
HAL Id: hal-01359528
https://hal.sorbonne-universite.fr/hal-01359528

Submitted on 2 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Characterization of Scoring Rules with Distances:
Application to the Clustering of Rankings

Paolo Viappiani

To cite this version:
Paolo Viappiani. Characterization of Scoring Rules with Distances: Application to the Clustering of
Rankings. The Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015),
Jul 2015, Buenos Aires, Argentina. pp.104-110. �hal-01359528�

https://hal.sorbonne-universite.fr/hal-01359528
https://hal.archives-ouvertes.fr


Characterization of Scoring Rules with Distances:
Application to the Clustering of Rankings ∗

Paolo Viappiani
1) Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6
2) CNRS, UMR 7606, LIP6, 4 Place Jussieu, 75005 Paris, France

paolo.viappiani@lip6.fr

Abstract
Positional scoring rules are often used for rank ag-
gregation. In this work we study how scoring rules
can be formulated as the minimization of some dis-
tance measures between rankings, and we also con-
sider a new family of aggregation methods, called
biased scoring rules. This work extends a pre-
vious known observation connecting Borda count
with the minimization of the sum of the Spearman
distances (calculated with respect to a set of input
rankings). In particular we consider generalizations
of the Spearman distance that can give different
weights to items and positions; we also handle the
case of incomplete rank data.
This has applications in the clustering of rank data,
where two main steps need to be performed: ag-
gregating rankings of the same cluster into a rep-
resentative ranking (the cluster’s centroid) and as-
signing each ranking to its closest centroid. Using
the proper combination of scoring rules (for aggre-
gation) and distances (for assignment), it is possi-
ble to perform clustering in a computationally effi-
cient way and as well account for specific desired
behaviors (give more weight to top positions, bias
the centroids in favor of particular items).

1 Introduction
It is often the case that data is available in the form of rank-
ings (ordered lists of elements that express a preference or-
der), for instance, this is the case of preference informa-
tion obtained in electronic commerce applications. Cluster-
ing is useful in the sense that by producing a (small) num-
ber of aggregated rankings we are able to provide a meaning-
ful qualitative description for the entire population. In this
work we focus on distance-based methods for clustering that
are attractive because they do not make specific assumptions
(contrary to probabilistic methods [Critchlow et al., 1991;
Lu and Boutilier, 2011] that assume a specific generative
model for the rankings).

A distance-based clustering method partitions the elements
into clusters, so that the within-cluster distance is minimized;
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each cluster can then be associated with a representative ele-
ment of the partition (the centroid). When considering rank-
ings as elements to be clustered, the issue is to define a mean-
ingful sound distance measure that can be used, as several al-
ternative possibilities exist (for instance, Kendall tau, Spear-
man or footrule). As noted by a number of researchers [Scul-
ley, 2007; Kumar and Vassilvitskii, 2010], in many applica-
tions the distance measure should account for the fact that we
may wish to weigh more top positions in the rankings and/or
give more importance to specific items.

A related problem is ranking aggregation. Several meth-
ods for aggregation have been proposed, notably in the social
choice theory community. In particular, in positional scor-
ing rules, each item gets some points from each ranking ac-
cording to its position. When a distance measure is defined,
a natural aggregation method is to look for the ranking that
minimizes the sum of the distances with all input rankings.

An interesting question is whether an aggregation method
has a corresponding distance that they minimize implicitly:
if so, we then say that such distance characterizes the given
aggregation method. In this work we show how scoring rules
(including some new variants, biased scoring rules) can be
characterized. This has practical implications; it allows to
perform clustering in a computationally efficient way. More-
over, many of our results involve new generalizations of
Spearman distance that account for the importance associated
to positions and to items, allowing for greater flexibility.

2 Distance-based Clustering
We have a set of n items or objects and a set of m users or
agents. A ranking π is a permutation on the set of avail-
able objects. Formally π is a function from {1, ..., n} to
{1, ..., n} associating each item with its position (rank). As
usual, the set of possible rankings is denoted as Sn. A
ranking can be expressed alternatively in an explicit form
of a tuple 〈π−1(1), ..., π−1(n)〉, with π−1(r) being the r-th
most preferred item; for example 〈2, 1, 3〉 is the ranking for
which item 2 is the most preferred, then item 1 is preferred,
and finally item 3 is the least preferred (this corresponds to
π(1)=2, π(2)=1 and π(3)=3).

