilities, i.e. exp(��2|hw,xi � x

ji|). The parame-
ters �1 and �2 were set to one for all simulations, as in [Guo
and Sanner, 2010].

In all experiments SETMARGIN uses an internal 5-fold
cross-validation procedure to update the hyperparameters ↵,
�, and � after every 5 iterations. The hyperparameters are
chosen as to minimize the ranking loss over the user re-
sponses collected so far. ↵ is taken in {20, 10, 5, 1}, while
� and � are taken in {10, 1, 0.1, 0.001}.4

Synthetic Dataset. Following the experimental protocol
in [Guo and Sanner, 2010] and [Viappiani and Boutilier,
2010], in the first experiment we evaluate the behavior of
the proposed method in an artificial setting with increasingly
complex problems. We developed synthetic datasets with r
attributes, for increasing values of r. Each attribute takes
one of r possible values, so that the one-hot encoding of at-
tributes results in m = r2 features. In terms of space of
configurations, for r = 3 the synthetic dataset corresponds
to Xfeasible = [3] ⇥ [3] ⇥ [3], for r = 4 to Xfeasible =

[4] ⇥ [4] ⇥ [4] ⇥ [4], and so on. The cardinality of Xfeasible
is rr, and grows (super) exponentially with r. For r = 3, the
dataset is comparable in size to the synthetic one used in [Guo
and Sanner, 2010] and [Viappiani and Boutilier, 2010]. For
larger r the size of the space grows much larger than the ones
typically used in the Bayesian preference elicitation litera-
ture, and as such represents a good testbed for comparing the
scalability of the various methods. The feasible configura-
tion space was encoded in SETMARGIN through appropriate
MILP constraints, while the other methods require all datasets
to be explicitly grounded. Users were simulated by drawing
20 random utility vectors from each of four different distri-
butions. The first two mimic those used in [Guo and Sanner,
2010] : (1) a uniform distribution over [1, 100] for each indi-
vidual weight, and (2) a normal distribution with mean 25 and
standard deviation 25

3 (each attribute is sampled i.i.d). We fur-
ther produced two novel sparse versions of the uniform and
normal distributions setting to zero 80% of the entries (sam-
pled uniformly at random). We set a maximum budget of 100
iterations for all methods for simplicity.

In Figure 2 we report solution quality and timing val-
ues for increasing number of collected user responses, for
the different competitors on each of the four different util-
ity vector distributions and datasets r = 3 and r =

4. Solution quality is measured in terms of utility loss
max

x2Xfeasible (u(x)� u(x⇤
)), where u(·) is the true un-

known user utility, and x

⇤ is the solution recommended to the
user after the elicitation phase (see Algorithm 1). Computa-

4Note that for k = 1 Eq. (7) and Eq. (8) disappear, so ↵ can
not be taken to be less than 1, as in this case, the objective can be
increased arbitrarily while keeping the right-hand side of Eq. (1)
constant, rendering the problem unbounded.
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UNIFORM

NORMAL

SPARSE UNIFORM

SPARSE NORMAL

Figure 2: Comparison between SETMARGIN (orange), RIVOI (blue), QI (green) and EUS (gray) on the r = 3 (left) and
r = 4 (right) datasets. Each row represents a different sampling distribution for user utility. The number of iterations is plotted
against the utility loss (first and third columns) and the cumulative time (second and fourth columns). Thick lines indicate
median values over users, while standard deviations are shown as shaded areas.

tional cost is measured in terms of cumulative time. Given
that RIVOI, QI and EUS are single-threaded, we disabled
multi-threading when running our algorithm in these com-
parisons. All experiments were run on a 2.8 GHz Intel Xeon
CPU with 8 cores and 32 GiB of RAM. For all algorithms,
one iteration corresponds to a single pairwise query (we used
SETMARGIN with k = 2). For dense weight vector distribu-
tions (first two rows), our approach achieves results which are
indistinguishable from the competitors in a fraction of their
time. Indeed, all Bayesian approaches become quickly im-
practical for growing values of r, while our algorithm can
easily scale to much larger datasets, as will be shown later
on. For sparse weight vector distributions (last two rows) our
approach, in addition to being substantially faster on each it-
eration, requires less queries in order to reach optimal solu-
tions. This is an expected result as the sparsification norm in
our formulation (kwk1) is enforcing sparsity in the weights,
while none of the other approaches is designed to do this.

