Optimisation Algorithm for 60-GHz Non-Contact Human Vital-Sign-Monitoring

Ting Zhang, Julien Sarrazin, Guido Valerio, Dan Istrate

To cite this version:

Ting Zhang, Julien Sarrazin, Guido Valerio, Dan Istrate. Optimisation Algorithm for 60-GHz Non-Contact Human Vital-Sign-Monitoring. Journée annuelle de l’AREMIF 2016, Jun 2016, Paris (Les Cordeliers), France. hal-01360033

HAL Id: hal-01360033
https://hal.sorbonne-universite.fr/hal-01360033
Submitted on 3 Sep 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
I. Theory

Doppler radar has been widely applied in the medical domain in the recent years [1]. This non-contact technique is very popular and interesting since no sensor needs to be placed on the body. In a Continuous Wave (CW) Doppler detection system for vital signals, a sinusoidal signal \(T(t) = A e^{\cos(2\pi f_t)} \) at carrier frequency \(f \) is transmitted towards a human body, and then reflected by the chest which moves according to physiological movements. These movements can be detected and evaluated by measuring the frequency shift of the reflected signal according to the well known Doppler-effect law. The reflected signal is demodulated by an IQ quadrature receiver to avoid detection issues due to lack of reception during certain intervals of time [2]. The complex baseband signal is modulated by tiny physiological movements \(x(t) \) of the human body. Here, two principal physiological movements (heartbeating and respiration) are represented by a single tone sinusoidal signal, respectively, \(x(t) = x_r(t) + x_h(t) = m_r \sin(\omega_r t + \phi_r) + m_h \sin(\omega_h t + \phi_h) \), where \(m_r \) and \(m_h \) describe the amplitudes of respiration and heartbeat movement, respectively, \(\omega_r \) and \(\omega_h \) represent the movement frequencies, \(\phi_r \) and \(\phi_h \) are the initial phases.

The exponential term of the reflected baseband signal can be expanded using Fourier series [1],

\[
B(t) = \sum_{n=-\infty}^{+\infty} \sum_{k=-\infty}^{+\infty} J_n \left(\frac{4\pi m_h}{\lambda} \right) J_k \left(\frac{4\pi m_r}{\lambda} \right) \exp \left[j (n \omega_r t + k \omega_h t) \right] \exp \left[j (n \phi_r + k \phi_h) \right] \exp (j \psi),
\]

where \(J_n \) is the \(n \)-th order Bessel function of the first kind. \(\lambda = c/f = 5 \) mm is the working wavelength of the CW radar at 60 GHz. \(\psi \) is defined as the total residual phase of the system. This complex baseband signal in the frequency domain is represented by a sum of harmonic components, which causes not only creation of harmonic frequencies for each physiological movement signal itself, but also generates intermodulated frequencies between the two movements [3]. Due to the nonlinear nature of the Doppler phase modulation, undesired intermodulations of harmonic components are present [1]. A direct peak detection from the spectral analysis is therefore no more reliable, since ambiguities can arise when interpreting the different peak locations. This communication presents an approach to estimate body movements related to vital activities by means of a 60 GHz Doppler radar, using robust optimization algorithms.

II. Experimental Measurement

Fig. 1 shows the measured time–domain and frequency–domain breathing signal, superimposed with the heartbeat of a human body, at 1 m distance in front of one emitting and one receiving antenna. The emitting power is about \(-2.5 \) dBm and the pyramidal horn antenna gain is 24 dBi. The recording time is 30 seconds. To obtain the spectrum shown in Fig. 1 (b), the acquisition time is taken for 10 seconds, and the sampling frequency is \(F_s \) = 100 Hz. We can deduce that the first peak in the spectrum in Fig. 1 (b) corresponds to the fundamental of respiration. However, the heartbeat fundamental is not visible, hence the direct spectral analysis does not work at all, as the spectrum depends on several unknown parameters, \(f_r, f_h, m_r, m_h, \phi_r, \) and \(\phi_h \), which persuades us to find a better spectrum–estimation algorithm.
To estimate body movements using an optimization algorithm, we propose the Particle Swarm Optimization (PSO). In our case, the PSO is used to optimize a defined cost function, which describes the discrepancy between the measured baseband signal spectrum and the one calculated by a direct signal model, where the baseband signal is defined as the same form as (1). The optimization procedure is executed on the measured signal with a recording time of every five seconds. The optimization results are given in Table I. Different scenarios are measured, including the detection from the front of the body, from the back of the body, and also an emergency situation, where the person has no breath. Note that for all these scenarios, we succeeded to get accurate respiration and heartbeating rates. Moreover, the amplitudes of induced displacements are also estimated and could be used as a complementary information for vital sign monitoring. The calculated time of this optimization procedure is limited to 5 s, which is reasonable for real–time monitoring. The optimization algorithm, compared to the direct spectrum analysis, is proved to be more robust to estimate simultaneously two physiological movements.

REFERENCES