We consider to have a number of rankings π1,...,πm, asso-
ciated with different users, and we want to partition them into
different clusters. Let f : i→r assign rankings to clusters and
d be a distance. Distance-based clustering is the problem of,
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given a number m of rankings, partitioning them in k clus-
ters (or classes) in order to minimize the within-cluster sum
of distances with respect to the “central” rankings π̄∗1 , .., π̄

∗
k

of each cluster.

(f∗, π̄∗1 , .., π̄
∗
k) = arg min

f,π̄1,...,π̄k

k∑
z=1

∑
j:f(j)=z

d(π̄z, πj) (1)

The problem of clustering is frequently tackled in the litera-
ture with an iterative algorithm that proceeds in two steps. In
the assignment step, each observation is assigned to the clus-
ter whose “mean” yields the least within-cluster distance. In
the update step, we calculate the new means to be the cen-
troids of the observations in the new clusters. When items
are vectors and the Euclidean distance is used, the problem
is that of k-means clustering and the iterative algorithm de-
scribed above is often called as well k-means 1.

Following [Kamishima et al., 2005] we adopt the same
idea for clustering a set of rankings. We maintain a set of
centroids (initialized randomly) and we associate each rank-
ing with the cluster whose centroid is closest, according to a
suitable distance d on rankings. We then recompute the cen-
troids for each of the clusters. We alternate between these two
actions until the clusters do not change anymore.

Algorithm 1: Distance-based clustering of rankings.
Data: π1, ..., πm (population of rankings given by m

users), k (number of clusters)
Randomly initialize the centroids π̄1, ..., π̄k ;
while there are changes in cluster assignments do

Assign each ranking π to the cluster whose distance
to the centroid is lower
f(πi) := arg minr=1,..,k d(πi, π̄

r) i=1, ..,m;
Find the centroid of each cluster π̄r :=
arg minπ∈Sn

∑
πt:f(πt)=r

d(π, πt) r = 1, ..., k;
end

A well known fact is that Algorithm 1 converges to a local
optimum. This is easily proved by showing that both main
steps of the algorithm cannot increase the total distances of
each data point to the centroid of its cluster.2

Algorithm 1 requires the specification of a suitable distance
measure. Rankings are particular “objects”, and there are
many different ways to define a distance between two rank-
ings; this is discussed in Section 3.2. Note however, that rank
aggregation is often treated as a separate problem, especially
in social choice literature, notably in voting methods (an ag-
gregate ranking is obtained without considering an underly-
ing distance measure).

The main contribution of this paper is to study the connec-
tion between rank aggregation using scoring rules and rank-
ing distances. We will propose new distances that allow to as-
sign different degrees of importance to positions and to items.

1Also sometimes called Lloyd’s algorithm.
2Since the distance-based clustering approach returns a local op-

timum, the algorithm may be run for a number of times (typically 10
or 20) and store the clustering assignment associated with the lowest
sum of distances to the closest centroid.

Since these distances are easy to aggregate (in our terminol-
ogy, distances that characterize a scoring rule), clustering can
be computed very efficiently.

3 Distances and Aggregation
There are a number of ways that can be used to aggregate
several rankings into a single one. Some aggregation rules
are devised from social choice: the Condorcet method, sort-
ing the items by their Borda score or a generic scoring rule.
There are as well many commonly used distance measures
for rankings, such as Kendall-tau, footrule or Spearman.

From a theoretical point of view, the interest is to study if,
for a given common aggregation rule (such as plurality), there
is a distance measure that it is (implicitly) minimized. In this
paper we establish a connection between scoring rules (often
used in social choice) and their associated distance measures.

3.1 Aggregation with Scoring Rules
An aggregation rule is a mapping g(σ1, ..., σm) from a set of
input rankings σ1, ..., σm to a single “best” ranking summa-
rizing the whole population. We allow g to return more than
one ranking, to be considered equally good.

Many ways of aggregating rankings arise from the field of
social choice, where one needs to make a decision for a group
of people, aggregating several (usually different) preferences,
expressed as a vote in a ballot. Here we focus on rank aggre-
gation using scoring rules.

