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Abstract
Due to their error-prone replication, RNA viruses typically exist as a diverse population of

closely related genomes, which is considered critical for their fitness and adaptive potential.

Intra-host demographic fluctuations that stochastically reduce the effective size of viral pop-

ulations are a challenge to maintaining genetic diversity during systemic host infection.

Arthropod-borne viruses (arboviruses) traverse several anatomical barriers during infection

of their arthropod vectors that are believed to impose population bottlenecks. These ana-

tomical barriers have been associated with both maintenance of arboviral genetic diversity

and alteration of the variant repertoire. Whether these patterns result from stochastic sam-

pling (genetic drift) rather than natural selection, and/or from the influence of vector genetic

heterogeneity has not been elucidated. Here, we used deep sequencing of full-length viral

genomes to monitor the intra-host evolution of a wild-type dengue virus isolate during infec-

tion of several mosquito genetic backgrounds. We estimated a bottleneck size ranging from

5 to 42 founding viral genomes at initial midgut infection, irrespective of mosquito genotype,

resulting in stochastic reshuffling of the variant repertoire. The observed level of genetic

diversity increased following initial midgut infection but significantly differed between mos-

quito genetic backgrounds despite a similar initial bottleneck size. Natural selection was

predominantly negative (purifying) during viral population expansion. Taken together, our

results indicate that dengue virus intra-host genetic diversity in the mosquito vector is

shaped by genetic drift and purifying selection, and point to a novel role for vector genetic

factors in the genetic breadth of virus populations during infection. Identifying the evolution-

ary forces acting on arboviral populations within their arthropod vector provides novel

insights into arbovirus evolution.
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Author Summary

During infection of their arthropod vectors, arthropod-borne viruses (arboviruses) such
as dengue viruses traverse several anatomical barriers that are believed to cause dramatic
reductions in population size. Such population bottlenecks challenge the maintenance
of viral genetic diversity, which is considered critical for fitness and adaptability of
arboviruses. Anatomical barriers in the vector were previously associated with both
maintenance of arboviral genetic diversity and alteration of the variant repertoire. How-
ever, the relative role of random processes and natural selection, and the influence of
vector genetic heterogeneity have not been elucidated. In this study, we used high-
throughput sequencing to monitor dengue virus genetic diversity during infection of
several genetic backgrounds of their mosquito vector. Our results show that initial infec-
tion of the vector is randomly founded by only a few tens of individual virus genomes.
The overall level of viral genetic diversity generated during infection was predominantly
under purifying selection but differed significantly between mosquito genetic back-
grounds. Thus, in addition to random evolutionary forces and the purging of deleterious
mutations that shape dengue virus genetic diversity during vector infection, our results
also point to a novel role for vector genetic factors in the genetic breadth of virus
populations.

Introduction
Due to the low fidelity of their RNA-dependent RNA polymerase, rapid replication kinetics
and large population size, RNA viruses consist of a heterogeneous intra-host population of
related mutants, sometimes referred to as a quasispecies [1]. This mutant swarm as a whole
defines the properties of the viral population, and is considered critical for the fitness and adap-
tive potential of RNA viruses [1]. For example, high fidelity poliovirus mutants are attenuated
in mice in vivo, demonstrating the functional importance of intra-host genetic diversity for
pathogenesis [2].

Arthropod-borne viruses (arboviruses) are maintained by transmission between vertebrate
hosts and blood-feeding arthropods such as mosquitoes that serve as vectors. Although arbovi-
ruses span a wide range of viral taxa in the Togaviridae, Flaviviridae, Bunyaviridae, Rhabdoviri-
dae and Orthomyxoviridae families, the vast majority are RNA viruses, with the single known
exception of a DNA arbovirus (African swine fever virus). The genetic plasticity of an RNA
genome may confer arboviruses the remarkable ability to alternate between two fundamentally
different hosts, and to quickly adapt to novel hosts [3]. Like other RNA viruses, high levels of
intra-host genetic diversity are critical for arboviral fitness, as demonstrated in both host types
for chikungunya virus [4,5] and West Nile virus [6–8].

Arboviruses usually rely on horizontal transmission between vertebrate hosts and arthropod
vectors, although vertical transmission from an infected female arthropod to her offspring may
occur [9,10]. After being ingested in a blood meal taken from a viremic vertebrate, arboviruses
initially establish infection in the midgut epithelial cells of the arthropod vector. Transmission
to another vertebrate host occurs after an extrinsic incubation period during which the arthro-
pod develops a systemic infection that results in the release of viral particles in saliva. During
infection of the arthropod vector, arboviruses are confronted with several anatomical barriers
that are believed to impose severe population bottlenecks on viral populations [11]. Bottlenecks
are dramatic reductions in population size, resulting in stochastic sampling of a small number
of viral genomes from the mutant swarm. Population bottlenecks can significantly reduce the
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fitness of RNA viruses through accumulation of deleterious mutations that cannot be effi-
ciently removed by purifying selection [12]. Initial infection and traversal of midgut cells, fol-
lowed by virus dissemination and invasion of the salivary glands are expected to result in
strong population drops that represents a challenge to maintaining arboviral genetic diversity
during systemic vector infection [13].

Despite such population bottlenecks, arboviruses typically maintain high levels of genetic
diversity during transmission by their arthropod vectors [11]. For example, analyses of West
Nile virus populations in the midgut, hemolymph and saliva of Culexmosquitoes failed to doc-
ument reductions in genetic diversity [14]. However, the authors of this study did not deter-
mine whether a large effective population size was maintained, or if viral genetic diversity was
quickly replenished by mutation and demographic expansion following population bottle-
necks. In a recent study of dengue virus (DENV), genetic diversity was maintained during
human-to-mosquito transmission but the variant repertoire changed substantially between
venous blood and different organs of Aedesmosquitoes that became infected by feeding on the
person [15]. Over 90% of DENV genetic variants were lost upon transition from venous blood
to mosquito abdomen, as well as from abdomen to salivary glands, which led the authors to
estimate that about a hundred viral genomes initially established a productive midgut infection
[15]. However, this number could have been underestimated because the calculation assumed
that the observed change in variant frequency was due to chance alone (i.e., it did not account
for the effect of natural selection). Genetic drift and purifying selection, for example, can result
in a similar loss of genetic diversity.