In order to study the effect of increasing the number of
weight vectors in our formulation, we also ran SETMARGIN
varying the parameter k. Figure 3 reports utility loss results

on r=4 and r=5 datasets for the uniform and sparse normal
distributions (the toughest and the simplest, for space limita-
tions). The first and third columns report results in terms of
number of iterations. It can be seen that increasing the num-
ber of weight vectors tends to favour earlier convergence, es-
pecially for the more complex dataset (r = 5). However, as
in each iteration the user is asked to compare k items, dif-
ferent values of k imply a different cognitive effort for the
user. The second and fourth columns report results in terms
of number of queries, where we count all

�k
2

�
pairs of queries

when comparing k items. In this case, k = 2 seems to be the
best option. The cognitive cost for the user will likely lay in
between these two extremes, but formalizing this concept in
an efficient query ordering strategy needs to face the effect of
noise. A modified sorting algorithm asking only O(k log k)
queries to the user resulted in a performance worsening, likely
because of a cascading effect of inconsistent feedback (but
could be beneficial with different noise levels).

Constructive dataset. Next, we tested SETMARGIN on a
truly constructive setting. We developed a constructive ver-
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UNIFORM

SPARSE NORMAL

Figure 3: Comparison for SETMARGIN with k = 2, 3, 4, in orange, blue and green respectively for the r = 4 (left) and r = 5

(right) datasets using uniform (top row) and sparse normal (bottom row) distributions. Median and standard deviation utility
loss values are reported for increasing number of iterations (1st and 3

rd columns) and pairwise queries (2nd and 4

th columns).

SPARSE UNIFORM

Figure 4: Results for SETMARGIN for k = 2 (red), k = 3 (blue) and k = 4 (green) on the constructive PC dataset for the
sparse uniform distribution. Utility loss and time are plotted against number of iterations (left) and number of queries (right).

sion of the PC dataset used in [Guo and Sanner, 2010]: in-
stead of explicitly enumerating all possible PC items, we de-
fined the set of feasible configurations with MILP constraints.

A PC configuration is defined by eight attributes: computer
type (laptop, desktop, or tower), manufacturer (8 choices),
CPU model (37), monitor size (8), RAM amount (10), stor-
age (10) size, and price. The price attribute is defined as a lin-
ear combination of the other attributes: this is a fair modeling
choice, as often the price of a PC is well approximated by the
sum of the price of its components plus a bias due to branding.
Interactions between attributes are expressed as Horn clauses
(e.g. a certain manufacturer implies a set of possible CPUs).
The dataset includes 16 Horn constraints (the full list is omit-
ted for space limitations). Note that the search space is of the
order of hundreds of thousands of candidate configurations,
and is far beyond reach of existing Bayesian approaches.

Figure 4 reports results of SETMARGIN varying k using
the sparse uniform distribution (the more complex of the
sparse ones, dense distributions being unrealistic in this sce-
nario). The first and third column report utility loss for in-
creasing number of iterations and queries respectively, show-
ing a behaviour which is similar to the one in Figure 3. Over-
all, between 50 and 70 queries on average are needed in or-
der to find a solution which is only 10% worse than the op-
timal one, out of the more than 700,000 thousands available.
Note that a vendor may ensure a considerably smaller num-
ber of queries by cleverly constraining the feasible config-
uration space; since our primary aim is benchmarking, we

chose not to pursue this direction further. The second and
fourth columns report cumulative times. Note that in some
cases, standard deviations have a bump; this is due to cases in
which some of the hyperparameters of the internal cross val-
idation result in ill-conditioned optimization problems which
are hard to solve. These exceptions can be easily dealt with by
setting an appropriate timeout on the cross validation without
affecting the results, as these hyperparameters typically end
up having bad performance and being discarded.

5 Conclusion

We presented a max-margin approach for efficient preference
elicitation in large configuration spaces.5 Our approach relies
on an extension of max-margin learning to sets, and is effec-
tive in the generation of a diverse set of configurations that
can be used to ask informative preference queries. The main
advantages of this elicitation method are 1) ability to provide
recommendations in large configuration problems 2) robust-
ness with respect to erroneous feedback and 3) ability to en-
courage sparse utility functions. Experimental comparisons
against state-of-the-art Bayesian preference elicitation strate-
gies confirm these advantages. Future work includes extend-
ing the approach to truly hybrid scenarios (where real valued
attributes do not depend on categorical ones) and studying its

5Note that max-margin learning has been proposed before [Gajos
and Weld, 2005] for preference elicitation, but with rudimental
methods for query selection.
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applicability to other problems, as the identification of Cho-
quet models [Ah-Pine et al., 2013].
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