A scoring rule associates each position r ∈ {1, ..., n} with
a score w(r); scores are weakly decreasing w(1) ≥ ... ≥
w(n). Items are evaluated by summing up the score they are
awarded in each ranking v(i) =

∑m
u=1 w(πu(i)). In order to

form an aggregate ranking, items are sorted according to their
total score v(i): the ranking π∗SR obtained by a scoring rule
is such that π∗SR(i)<π∗SR(j) if v(i)> v(j) (when ties exist
in the overall score, tie-breaking is needed).

Borda count (or Borda rule) is a particular type of scoring
rule considering weights defined as w(r)=n−r+1 (the item
ranked first gets a score of n points, an item in the second
position gets n−1, and so on). We denote with π∗Borda the
ranking obtained by following Borda rule. Borda weights are
such that Borda counts for element i are v(i) =

∑m
u=1 n−

σu(i)+1 = m(n + 1)−
∑m
u=1 σu(i). The optimal ranking

π∗Borda according to Borda count is such that i precedes j
in π∗Borda, formally expressed as π∗Borda(i) < π∗Borda(j) if∑m
u=1σu(i) <

∑m
u=1σu(j) (an item i is ranked better than

another item j if the sum of its ranks is lower)
Plurality (sorting items by the number of times that they

are ranked first) can be represented as a scoring rule with
weights (1, 0, ..., 0); veto, sorting items in decreasing order
with respect to the number of times they are ranked in the
last position, is represented by weights (1, ..., 1, 0), and top-
k, that can be modelled as a scoring rule with a weight of 1 in
the first k positions and then 0.

We propose a new aggregation method, that we call biased
scoring rule parametrized by two vectors z1, .., zn (between
0 and 1, a multiplicative bias distorting each item’s score) and
φ1, . . . , φn (representing an additive bias associated to each
item). Each item i receives a contribution ziw(σu(i)) to its
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score for each ranking σu plus an overall bonus φi:

vBSR(i) = φi + zi · vSR(i) = zi = φi + zi

m∑
u=1

w(σu(i))

(2)

This allows to “tweak” a scoring role in order to give some
advantage to some items, or penalize others. Obviously when
zi = 1 for all i, and φi is the same for all items, aggregation
with vBSR reduces to an unbiased scoring rule. If w(r) =
n−r+1, then we have a biased Borda count.

3.2 Distance Measures for Rankings
Distance measures characterize how different two rankings
are; different distances might pose more strength on specific
aspects: penalizing the displacements in different ways. For a
given distance measure d the total distance from a given rank-
ing π to a set of rankings σ1, ..., σm is D(π;σ1, ..., σm) =∑m
u=1 d(π, σu). A distance function between rankings natu-

rally leads to a way to generating an aggregate ranking; the
ranking minimizing this score is chosen as aggregated rank-
ing for the population: π∗=arg minπ D(π, σ1, ..., σm).

We recall hereafter the usual definition of metric and com-
mon generalizations relaxing some of the properties. Note
that, while the term distance is often used as a synonym for
metric, in the following, we use the former to loosely mean
any function that quantifies the difference between elements
(rankings in our case), and we explicitly state which distances
are metric.

Definition 1. A function d : X × X → R is a metric on X
iff it satisfies the following properties:

• d(x, y)≥0 (non negativity),

• d(x, y)=0 iff x=y (identity of the indiscernibles),

• d(x, y)=d(y, x) (symmetry) and

• d(x, y)+d(y, z) ≥ d(x, z) (triangular inequality).

Moreover we have the following relaxations:

• A pseudometric d relaxes the identity of the indis-
cernibles (d(x, x) = 0 but it may hold d(x, y) = 0 for
y 6= x);

• A quasimetric relaxes symmetry;

• A semimetric relaxes the triangular inequality;

• A function satisfying non-negativity and d(x, x)=0 is a
premetric.

We are interested in distance measures on rankings; rank-
ing distances d are defined on the Sn (the set of permutation
of n elements). Common distance measures for rankings are
Kendall tau (counting the number of disagreements in terms
of pairs between two rankings), footrule3 (measuring the total
displacement of all elements) and Spearman.