The relative strength of natural selection and genetic drift is informed by the effective popu-
lation size (Ne), defined as the size of an idealized population that would drift at the same rate
as the observed population [16]. Ne indicates whether the evolution of a population is better
described as a deterministic (selection) or stochastic (drift) process. When Ne is large, competi-
tion between variants occurs with little interference of random processes. When Ne is small,
stochastic sampling of variants counteracts selection and hinders adaptation. For example,
genetic drift plays a limited role during systemic infection of the plant host by cauliflower
mosaic virus, as viral populations maintain an effective size of several hundreds of viral
genomes [17]. Understanding the relative role of genetic drift and natural selection is critical to
evaluate the risk of arboviral emergence through adaptive processes [3]. For example, limited
epidemic potential of an Asian lineage of chikungunya virus was associated with fixation of a
deleterious deletion likely due to a founder effect [18].

In the present study, we investigated the intra-host evolution of DENV in the main mos-
quito vector Aedes aegypti by deep sequencing the full genome of viral populations at different
time points of infection. Importantly, we accounted for the potential role of mosquito genetic
variation on DENV intra-host genetic diversity. DENV intra-host genetic diversity has
attracted considerable interest since the confirmation of its quasispecies nature [19]. Until
now, however, most of this research has focused on viral genetic diversity in humans [20–23].
A few studies examined DENV intra-host genetic diversity in the mosquito vector [15,24,25],
but these studies did not account for vector genetic heterogeneity. There is substantial evidence
for genetic variation in Ae. aegypti vector competence for DENV [26–32], as well as specific
interactions between Ae. aegypti genotypes and DENV genetic variants [33–37].

Our objectives were three-fold: (i) measure the bottleneck size during initial midgut infec-
tion of Ae. aegyptimosquitoes by DENV; (ii) monitor DENV intra-host genetic diversity dur-
ing population expansion and systemic infection; and (iii) determine the influence of the
vector genotype on bottleneck size and intra-host DENV genetic diversity.
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Material and Methods

Ethics statement
The Institut Pasteur animal facility has received accreditation from the French Ministry of
Agriculture to perform experiments on live animals in compliance with the French and Euro-
pean regulations on care and protection of laboratory animals. This study was approved by the
Institutional Animal Care and Use Committee at Institut Pasteur.

Virus and mosquitoes
This study used a wild-type DENV-1 isolate (KDH0026A) that was originally recovered from
the serum of a clinically ill dengue patient attending Kamphaeng Phet Provincial Hospital,
Thailand as previously described [36]. Informed consent of the patient was not necessary
because the virus was isolated in laboratory cell culture for diagnostic purposes (unrelated to
this study) and, therefore, was no longer a human sample. The isolate was passaged three times
in Aedes albopictus C6/36 cells prior to its use in this study. The full-length consensus genome
sequence of the isolate is available from GenBank under accession number HG316481.

Aedes aegypti females used in this study belonged to the 16th generation of four isofemales
lines (referred to as A, B, C, and D thereafter) derived from wild Ae. aegypti specimens col-
lected in Kamphaeng Phet Province, Thailand. The lines were initiated by single mating pairs
of field-caught males and females as previously described [36]. One male and one female from
different collection sites (subdistricts) of the Muang district, Kamphaeng Phet Province, were
randomly paired. The mothers of lines A and B, and the father of line C were collected in Thep
Na Korn. The fathers of lines A, B and D were collected in Mae Na Ree. The mothers of lines C
and D were collected in Nhong Ping Kai. They were maintained in the laboratory by mass sib-
mating and collective oviposition at each subsequent generation. Quantification of genetic vari-
ation within and between the four isofemale lines was conducted as part of this study (see
below).

To initiate the experiment, eggs were hatched in filtered tap water. Larvae were reared in
24×34×9 cm plastic trays at a density of about 200 larvae per tray. Adults were maintained in
30×30×30 cm screened cages under controlled insectary conditions (28±1°C, 75±5% relative
humidity, 12:12 hour light-dark cycle). They were provided with cotton soaked in a 10% (m/
v) sucrose solution ad libitum and allowed to mate for 6–7 days before the experimental
infection.

Restriction-site associated DNA (RAD) sequencing of mosquitoes
Genetic characterization of the Ae. aegypti isofemale lines used single nucleotide polymor-
phism (SNP) markers identified and genotyped by Restriction-site Associated DNA (RAD)
sequencing [38]. Ten females from the 16th generation of each isofemale line (i.e., from the
same generation that was used in the experimental infection) and 10 females from the 1st gen-
eration of an outbred population collected in 2013 in Thep Na Korn, Kamphaeng Phet Prov-
ince, Thailand (i.e., the region where the isofemale lines originated) were genotyped using
RAD sequencing.

Mosquito genomic DNA was purified using the procedure developed by Pat Roman's labo-
ratory at the University of Toronto [39]. DNA concentration was measured with Qubit fluo-
rometer and Quant-iT dsDNA Assay kit (Life Technologies, Paisley, UK). A modified version
of the original double-digest Restriction-site Associated DNA (ddRAD) sequencing protocol
[40] was used as previously described [41] with minor additional modifications. Briefly, 350
ng of genomic DNA from each mosquito were digested in a 50-μl reaction containing 50 units
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each of NlaIII andMluCI restriction enzymes (New England Biolabs, Herts, UK), 1× CutS-
mart Buffer and water for 3 hours at 37°C, without a heat-kill step. Digestion products were
cleaned with 1.5× volume of Ampure XP paramagnetic beads (Beckman Coulter, Brea, CA,
USA) and ligated to the modified Illumina P1 and P2 adapters with overhangs complemen-
tary to NlaIII andMluCI cutting sites, respectively. Each mosquito was uniquely labeled with
a combination of P1 and P2 barcodes of variable lengths to increase library diversity at 5’ and
3’ ends (S1 Table). Ligation reactions were set up in a 45-μl volume with 2 μl of 4 μM P1 and
12 μM P2 adapters, 1,000 units of T4 ligase and 1× T4 buffer (New England Biolabs) and were
incubated at 16°C overnight. Ligations were heat-inactivated at 65°C for 10 minutes and
cooled down to room temperature (20–25°C) in a thermocycler at a rate of 1.5°C per 2 min-
utes. Adapter-ligated DNA fragments from all individuals were pooled and cleaned with 1.5×
bead solution. Fragments from 350 to 440 base pairs (bp) were selected using a Pippin-Prep
2% gel cassette (Sage Sciences, Beverly, MA, USA). Finally, 1 μl of the size-selected DNA was
used as a template in a 10-μl PCR reaction with 5 μl of Phusion High Fidelity 2× Master mix
(New England Biolabs) and 1 μl of 50 μM P1 and P2 primers (S1 Table). To reduce bias due to
PCR duplicates, 8 PCR reactions were run in parallel, pooled, and cleaned with a 0.8× bead
solution to make the final library. At this step, final libraries were quantified by quantitative
PCR using the QPCR NGS Library Quantification Kit (Agilent Technologies, Palo Alto, CA,
USA).