In this paper we focus on Spearman distance, because as
will discussed below in Section 4, it is connected to the aggre-
gation using Borda count. The Spearman distance is defined

3Also known as Spearman’s footrule.

as taking the squares of the differences:

dS(π, σ) =
n∑
j=1

[π(j)− σ(j)]2. (3)

An interesting observation, that we will use several times
in our proofs, is that Spearman can be expressed as follows:

dS(π, σ) =
n(n+ 1)(2n+ 1)

3
− 2

n∑
i=1

π(i)σ(i). (4)

While footrule and Kendall-tau distance are metrics, Spear-
man distance does not satisfy the triangular inequality and is
a semimetric. It can be turned into a metric if we take the root
of sum of the squares of the differences between positions.

The traditional definition of Spearman distance treats all
positions in the same way. Following [Dwork et al., 2001;
Kumar and Vassilvitskii, 2010], in order to allow to put more
emphasis on some ranks we define a generalization of Spear-
man distance, that we call positional Spearman, giving dif-
ferent weights to rank positions, computed as

dPS(π, σ) =
n∑
i=1

[w(π(i))− w(σ(i))]2 (5)

parametrized by a vectorw. We will often use the observation
that dPS can be rewritten as

dPS(π,σ)=Zwn −2
n∑
i=1

w(π(i))w(σ(i)) (6)

where Zwn = 2
∑n
r=1 w(r)2 depends only on the weights w

and the number of items n.

Observation 1. dPS is a semimetric if the weights w are
strictly decreasing; otherwise it is a pseudo-semimetric.

Consider, for instance, w = (3, 2, 2, 1), two rankings that
differ only by the fact that items on the second and third po-
sition are inverted are associated with null distance according
to w: dPS(〈1, 2, 3, 4〉, 〈1, 3, 2, 4〉)=0.

4 Connection between Aggregation Methods
and Distance Minimization

The general aggregation problem is that of finding the ranking
(permutation of items) that minimizes a given distance mea-
sure with respect to several other given rankings σ1, ..., σm
given.

π∗ = arg min
π
D(π;σ1, ..., σm) = arg min

π

m∑
j=1

d(π, σj).

(7)

Definition 2. A distance function d(π, σ) on rankings char-
acterizes a ranking aggregation g(σ1, ..., σm) iff it holds

arg min
π∈Sn

D(π;σ1, ..., σm) = g(σ1, ..., σm)

with D(π;σ1, ..., σm) =
∑m
u=1 d(π, σu).
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Table 1: Distance measures and associated scoring functions.

Aggregation method Distance measure Properties

Plurality dPL premetric

Top-k dTK premetric

Veto dV premetric

Borda Spearman semimetric

Scoring rule positional semimetric
(strictly decreasing weights) Spearman
Biased scoring rule item-weighting non negativity

pos. Spearman

In case the aggregation function returns multiple rank-
ings4, then all such rankings should achieve the same min-
imal value D∗ = minπD(π;σ1, ..., σm), and, conversely, if
there are several rankings associated with minimum sum-of-
distances D∗, these must be returned by g.

We now establish5 theoretical connections between dis-
tance minimization and scoring rules. In particular, we es-
tablish connections between the newly proposed positional
Spearman distance (see above in Section 3.2) and aggrega-
tion using scoring rules, and between a distance giving dif-
ferent weights to items and aggregation using biased scoring
rules (defined above in Section 3.1).

First of all, rank aggregation with Borda count and mini-
mization of Spearman produce the same aggregated ranking.
Proposition 1. [Marden, 1996]
The Spearman distance characterizes the Borda rule:
π∗Borda = arg minπ∈Sn

∑m
u=1 dS(π, σu).

We have noted before that Spearman distance, as defined
in Equation 3, is not a metric, as triangular inequalities does
not hold. One might wonder if it is possible to “tweak” the
Spearman distance to find a metric characterizing Borda. We
prove, however, that this is not possible.
Proposition 2. There is no metric characterizing Borda rule.
Proof : Let d be a semimetric between rankings. We
prove that if d characterizes Borda rule, then it cannot sat-
isfy the triangular inequality. Consider the following pop-
ulation of rankings: σ1 = 〈1, 2, 3〉 and σ2 = 〈3, 1, 2〉.
Application of Borda gives the following scores to items:
v(1) = 5, v(2) = 3, v(3) = 4 yielding the optimal ranking
π∗ = 〈1, 3, 2〉. If d characterizes Borda rule, then it must hold
that D(π∗;σ1, σ2) < D(π;σ1, σ2), for any π ∈ Sn, π 6= π∗.
In particular, π∗ must compare favorably with respect to σ1:∑
u=1,2 d(π∗, σu) <

∑
u=1,2 d(σ1, σu). Since d is a semi-

metric, we must have d(π∗,σ1)=d(σ1,π
∗) and d(σ1,σ1)=0;

it then follows that d(σ1, π
∗) + d(π∗, σ2) < d(σ1, σ2).

We now extend this result to scoring rules assigning ar-
4For example, due to ties in the score obtained with Borda count.
5We provide proofs for selected statements. Proofs for all propo-

sitions will be provided in a longer version of the paper.

bitrary weights to positions. We derive a novel connection
between scoring rules and our proposed positional Spearman
distance. Note, however, that the scoring vector must (in ad-
dition of being non incresing) not assign the same weights to
more than one position.

Proposition 3. Assume a scoring rule with strictly decreas-
ing weights w(r) > w(s) if r < s with r, s ∈ {1, ..., n}.
The positional Spearman distance with weights w charac-
terizes the scoring rule with the same weights; π∗SR =
arg minπ∈Sn

∑m
u=1 dPS(π, σu).

Proof : The optimal ranking π∗SR wrt a scoring rule with
weights w is such that i precedes j in π∗ iff v(i) ≥ v(j),
or equivalently iff

∑m
u=1 w(σu(i)) ≥

∑m
u=1 w(σu(j)). The

ranking with minimum total distance wrt positional Spearman
is (we use Equation 6):

arg min
π

m∑
u=1

dPS(π, σu)=arg max
π

n∑
i=1

w(π(i))
m∑
u=1

w(σj(i)).

(8)

The π maximizing the expression above is such that
w(π(i)) ≥ w(π(j)) if

∑m
u=1 w(σu(i)) ≥

∑m
u=1 w(σu(j)).

If w is striclty decreasing this gives π∗SR.

The previous observations only holds for scoring rules
with distinct weights. This means that the association
fails, notably, for plurality, veto and top-k, that can be
represented, respectively, as scoring rules with weights
(1, 0, ..., 0), (0, ..., 0, 1) and with a weight vector with 1 in the
first k positions and then 0s everywhere. We therefore look
for an alternative characterization for these rules, in order to
define some distance measures that they implicitly minimize.

Using plurality in our framework for clustering intuitively
means to put together rankings based on the first preferred
item. If the number of clusters is lower than the number of
distinct items placed first in any ranking, aggregation will be
made by ordering items according to the number of “votes”
(number of rankings placing an item first); when assigning
rankings to clusters, a ranking with item i in the first position
will be assigned to the cluster whose centroid put item i in the
highest position. The following premetric dPL captures this
behavior

dPL(π, σ)=π(σ−1(1))− 1. (9)

Note that dPL is not symmetric. Furthemore, for a given π
there are many π′ such that d(π, π′) = 0; in fact, any σ such
that σ−1(1) =π−1(1): for example dPL(〈1,2,3〉,〈1,3,2〉) = 0.
Therefore dPL is neither a metric nor a semimetric. It holds
dPL(π, π) = 0 for any π and dPL(π, σ)≥0 for any π, σ, but
not the triangular inequality; thus dPL is a premetric.

We now present our result about the characterization of
plurality: we prove that the ranking obtained by aggregating
the rankings σ1, ..., σm using plurality minimizes the sum of
distances DPL(π;σ1, ..., σm) =

∑m
t=1 dPL(π, σt).

Proposition 4. The distance dPL characterizes plurality as
a method for aggregation of rankings.

Proof : α1
i = |{σ :σ(i) = 1}| is the number of input rankings

among σ1, ..., σm in which item i is ranked first. It follows
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∑m
t=1 dPL(π, σt)=

∑n
i=1α

1
iπ(i)−m. Therefore we have

π∗ = arg min
π∈Sn

m∑
t=1

dPL(σt, π) = arg min
π∈Sn

n∑
i=1

α1
iπ(i).

The permutation π∗ is such that π∗(i) < π∗(j) (i ranked
before j) if α1

i > α1
j ; this is exactly the result of aggregation

when using plurality.