Libraries containing multiplexed DNA fragments from 50 mosquitoes were sequenced on
an Illumina NextSeq platform using a NextSeq 500 High Output 300 cycles v2 kit (Illumina,
San Diego, CA, USA) to obtain 150-bp paired-end reads. An optimized final library concentra-
tion of 1.1 pM, spiked with 15% PhiX, was loaded onto the flow cell. Raw sequences were
deposited in the NCBI Sequence Read Archive under accession number SRP075401.

RADmarkers for mosquito genotyping
A previously developed bash script [41] was used to process raw sequencing reads with minor
modifications. Briefly, the DDemux program was used for demultiplexing fastq files according
to the P1 and P2 barcodes combinations. Sequence quality scores were automatically converted
into Sanger format. Sequences were filtered with FASTX-Toolkit. The first 5 bp (i.e., the restric-
tion enzyme cutting site) and last 11 bp of P1 and P2 reads were trimmed. All reads with Phred
scores<25 were discarded. P1 and P2 reads were then matched and unpaired reads were sorted
as orphans.

Paired reads were aligned to the reference Ae. aegypti genome (AaegL3, February 2016)
[42] using Bowtie version 0.12.7 [43]. Parameters for the ungapped alignment included a
maximum of three mismatches allowed in the seed, suppression of alignments if more than
one reportable alignment existed, and a “try-hard” option to find valid alignments. Orphans
were combined with all unaligned paired reads and single-end alignment was attempted. All
aligned Bowtie output files were merged per individual and were imported into the Stacks
pipeline. A catalog of RAD loci used for SNP discovery was created using the ref_map.pl
pipeline in Stacks version 1.37 [44,45]. First, sequences aligned to the same genomic location
were stacked together and merged to form loci using Pstacks. Only loci with a sequencing
depth�3X per individual were retained. Cstacks was used to create a catalog of consensus
loci, merging alleles together and Sstacks was used to match all identified loci. The Stacks
pipeline identified a total of 899,892 RAD loci. The “populations”module was used to export
markers with a sequencing depth�10X that were present in�98% of samples. The mosquito
phylogenetic analysis was performed with the resulting subset of 2,321 SNPs, which belonged
to 1,319 distinct RAD loci (0.15%).
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Phylogenetic analysis of mosquitoes
Phylogenetic trees were constructed using a Bayesian Markov Chain Monte Carlo (MCMC)
algorithm, implemented in the BEAST 1.8.3 package [46]. Inferences were produced under the
coalescent model (constant size), and under the GTR+G (global time reversible with gamma
distribution and no invariable sites) and the HKY+G (Hasegawa-Kishino-Yano) substitution
models. Heterozygote positions were considered in calculations by enabling the use of IUPAC
code and associated degeneracy within the substitution model. The length of MCMC was set at
3x107 states to obtain Effective Sampling Size (ESS) values>200.

Experimental mosquito infection
Six- to seven-day-old Ae. aegypti females were deprived of water and sucrose for 24h prior to
the infectious blood meal. The virus stock was diluted in cell culture medium (Leibovitz’s L-15
medium + 10% heat-inactivated fetal calf serum + non-essential amino-acids + 0.1% penicillin/
streptomycin + 1% sodium bicarbonate) to reach an expected infectious titer of 3×106 focus-
forming units (FFU) per mL. One volume of virus suspension was mixed with two volumes of
freshly drawn rabbit erythrocytes washed in distilled phosphate-buffered saline (DPBS). After
gentle mixing, 2.5 mL of the infectious blood meal was placed in each of several Hemotek
membrane feeders (Hemotek Ltd, Blackburn, UK) maintained at 37°C and covered with a
piece of desalted porcine intestine as a membrane. Sixty μL of 0.5 M ATP were added to each
feeder as a phagostimulant. Each isofemale line was allowed to feed during two rounds of 15
min on different feeders to ensure randomization of a potential feeder effect. Actual virus titer
in the blood meal was measured by standard focus-forming assay in C6/36 cells [33]. After
feeding, mosquitoes were cold anesthetized on ice and fully engorged females were transferred
to 1-pint cardboard cups. They were incubated under controlled conditions (28±1°C, 75±5%
relative humidity, 12:12 hour light-dark cycle) in a climatic chamber.

At 4, 7 and 14 days post exposure (dpe), the midgut of 8–12 individuals from each isofemale
line (i.e., biological replicates) were dissected. Midguts were homogenized individually in
140 μL of DPBS + 560 μL of QIAamp Viral RNAMini Kit lysis buffer (Qiagen, Hilden, Ger-
many) during two rounds of 30 sec at 5,000 rpm in a mixer mill (Precellys 24, Bertin Technolo-
gies, Montigny le Bretonneux, France). At 7 and 14 dpe, the legs of midgut-dissected
mosquitoes were removed and homogenized as described above. At 14 dpe, the salivary glands
of the midgut- and leg-less individuals were harvested and processed as above.

Virus deep sequencing
Total RNA was extracted from mosquito homogenates using QIAamp Viral RNAMini Kit
(Qiagen) and reverse transcribed using Transcriptor High Fidelity cDNA Synthesis Kit (Roche
Applied Science, Penzberg, Germany) and a specific reverse primer located at the 3’ end of the
viral genome (S1 Table). Presence and amount of viral cDNA was assessed by quantitative
PCR using the LightCycler DNAMaster SyberGreen I kit (Roche Applied Science) and custom
primer pairs (S1 Table). Absolute quantification used a standard curve generated with serial
dilutions of PCR amplicons of known concentration. Selected samples were amplified by 40
cycles of PCR in 10 overlapping amplicons with Q5 High Fidelity DNA polymerase (New
England Biolabs) and custom primer pairs (S1 Table).