One can wonder if there is another distance that can charac-
terize plurality, with additional properties such as symmetry.
In fact, we show that this is not possible.
Proposition 5. There is no semimetric and no quasi metric
(hence there is no metric) characterizing plurality.
Proof : Consider a population of two rankings σ1 = 〈1, 2, 3〉
and σ2 = 〈2, 3, 1〉. According to plurality, the best rankings
obtained by aggregating σ1 and σ2 are σ1 itself and the rank-
ing 〈2, 1, 3〉. Now, consider a premetric d and assume that
it characterizes plurality. Since σ2 is not a optimal ranking
according to plurality, the sum of the distances between σ1

and the population must be strictly lower than the sum of the
distances from σ2

d(σ1, σ1) + d(σ1, σ2) < d(σ2, σ2) + d(σ2, σ1)

from which (since d(π, π)=0, d being a premetric) it follows
d(σ1, σ2) < d(σ2, σ1), hence any d characterizing plurality
cannot be symmetric.

For veto, we can define a premetric, analogous to the one
we defined for plurality, but that looks for the position of the
lowest ranked items. We similarly characterize aggregation
with respect to the top-k elements.
Proposition 6. The pseudo-distance dV T characterizes the
veto rule.

dV T (π, σ)=n−π(σ−1(n)). (10)
Proposition 7. The following premetric6 characterizes the
top-k aggregation rule.

dtopk(π, σ)=
k∑
r=1

π(σ−1(r))− n(n+ 1)

2
(11)

Note that dtopk is the same as dPL when k = 1. From
the fact that top-k aggregation subsumes plurality, and from
Proposition 5, it immediately follows that there is no semi-
metric, no quasi metric and no metric, characterizing top-k.

In order to characterize biased scoring rules, we introduce
another kind of generalization of Spearman, allowing to give
different weights zi, φi to items. Item-weighting positional
Spearman is defined (Compare with Equation 4 and 6) as:

dIPS(π, σ) = Zwn − 2
n∑
i=1

w(π(i))[ziw(σ(i)) + φi] (12)

where Zwn = 2
∑n
i=1 w(i) depends only on w and n. The

role of the zi, φi is to weigh more the important items. Note
that dIPS(π, σ) = dPS(π, σ) if all weights zi are set to 1 and
all φi to zero.

We now establish the connection between dIPS and the
biased scoring rules presented before.

6The constant addend −n(n+1)
2

is used in order to satisfy
d(π, π) = 0, i.e. to obtain a premetric.

Proposition 8. The Item-weighted Positional Spearman dis-
tance dIPS with strictly decreasing weights (w1, ..., wn),
arbitrary (z1, ..., zn), and (φ1/m, ..., φn/m) characterizes
a biased scoring rule with (w1, ..., wn), (z1, ..., zn) and
(φ1, ..., φn); with m being the number of input rankings.

Note that dIPS is not even a premetric, as dIPS(π, π)
can (and will often) yield a value different than zero. dIPS
is symmetric only if the bias terms φi are zero; it is non-
negative assuming the zi bounded by 1 and the φi non nega-
tive. A much “nicer” distance function (in the case φi = 0)
is the following d̂IPS(π, σ) =

∑n
i=1 zi[w(π(i)) − w(σ(i))]2

that is a semimetric; notice that d̂IPS(π, σ) = dIPS(π, σ)−
dIPS(π, π)−dIPS(σ, σ). However, we could not find a char-
acterization for this distance, and its optimization seems to be
rather hard.

The theoretical results are summarized in Table 1.

5 Incomplete Rankings
In realistic cases it will be often the case that only a subset
of items are ranked. Formally a partial ranking σ is defined
on a restricted domain D(σ) (the items involved in the partial
ranking), with l = |D(σ)| be the length. Given a partial rank-
ing σ, we use Sn(σ) for the set of consistent full rankings.

In our setting, aggregation produces a full ranking, while
the distance measures how far a partial ranking is from each
centroid. Given a partial ranking, we consider a probability
distribution over the rankings that are consistent with such
partial ranking. According to order statistics, and as noticed
by [Kamishima and Akaho, 2009], given a partial ranking σ,
under the uniform distribution the expected rank of an item i
is n+1

l+1 σ(i) if i ∈ D(σ). If i is not ranked in σ (i 6∈ D(σ)), its
expected rank is n+1

2 . Expected Borda count ranks items by
increasing order of their sum of expected ranks.

The expected Spearman distance is naturally defined in the
case of an uniform prior as (there are n!

l! complete rankings
consistent with a partial ranking of length l):

dE(S)(π, σ) =
∑

σ̂∈Sn(σ)

l!

n!
dS(π, σ̂) =

= Cn − 2
l!

n!

∑
σ̂∈Sn(σ)

n∑
i=1

π(i)σ̂(i).

Proposition 9. [Kamishima and Akaho, 2009]
dE(S) characterizes expected Borda count.

We now generalize scoring rules and the positional Spear-
man distance to partial rankings. Assuming an uniform dis-
tribution over the complete orders consistent with an ob-
served partial order σ, the expectation E[v(i)] of the score
of an item i is obtaining by averaging over the score ob-
tained by i in all complete consistent orders; E[vSR(i)] =∑
σ̂∈Sn(σ)

l!
n!w(σ̂(i)). The expected scoring rule ranks items

according to E[v(i)]; similarly we can define the expected bi-
ased scoring rule (refer to Equation 2), with E[vBSR(i)] =
φi + ziE[vSR(i)].

We introduce the expected positional Spearman distance
dE(PS)(π, σ) = l!

n!

∑
σ̂∈Sn(σ) dPS(π, σ̂) and dE(IPS) in an

analogous way: dE(IPS)(π, σ)= l!
n!

∑
σ̂∈Sn(σ) dIPS(π, σ̂).
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Proposition 10.
• dE(PS) characterizes the expected scoring rule,

• dE(IPS) characterizes the expected biased scoring rule.

While expected Borda can be computed efficiently, its as-
sociated distance dE(S) is computationally expensive to com-
pute (and the same is true for dE(PS) and dE(IPS)), as one
would need to consider the set of all full rankings consistent
with partial one. As efficient heuristics to compute d(π, σ),
where one or both between π and σ are partial, we can con-
sider, following [Kamishima and Akaho, 2009], to compute
the classic Spearman distance dS on the full rankings ob-
tained by considering only items inD(π)∩D(σ) (we call this
reduced Spearman) or to substitute, when dealing with partial
rankings, ranks with expected ranks in Eq. 3 (Spearman ER).
Finally we consider an approximation based on sampling a
set of consistent full ranking (Sampling Spearman).

6 Application to Clustering

Figure 1: Comparison between clusters obtained with various scor-
ing rules and those obtained with Borda and Plurality (γ controls the
steepness of the weights used by positional Spearman; 5 clusters).

Figure 2: Performance of distance-based clustering with partial
rankings (3 clusters; 10 runs).

We perform a number of experiments in order to illustrate the
use of distance-based clustering in a variety of settings. Al-
gorithm 1 is performed using a scoring rule as aggregation
method; the appropriate distance is used to assign rankings
to clusters. In the experiments below we consider the sushi
dataset7; 5000 users have been asked to rank a set of items
(sushis) [Kamishima et al., 2005] from the most to the least
preferred. Note that the number of clusters is viewed as an
input parameter by the clustering algorithm. We choose dif-
ferent values in different experiments for illustration purposes
(in each experiment, all methods are given the same input).
The problem of assessing the best number of clusters is a dif-
ferent and orthogonal problem.

Full rank data. The weight vector w can have a large im-
pact on the clustering obtained using dPS . We consider con-
vex sequences as weights w such that the difference between
consecutive weights is a geometric series; i.e. wi−wi+1 =
γ · (wi+1−wi+2) where factor γ control the steepness of the
sequence; for γ=1 we have Borda. Figure 1 shows the sensi-
tivity of clustering to the weight w used by positional Spear-
man, for different values of γ (with 5 clusters): we evaluate
the difference of the clustering obtained with that would be
obtained with Borda (straight line) and Plurality (dotted line);
the difference between clusterings is measured as one minus
the Rand index. When γ increases the clusters becomes in-
creasingly similar to that obtained by Plurality and less to
Borda (γ≈ 1.8 is a sort of “middle ground”). It is also inter-
esting to note that, at least for this dataset, “steeper” scoring
rules tends to have a larger fraction of the population con-
centrated in one single cluster: at the extreme, when using
plurality and dPL around 50% of the rankings are assigned to
the same cluster; with Borda the fraction is only about 27%.