PCR products were purified with Agencourt AMPure XP magnetic beads (Beckman Coul-
ter) and their concentration was measured by Quant-iT PicoGreen dsDNA fluorometric quan-
tification (Invitrogen). Equal amounts of each amplicon were pooled by sample and brought to
a final concentration of 0.2 ng/μL. Multiplexed libraries were prepared using Nextera XT DNA
Library Preparation Kit (Illumina) and single-end sequenced on an Illumina NextSeq 500
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platform using a high-output 75 cycles v1 kit (Illumina). Sequencing reads were demultiplexed
using bcl2fastq v2.15.0 (Illumina). Raw sequences were deposited in the NCBI Sequence Read
Archive under accession number SRP075335.

After demultiplexing, reads were trimmed to remove Illumina adaptor sequences using
Trimmomatic v0.33 [47] and amplification primers if matching sequences were found on
either the 5’ or 3’ end of the reads using Cutadapt v.1.8.3 [48]. Reads shorter than 32 bp were
discarded and remaining reads were then mapped to the reference DENV genome sequence
using Bowtie2 v2.1.0 [49]. The alignment file was converted, sorted and indexed using Sam-
tools v0.1.19 [50]. Coverage and sequencing depth were assessed using bedtools v2.17.0 [51].
Single nucleotide variants (SNVs) and their proportion among all reads were called using
LoFreq� v2.1.1 [52] and their effect at the amino-acid level assessed by SNPdat v.1.0.5 [53].

Viral genetic diversity analyses
Two sets of SNV markers were used for analyses of genetic diversity and natural selection.
The ‘full’marker set excluded all nucleotide positions in a given sample that had (i) a
sequencing depth <500X or (ii) where potential sequencing or library preparation artifacts
[54] were detected. The ‘conservative’marker set excluded all nucleotide positions in all
samples that had (i) a sequencing depth<500X or (ii) where potential sequencing or library
preparation artifacts [54] were detected in a least one sample. The conservative marker set
minimized the potential bias owing to the unique mutational profile of each nucleotide posi-
tion. However, because some of the overlapping fragments covering the viral genome could
not be successfully amplified in a few samples (S1 Fig), the conservative marker set failed to
cover large fractions of the viral genome (S2A Fig). The full marker set, conversely, mini-
mized the potential bias owing to distinct evolutionary properties of the different regions of
the viral genome.

Genetic complexity of the viral population was estimated using normalized Shannon
entropy (Sn) for each nucleotide site [55]:

Sn ¼ �ðp lnðpÞÞ þ ðð1� pÞ � lnð1� pÞÞ
lnð4Þ

where p is the SNV minor allele frequency at the considered position, and ln(4) corresponds
to maximum complexity (i.e., four possible nucleotides at each position). For individual
SNVs, Sn values range from 0 to 1. For diallelic SNVs, Sn values range from 0 (no diversity)
to 0.5 (maximum complexity, when the two alternative nucleotides are present at equal fre-
quency). For each sample, Sn was averaged over all nucleotide sites included in either the full
or the conservative set of SNV markers (i.e., total genome length minus number of excluded
positions).

Genetic diversity of the viral population was also estimated using nucleotide diversity at
each nucleotide site [56]:

p ¼ D
D� 1

� 1� p2 þ ðp� 1Þ2� ��

where D is the sequencing depth at the considered position and p is the SNV minor allele fre-
quency. Like for Sn, π values for a diallelic SNV range from 0 (no polymorphism) to 0.5 (when
the two alternative nucleotides are present at equal frequency). For each sample, π was aver-
aged over all nucleotide sites included in either the full or the conservative set of markers. This
index of genetic diversity is less sensitive to low-frequency variants than Sn, due to the lack of
log-transformation of the frequencies.
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Natural selection assessment
The magnitude and direction of natural selection were assessed using the dN/dS ratio, which is
the ratio between the number of non-synonymous substitutions per non-synonymous site (dN)
over the number of synonymous substitutions per synonymous site (dS) of a coding sequence,
assuming synonymous substitutions are selectively neutral:

dS ¼
�3 � ln 1� 4 �Sd

Ss
3

� �

4
and dN ¼

�3 � ln 1� 4 �Nd
Ns

3

� �

4

where Sd is the number of synonymous substitutions in the sequence, Ss is the number of syn-
onymous sites, Nd is the number of non-synonymous substitutions in the sequence and Ns is
the number of non-synonymous sites [57]. A dN/dS ratio>1 means that there is an excess of
normalized number of non-synonymous substitutions relative to the normalized number of
synonymous substitutions and is interpreted as evidence for positive selection (i.e., driving
change). A dN/dS ratio<1 means that there is an excess of normalized number of synonymous
substitutions relative to the normalized number of non-synonymous substitutions and is inter-
preted as evidence for negative selection (i.e., acting against change). A dN/dS ratio equal to 1 is
interpreted as evidence for the absence of natural selection (i.e, neutral evolution).

The dN/dS ratio was computed using the Nei-Gojobori method [57] with suggested modifi-
cations for high-throughput sequencing data [58]. Briefly, Nd and Sd were calculated for each
sample as the sum of SNV frequencies. Mean Nd and Sd were computed for each isofemale line
at each time point and used for dN and dS calculation, respectively. Numbers of synonymous
and non-synonymous sites from the initial population consensus sequence were estimated
using MEGA v.7.0.16 [59] by computing the number of 0-, 2-, 3- and 4-fold degenerate sites
following the Nei-Gojobori method [57]. The full marker set had a variable number of synony-
mous and non-synonymous sites depending of the number of nucleotide sites retained or
excluded for each sample. The conservative marker set had 328.67 synonymous and 1,481.33
non-synonymous sites for all samples.

Statistical testing
Statistical analyses were performed in the statistical environment R, version 3.2.0 (http://www.
r-project.org/) using the packages car [60], plyr [61], ggplot2 [62], stringr [63], reshape2 [64],
gridExtra [65], fitdistrplus [66] and boot [67]. In all analyses, the individual mosquito sample
was considered a biological unit of replication.

Infection prevalence and cDNA copy numbers were compared among isofemale lines at
each time point by pairwise Pearson χ2 tests and pairwise Wilcoxon signed-rank tests, respec-
tively, followed by a Holm correction of p-values for multiple testing.