Incomplete rank data. In the second experiment, we first
perform clustering with Borda/Spearman, and this is consid-
ered as reference (our “ground truth”). We then randomly
remove a number of items from each ranking (obtaining par-
tial rankings), and perform clustering using expected Borda
and (as the exact probabilistic method is not feasible) three
distances on partial rankings (reduced Spearman, spearman
with Expected Ranks, and sampling Spearman). As evalua-
tion measure, we compute the ratio between the distance of
each point to its assigned centroid calculated with Spearman
using the full rankings and that of the reference . We observed
that the heuristic methods works almost as well as the more
demanding approach based on sampling (Figure 2).

Recommendation under uncertain availability. We con-
sider the following problem: we need to assign users to k = 5
clusters; each item (sushi) has a constant i.i.d. probability
of being available (0.5 in our tests). Each user’s preferences
are encoded by her ranking; the “utility” is represented by a
scoring rule8 (assumed the same for all users). In each cen-

7Available at http://www.kamishima.net/sushi/.
8In this test, w is a geometric sequence: wr=10 · ar−1 (r being

the position in the ranking; a=0.5).
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troid the top item among those available is recommended to
each user in the cluster. We need to assign users to clusters
before knowing which items will be available. Clustering
with the combination scoring rule and positional Spearman
(both using w) achieves the highest value of per-user-average
expected social welfare (5.47), scoring rule w together with
classic Spearman yields 4.41 and Borda/Spearman 4.40; ag-
gregation without clustering would yield a dismal 3.58.

We now modify the setting associating each item with
a cost, so that the utility a recommendation i to a user is
w(σ(i)) (where σ is the user’s ranking) minus its cost. We
perform clustering on a number of instances, with randomly
generated costs associated to items (results are averaged over
several runs). In this setting, with 2 clusters, the biased scor-
ing rule (with weights w for positions, multiplicative biases
set to zero, zi = 0, and the additive biases φ set to the cost
with negative sign), together with its characterizing distance
dIPS achieves 2.38 of expected social welfare; biased scoring
rule with dPS achieves 2.31, the unbiased scoring rule (using
w) yields 2.20 and aggregation without clustering 1.3.

Computation time Clustering with distance measures as-
sociated to scoring rules is particularly efficient. By exploit-
ing our characterization of scoring rules, the aggregation step
(computing the centroid of a cluster) becomes very efficient:
running time is O(n log n) with respect to the number of
items (we need to count the scores associated to each item
and then to sort them). In our tests, clustering using plurality
was fastest (less than 1 second) and biased scoring rules are
the slowest (convergence obtained in around 3s with 2 clus-
ters and 8s for 5); a case aside is Sampling Spearman that is
approximately 10 times slower9.

7 Conclusion
We provided a taxonomy of distance measures that character-
ize scoring rules as aggregation method. We extended the re-
sult about the connection between Borda rule and minimiza-
tion of Spearman distances to scoring rules; we also consider
the case of plurality, veto and top-k. We introduced a new
family of aggregation rules, called biased scoring rules, giv-
ing an advantage to specific items, and show how they can be
characterized. We provided experimental tests showing how
these distance measures can be applied in clustering.

Axiomatic treatment of the median ranking from a point
of view of social choice is given in [Barthélemy and Mon-
jardet, 1981]. The idea of looking aggregation techniques in
terms of minimization of distances is known as distance ra-
tionalizability in social choice theory [Elkind et al., 2009].
The difference is that here we are interested in aggregations
that produce a ranking, while in social choice the aggregation
produces one or more winners (the elected candidates).

Because of its connection with the Condorcert property,
Kemeny aggregation (minimization of Kendall tau) is often
advocated. Since Kemeny aggregation is NP-hard problem,
several researchers proposed heuristic methods, including the

9Unoptimized implementation in MATLAB with off-the-shelf
computing equipment.

Markov chains of [Dwork et al., 2001]. Other researchers
also considered extending common distances in some ways.
In [Sculley, 2007] methods of ranking aggregation are ex-
tended in order to exploit similarity information between
ranked items. The generalized distance functions presented
in [Kumar and Vassilvitskii, 2010] are a rich generalization
of footrule and Kendall whose expressivity is similar to the
distances proposed here. Here, we focus on Spearman dis-
tances, because of the connection with scoring rules, clus-
tering is very efficient to compute; this contrasts to Kemeny
aggregation that can be computed exactly only in trivial cases.
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