The proportion of SNVs per position, mean Sn and mean π estimates were compared
between the input and later time points using pairwise Wilcoxon signed-rank tests and a Holm
p-value adjustment. The proportion of SNVs per position, Sn, π and dN/dS estimates in midgut
samples were analyzed between 4 and 7 dpe as a function of the combined effects of time point
and mosquito genotype using a linear model with an identity link function and a normal error
distribution. Model validity was verified with quantile-quantile (Q-Q) plots of residuals and by
computing Cook’s distance to assess influence of observations. Statistically significant effects
(p<0.05) of time point, mosquito genotype and their interactions were determined using type-
II analysis of variance. Statistically insignificant interactions were removed from the model,
subsequently repeating model validation. Statistical testing of pairwise differences between iso-
female lines used the linear regression coefficients. Estimated regression coefficients were
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extracted and their 95% confidence intervals and p-values were calculated based on their stan-
dard errors compared to a reference level. Isofemale line A was arbitrarily chosen as the refer-
ence level.

Bottleneck size estimation
Following a published method [17], bottleneck size at initial midgut infection was estimated by
analyzing the change in frequency distribution of neutral markers between blood meal (initial)
and midgut (final) samples. Under the assumption of neutrality (i.e., absence of natural selec-
tion), the idealized number of founding genomes (N) initiating the midgut infection can be
computed as:

N ¼ pð1� pÞ
Varðp0Þ � VarðpÞ

where p is the marker allele frequency in the initial population and p0 is the marker allele fre-
quency in the final population [17]. This method considers that changes in the genetic variance
between sequential samples result exclusively from genetic drift and therefore requires neutral
or quasi-neutral markers.

SNVs that were presumably neutral were selected based on the following set of criteria: (i)
synonymous change at the third codon position, (ii) no significant change in mean frequency
between sampling time points, (iii) SNV detected in�80% of the five viral input replicates
(viral stock and blood meal samples), and (iv) mean frequency>0.02 in the input population.
Confidence intervals of N estimates were computed using a bootstrapping procedure as
described in [17]. Briefly, for each bootstrap all individuals were sampled with replacement to
calculate N. This was repeated 1,000 times to generate a distribution of N values and derive
95% confidence intervals corresponding to the 2.5 and 97.5 percentiles of the distribution.

Bottleneck simulation
The effect of the initial midgut infection bottleneck on viral diversity indices was simulated in
R based on 100 sampling events from an initial viral population containing 100 independent
SNVs. SNV minor allele frequency was randomly drawn from an exponential distribution (λ =
100). Initial viral population size (equivalent to the infectious dose ingested in the blood meal)
was drawn from a normal distribution (mean = 2,000; standard deviation = 200). Bottleneck
size was drawn from a normal distribution (mean = 28; standard deviation = 5). Mean Sn and
mean π were computed for all samples in the presence or the absence of a detection threshold
arbitrarily set at an SNV minor allele frequency of 0.01.

Results

Mosquito genetic variation
A genome-wide set of 2,321 SNPs generated by RAD sequencing was used to genetically char-
acterize the four Ae. aegypti isofemale lines (A, B, C, and D). These markers had a sequencing
depth�10X per sample and were missing in<2% of samples. An outbred Ae. aegypti popula-
tion from the same geographic location where the lines were created was also genotyped to pro-
vide a phylogenetic background. Phylogenetic relationships among individuals from the four
isofemale lines and the outbred population were determined with a Bayesian method (Fig 1).
As expected, the outbred mosquito population was paraphyletic, reflecting its genetic diversity.
Mosquitoes from isofemale lines A and B clustered independently with strong statistical sup-
port, confirming their distinct genetic identity. Unexpectedly, mosquitoes from isofemale line
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Fig 1. Phylogenetic relationships between Aedes aegypti isofemale lines. Bayesian phylogenetic tree representing the genetic diversity across
individuals from the four isofemale lines (A, B, C and D) and from a field-derived outbred population (Pop) from the same geographic location where the lines
were created. The phylogenetic analysis was based on a GTR+G substitution model of 2,321 SNPs. Putative populations are depicted in different colors.
The scale bar indicates the number of substitutions and posterior probabilities are displayed at relevant nodes.

doi:10.1371/journal.pgen.1006111.g001
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C grouped with mosquitoes from isofemale line D within the same clade. This could be the
result of relatedness between the parents randomly chosen to initiate the lines, as the mothers
of lines C and D came from the same collection site and may have been siblings. Two different
substitution models for the phylogenetic reconstruction gave similar clustering patterns. Simi-
lar results were also obtained when testing a variable number of markers (allowing from 0% to
30% of missing genotypes) with the same method. Because isofemale lines C and D were not
unambiguously assigned to different monophyletic groups, they could not be considered as dis-
tinct genotypes and were thus combined in all subsequent analyses. They are jointly referred to
as line CD hereafter.

Infection time course and sample selection
Mosquitoes from the three different genotypes (A, B, and CD) were exposed to DENV through
an artificial blood meal at a final titer of 1.52×106 focus-forming units (FFU)/mL. Assuming a
blood meal size of approximately 2 μL, the infectious dose ingested by each mosquito was
about 3,000 infectious viral particles. The proportion of mosquitoes that acquired a midgut
infection ranged from 75 to 100% and did not differ significantly between time points or isofe-
male lines (Fig 2A). The proportion of mosquitoes with a DENV infection that disseminated to
their legs increased from 10–40% at 7 days post exposure (dpe) to 60–100% at 14 dpe, but the
rate of virus dissemination to the legs did not differ significantly between isofemale lines (Fig
2A). However, the proportion of mosquitoes with a disseminated infection in the salivary
glands was significantly higher for line CD (87.5%) than for line A (37.5%) and line B (41.7%)
at 14 dpe (line A vs. line CD, p = 0.037; line B vs. line CD, p = 0.037). Among infected mosqui-
toes, viral load ranged from 8.9×102 to 2.8×106 DENV genome copies per sample with no sig-
nificant difference between isofemale lines at any of the time points, with the exception of lines
B and CD that had significantly different viral loads (p = 0.037) in their salivary glands at 14
dpe (Fig 2B).

Deep sequencing of viral genomes was performed for a subset of 78 infected samples at
selected time points (Fig 2B) that were processed individually and treated as biological repli-
cates. Some samples were excluded because their low concentration of viral RNA resulted in
unsuccessful RT-PCR amplification. A total of 4, 7 and 13 infected midguts at 4 dpe and 7, 11
and 21 infected midguts at 7 dpe were analyzed for lines A, B, and CD, respectively. Ten
infected salivary glands at 14 dpe were analyzed in line CD. In addition, DENV genomes were
deep sequenced in the initial viral stock and in four replicates of the infectious blood meal. On
average, 3,615,466 sequencing reads per sample aligned to the reference DENV genome. Mean
DENV genome coverage with a sequencing depth>500X was 10,594 nucleotides per sample,
which represents 98.8% of the 10,718 nucleotides of the total genome length. Mean sequencing
depth was 24,212X per sample (S1 Fig).

Patterns of viral genetic diversity
The full set of SNV markers retained for population genetic analyses included an average of
5,843 nucleotide sites across the DENV genome, whereas a more conservative set (see Materials
and Methods) was restricted to 1,810 nucleotides (S2A Fig). SNVs of the full marker set were
randomly distributed across the genome without obvious mutation hot or cold spot (S3 Fig). A
new variant reached consensus level (frequency>0.5) in one midgut sample at 4 dpe and one
midgut sample at 7 dpe, but the SNV was different in each case. In salivary glands collected at
14 dpe, new variants reached consensus level at 11 positions, none of which was shared among
individuals within or between isofemale lines (S3 Fig). In the more restricted conservative set
of markers, no variant reached consensus level at any time point (S2B Fig).
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Fig 2. Time course of DENV prevalence and viral load. (A) Bar graphs show the percentage of DENV-infected
samples stratified by time point, tissue and isofemale line. Relative numbers of positive samples are indicated above
the bars. (B) Box plots show the number of DENV genome copies per infected sample stratified by time point, tissue
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To determine the effect of initial midgut infection on DENV genetic diversity, a first series
of analyses compared viral genetic diversity observed in the input samples with genetic diver-
sity observed at any of the later time points. In the full marker set, initial infection of the mid-
gut was associated with an increase in viral genetic diversity relative to the input (Fig 3) both
when measured with normalized Shannon entropy Sn (0 dpe vs. 4 dpe, p = 0.0001; 0 dpe vs. 7
dpe, p = 0.002; 0 dpe vs. 14 dpe, p = 0.003) (Fig 3A) and when measured with nucleotide diver-
sity π (0 dpe vs. 4 dpe, p = 0.0001; 0 dpe vs. 7 dpe, p = 0.0004; 0 dpe vs. 14 dpe, p = 0.003) (Fig
3B). Viral diversity was also significantly higher in the salivary glands at 14 dpe than in the
midgut at 7 dpe (Sn: p = 0.012; π: p = 0.012). The proportion of variable sites detected also
increased following initial midgut infection (S4 Fig) although differences were only statistically
significant between 0 dpe and 4 dpe (p = 0.0029) and between 0 dpe and 14 dpe (p = 0.0067).
Similarly, in the conservative set of markers, mosquito infection was associated with a relative
increase in viral genetic diversity following initial midgut infection, albeit more modestly due
to the smaller number of markers, both when measured with normalized Shannon entropy Sn
(0 dpe vs. 4 dpe, p = 0.046; 0 dpe vs. 14 dpe, p = 0.008) (S5B Fig) and when measured with
nucleotide diversity π (0 dpe vs. 14 dpe, p = 0.008) (S5C Fig). The proportion of variable sites
detected, however, did not differ statistically between time points (S5A Fig).

To evaluate the dynamics of DENV genetic diversity during viral population expansion in
the midgut, a second series of analyses compared viral genetic diversity between 4 and 7 dpe,
accounting for potential differences between mosquito genotypes. In the full set of markers,
both the time point (proportion of variable sites: p = 0.03; Sn: p = 0.04; π: p = 0.04) and the iso-
female line (proportion of variable sites: p = 0.0035; Sn: p = 0.0002; π: p = 0.0005) significantly
influenced viral genetic diversity. Overall, DENV genetic diversity slightly decreased between 4
dpe and 7 dpe. Isofemale line A displayed significantly higher viral genetic diversity than lines
B and CD, for all three indices: proportion of variable sites (p = 0.012 and p = 0.0008, respec-
tively), Sn (p = 0.006 and p = 0.0005 respectively) and π (p = 0.017 and p = 0.0001, respectively).
Similar results were obtained with the conservative set of markers. Both the time point (pro-
portion of variable sites: p = 0.01; Sn: p = 0.013; π: p = 0.015) and the isofemale line (proportion
of variable sites: p = 0.0011; Sn: p = 0.0006; π: p = 0.0029) significantly influenced viral genetic
diversity. Overall, DENV genetic diversity slightly decreased between 4 dpe and 7 dpe. Isofe-
male line A displayed significantly higher viral genetic diversity than lines B and CD, for all
three indices: proportion of variable sites (p = 0.017 and p = 0.0002, respectively), Sn
(p = 0.0047 and p = 0.0001, respectively) and π (p = 0.012 and p = 0.0007, respectively).

Natural selection
Based on the full set of SNV markers, dN/dS ratios were predominantly negative indicating
purifying selection (Fig 3C). There was no statistically significant difference in dN/dS ratios
between time points or mosquito isofemale lines. Computing dN/dS ratios was not possible
with the conservative set of markers because the smaller number of SNVs resulted in a large
proportion of samples with dS = 0. Analysis of dN/dS ratios calculated per isofemale line, how-
ever, provided results consistent with predominantly purifying selection using the conservative
set of markers. Average dN/dS ratios were remarkably similar among lines and time points
around 0.2218 (S1 Table).

and isofemale line. Solid dots represent individual samples selected for deep sequencing and open dots represent
samples that were not sequenced. dpe = days post exposure. * p<0.05.

doi:10.1371/journal.pgen.1006111.g002

Dengue Virus Intra-host Evolution

PLOS Genetics | DOI:10.1371/journal.pgen.1006111 June 15, 2016 13 / 24



Fig 3. Observed levels of DENV intra-host genetic diversity and natural selection assessment. (A) Averaged Shannon entropy (Sn) per site over all
positions per sample. (B) Averaged nucleotide diversity (π) over all positions per sample. (C) dN/dS ratios over all coding positions per sample. The
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Bottleneck size estimates
Three SNVs that complied with criteria of quasi-neutral evolution were selected to estimate the
idealized number of founding viral genomes (N) initiating the midgut infection based on
changes in the variance of their frequency between input and midgut samples (Table 1). Based
on the three markers, initial midgut infection was founded by 23–34 genomes when estimated
at 4 dpe (Fig 4A) and 5–42 genomes when estimated at 7 dpe (Fig 4B). Collectively, 95% confi-
dence intervals ranged from 2 to 161 founding genomes. N estimates and their confidence
intervals were consistent across time points, especially for marker at position 1556. For this
marker, 4 dpe and 7 dpe data were pooled to compute isofemale line-specific N estimates.
There were no statistically significant differences among lines in the estimated bottleneck size
(Fig 4C), ranging from 83 (95% confidence interval: 52–396) founding genomes for line A, to
23 (9–220) for line B and 33 (16–108) for line CD.

Bottleneck simulations
Simulations were performed to model the effect of population bottlenecks on DENV intra-host
genetic diversity. The simulation randomly assigned SNV minor allele frequency, initial viral
population size and bottleneck size to explore whether a minimum threshold for SNV detec-
tion would alter the observed genetic diversity following a population bottleneck compared to
the true genetic diversity. When 100 SNVs were present in the input viral population and no
minimum detection threshold was set, mean Sn and π estimated in 100 replicate samples
decreased following the bottleneck (Fig 5A). However, when only SNVs with a minor allele fre-
quency>1% were detected, mean Sn and π estimates increased after the bottleneck (Fig 5B).

Discussion
We investigated the evolutionary forces acting on DENV populations within their arthropod
vector. Specifically, we evaluated the relative effects of natural selection and genetic drift on
DENV intra-host evolution in the midgut of Ae. aegypti. In addition, we assessed the influence
of vector genetic heterogeneity on intra-host viral genetic diversity. Our results show that
DENV intra-host genetic diversity in Ae. aegypti is shaped by the combined effects of genetic
drift, purifying selection and vector genotype. Reshuffling of the variant repertoire during ini-
tial infection of the midgut was associated with a bottleneck size ranging from 5 to 42 founding
viral genomes, irrespective of the mosquito genotype. DENV genetic diversity increased

horizontal, dashed red line represents a dN/dS ratio of 1, which is interpreted as evidence for neutral evolution (i.e., absence of natural selection). A dN/dS
ratio >1 is interpreted as evidence for positive selection; a dN/dS ratio <1 it is interpreted as evidence for negative (purifying) selection. Letters above the
graph indicate statistically significant pairwise differences between time points. For midgut samples, stars above the bars indicate statistically significant
pairwise differences between isofemale lines, with line A as the reference level.

doi:10.1371/journal.pgen.1006111.g003

Table 1. SNVmarkers used for bottleneck size estimation.

SNV
position

Mutation Position in
codon

Amino
acid

Viral
gene

Initial frequency
(mean ± sd)

Final frequency 4 dpe
(mean ± sd)

Final frequency 7 dpe
(mean ± sd)

1556 A ! C 3rd L E 0.021 ± 0.004 0.026 ± 0.028 0.031 ± 0.023

9950 C ! A 3rd T NS5 0.117 ± 0.022 0.108 ± 0.059 0.095 ± 0.054

10145 C ! T 3rd T NS5 0.051 ± 0.011 0.021 ± 0.047 0.043 ± 0.097

dpe = days post exposure; sd = standard deviation.

doi:10.1371/journal.pgen.1006111.t001
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significantly following initial infection, but was restricted by strong purifying selection during
DENV population expansion in the midgut. Observed levels of DENV genetic diversity in the
midgut differed significantly between mosquito isofemale lines despite a similar bottleneck size
at initial infection.

Arboviruses typically maintain high levels of genetic diversity during transmission by their
arthropod vectors despite anatomical barriers that often result in severe population drops [11].
Such population bottlenecks have been documented for several arboviruses in their vectors
using artificial mutant swarms [68], marked viral clones [13], viral replicons [69] or stochastic
simulations based on observed changes in variant frequencies [15]. Although the overall level of
arboviral genetic diversity is usually maintained during vector infection [14], the viral variant
repertoire can be significantly altered [15,68,70]. Presumably, viral genetic diversity is quickly
replenished by mutation and demographic expansion following population bottlenecks [11].
However, whether changes in the viral variant repertoire are due to stochastic sampling (i.e.,
genetic drift), purifying selection (i.e., removal of variants with lower fitness), or vector genetic
heterogeneity combined with specific interactions between vector and virus genotypes [33–37]
has remained largely unresolved. Our analysis used neutral or quasi-neutral genetic markers to
estimate the effective DENV population size during initial infection of the Ae. aegyptimidgut.
This approach rules out natural selection and only measures the effect of genetic drift due to
random sampling. It is worth noting, however, that true neutral mutation may not exist because
even synonymous mutations can have a fitness effect, especially in RNA viruses [71]. Deviation

Fig 4. Estimates of bottleneck size at initial midgut infection. The estimated number of founding genomes (N) that contribute to initial midgut
infection is shown for three markers identified by their position on the DENV genome (1556, 9950, 10145). The three markers are SNVs that are
assumed to evolve neutrally or quasi-neutrally. Horizontal bars indicate confidence intervals of N estimates computed by bootstrapping. (A)N
estimates based on samples collected at 4 dpe. (B) N estimates based on samples collected at 7 dpe. (C) N estimates for each isofemale line
obtained for marker 1556 using combined 4 dpe and 7 dpe samples.

doi:10.1371/journal.pgen.1006111.g004
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from our assumption of neutrality or quasi-neutrality of the chosen markers may have overesti-
mated the bottleneck size. Indeed, both positive selection and negative selection would likely act
to decrease the variance of marker frequency and therefore result in a larger estimate of Ne with
our method. Therefore, our conclusion that DENV populations undergo a strong population
bottleneck during initial midgut infection should be robust to any undetected departure from
neutrality. Moreover, we chose markers whose average frequency was similar before and after
the bottleneck, supporting the assumption that they were not under directional selection. Our
estimation that initial midgut infection is founded by only a few tens of DENV genomes is con-
sistent with previous estimations for DENV based on stochastic simulations using empirical
data [15]. We went one step further by demonstrating that genetic drift, rather than natural
selection, is the main evolutionary force underlying this population bottleneck.

Although our estimated bottleneck size is larger than for other RNA viruses during host-to-
host transmission [72], it is expected to substantially reduce the genetic breadth of the viral
quasispecies [73]. This finding has important implications for DENV evolution in general. A
small effective population size means that natural selection will be relatively inefficient during

Fig 5. Simulated effects of a population bottleneck and SNV detection threshold on observed levels of genetic diversity. The simulation considered
100 SNVs present in the input population, which were sampled 100 times (infection events) with randomly assigned SNV frequency, initial viral population
size and bottleneck size. In the population sampled following the bottleneck, mean π (A, C) and Sn (B, D) are shown when no frequency detection threshold
was set (A, B), and when a 1% frequency detection threshold was set (C, D).

doi:10.1371/journal.pgen.1006111.g005
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human-to-mosquito transmission. It will prevent adaptive evolution especially if beneficial
SNVs are present at low frequencies in the mutant swarm transmitted from the human host
[74]. On the other hand, the population bottleneck associated with initial midgut infection
may not be small enough to prevent the long-term maintenance of defective viral genomes
through complementation by co-infection of host cells with functional viruses. Such a phenom-
enon was previously documented in the case of a stop-codon mutation that became widespread
in DENV populations sampled in Myanmar in 2001 [75]. The frequency of the stop-codon
mutation was likely high enough to overcome the effect of population bottlenecks during mul-
tiple host-to-host transmission events.

During DENV population expansion following initial midgut infection, natural selection was
predominantly negative (i.e., acting against change). Accordingly, the consensus sequence
remained unchanged in most of the midgut samples. Only in the salivary glands did several
SNVs reach consensus level (frequency>0.5), but with no evidence of evolutionary convergence.
As was observed for West Nile virus [68], DENV intra-host genetic diversity in midguts slightly
decreased between 4 and 7 dpe. Importantly, we found that overall levels of DENV intra-host
genetic diversity differed significantly between distinct mosquito genetic backgrounds. Both the
initial bottleneck size and the census size of the viral population did not significantly vary
among mosquito genotypes, and thus are unlikely to explain this difference. The mechanistic
basis of this finding remains to be determined, but we speculate that viral populations may
undergo different selective constraints in different mosquito genotypes. Mosquito genotypes
could vary in the intensity of purifying selection (i.e., variation in the efficiency of mechanisms
that remove deleterious de novomutations), but this was not supported by our data. Likewise,
the overall lack of positive selection that we observed indicates that it is unlikely to be the under-
lying mechanism. Alternatively, mosquito genotypes may differ in the level of balancing selec-
tion (i.e., mechanisms that act to promote genetic diversity such as negative frequency-
dependent selection or spatiotemporal fluctuations in the strength and direction of selection).
The antiviral RNA interference (RNAi) pathway of mosquitoes was suggested to play a role in
viral genetic ‘diversification’ [76,77], by promoting escape to complementary base-pairing
required for RNAi-mediated cleavage. Variation in host factors could also result in differences in
viral intra-host genetic diversity through subtle changes in viral RNA-dependent RNA polymer-
ase fidelity [78]. Mutation rates of RNA viruses are not only determined by virus-encoded fac-
tors, by also by host-dependent processes. Replicase fidelity of a plant RNA virus was found to
differ according to the host type [79]. Replication fidelity in retroviruses can be affected by intra-
cellular dNTP imbalance [80,81]. Viral mutation rate can also be influenced by the expression of
host genes, such as cellular deaminases that promote hypermutation in RNA viruses [82–84].

Interestingly, the isofemale line that displayed the lowest level of DENV genetic diversity in
the midgut (i.e., line CD) was also associated with the highest prevalence and highest viral load
in salivary glands. Because we did not examine viral populations in saliva samples, whether this
translates in differences of virus transmission potential is unknown. It is tempting to speculate
that the vector competence phenotype relates to the level of viral genetic diversity. Unfortu-
nately, we could not compare DENV intra-host diversity in salivary glands between mosquito
isofemale lines because DENV amplification was unsuccessful in two out of three lines due to
low template concentration. A recent study found differences in the intra-host genetic diversity
of West Nile virus among different species of Culexmosquitoes [85]. Here, we provided evi-
dence that such differences exist at the intra-specific level. The potential relationship between
viral intra-host genetic diversity and vector competence variation among mosquito genotypes
deserves further investigation. It will be interesting to determine in future experiments whether
the effect of the vector genotype varies according to the mosquito generation, the virus strain,
and/or the specific combinations of mosquito lines and virus strains.
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Finally, we introduced a non-exclusive, alternative scenario to the ‘diversification’ hypothe-
sis that may contribute to explain why the level of arboviral genetic diversity increases despite a
population bottleneck. Our proposed scenario is based on the counter-intuitive idea that a
strong initial population bottleneck may actually result in a higher observed level of genetic
diversity if low-frequency SNVs go undetected for methodological reasons. We used a model
based on stochastic simulations to illustrate the effect of a minimum detection threshold of
low-frequency SNVs on observed genetic diversity. When all SNVs present were detected
regardless of their frequency (i.e., no detection threshold), mean viral genetic diversity indices
decreased following a simulated population bottleneck. Conversely, mean genetic diversity
indices increased when only SNVs present at a frequency>1% were successfully detected. In
our empirical data, it was not possible to ascertain whether SNVs newly detected after the ini-
tial population bottleneck resulted from de novomutations or were already present prior to the
bottleneck at frequencies lower than the detection threshold. However, our model indicated
that a change in the SNV frequency spectrum following the population bottleneck combined
with a minimum detection threshold is a potential explanation to the observed increased
genetic diversity following the initial bottleneck.

Taken together, our results show that DENV intra-host genetic diversity in the mosquito
vector is shaped by stochastic events during initial midgut infection due to a sharp reduction in
population size, followed by predominantly purifying selection during population expansion
and diversification in the midgut. Differential diversification between mosquito isofemale lines
indicates a genetic foundation, but the lack of convergent SNVs does not support the existence
of mosquito genotype-specific directional selection. We conclude that the evolution of DENV
intra-host genetic diversity in mosquitoes is not only driven by genetic drift and purifying
selection, but is also modulated by vector genetic factors. Characterizing the evolutionary
forces that govern arboviral genetic diversity contributes to understanding their unique biology
and adaptive potential.
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