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genes of human patients. The pathogenic or neutral status of these variants needs to be
known before planning any medical act or follow-up. We show here that the status of the
variants identified in the BRCAL1 breast/ovarian cancer susceptibility gene can be esti-
mated thanks to experimental systems using yeast cells and a novel computational model.
Importantly, this model provides a probabilistic classification of variants, opening the pos-
sibility to integrate results from functional assays into clinical decision-making. Moreover,
our computational model is directly compatible with all kinds of experimental system
without any requirement for skills in statistics thanks to ready-to-use online tools. We
believe that this work is a step forward in the clinical interpretation of human genetic
variants.

Introduction

Genetic tests, that aim to identify disease-associated germline variants in the genome of patient
and relatives, have greatly expanded these last years, together with the number of predisposing
genes scrutinized]. Genetic tests are proposed by genetic counselors to identify the carriers of
genetic variants and to define appropriate clinical follow-ups and treatments for these carriers.
The detection of a variant can have severe psychological and physical consequences for the
tested patients, depending on whether the variant is known to be pathogenic (associated with
disease development), neutral (not related to disease development) or of unknown significance
(VUS). Thus, clinical decision-making after genetic testing requires the establishment of reliable
variant classifications. The best support is to use methods that attribute a probability of pathoge-
nicity for each variant identified. Because genetic/epidemiological methods, such as co-segrege
tion, case-control, co-occurrence and familial data analyses, provide such probahjlitiey [

remain the gold standard in clinical decision-making after genetic testing (see an exa®iple in
Tablg. However, genetic/epidemiological methods are time consuming, as they require a sub-
stantial amount of observations. Moreover, they are unsuitable for a large number of variants
identified, for instance when the number of known carriers is rare. As genetic tests are evolving
towards the use of multi-gene panels, whole exome and whole genome sequrtieg{im-

ber of VUS detected is inevitably increasitigyhich stresses the need to improve variant clas-
sification [3].

Functional assays have been designed to circumvent the limitations of genetic/epidemiologi-
cal methods. The generic "functional assay" term refém/ttvo andin vivosystems, able to
classify VUS by assessing their influence on protein function or conformétidfupctional
assays have been widely developed for genes involved in céhaatsHRCAlhas become
the leading gene analyzed, with 23 different assays proposed, t6]ddtmjever, despite the
genuine interest for strategies that alleviate the limitations of genetic/epidemiological methods,
the main challenge of functional assessment remains in its inclusion into clinical decision-mak-
ing. Indeed, most of the functional assays lack statistical validdlidvigreover, analyses are
usually based on visually defined cut-offls Finally, except in rare casés], the resulting
variant classifications lack the probability of pathogenicity provided by genetic/epidemiological
methods.

Here, we used experimental as well as computational approaches to overcome these limita-
tions. We evaluated the clinical utility of four differ&RCAIfunctional assays, designed in
yeast cells, by assessin@®®LCAImissense mutations, previously classified by genetic/epide-
miological methods. To interpret these results, we developed a novel approach, referred to as
"Mann-Whitney-Wilcoxon (MWW) method", that defines a non-arbitrary best cut-off value
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between the neutral and pathogenic variants and that refines variant ranking in data from func-
tional assays. We also developed a computational system that transforms the dual classificatio
between "pathogenic” or "neutral”, provided by the non-arbitrary best cut-off, to a probabilistic
classification adapted to clinical decision-making. This system of classification, referred to as
"probability system"”, uses the fluctuation of the best cut-off to derive probabilities of pathoge-
nicity for each assessed variant. We show the benefit of our computational model, coupling the
MWW method and the probability system, using the experimental data from th&RGAL
functional assays and using theoretical simulations. We also illustrate that our model is adaptec
to experimental systems far beyond the genetic variant assessment, with the probabilistic class
fication of small interfering RNAs (siRNAs) tested for human cell growth inhibition in high
throughput screening.

Results
Forty missense mutations to evaluate the colony size assay

The colony size assay iBRCAfunctional assay, that has been designed in the yeast model
organism, which allows rapid, large-scale and cost-effective variant asseSkrhabhfs

never been subjected to clinical validation yet. In this functional assay, expression of the full
length wild type (WT) BRCAL protein in yeast, induces a growth defedt]. Indeed, after

63 hours of growth on an agarose plate, a single yeast cell gives rise to a colony varying betwee
5,000 and 21,000 cellsi§ 1A BRCAL), while colonies reach several millions of cells without
protein expressionH(g 1A Vector control). To ascertain the utility of this assay in clinical
medicine, we selected 40 BRCA1 missense mutations, according to their neutral or pathogenic
classification by genetic/epidemiological meth&dsKicandS2 Table We confirm that path-
ogenic missense mutations restore the proliferation rate of yeasfiégli§.[Indeed, patho-

genic mutations have a global tendency to give rise to the biggest colonies, while colony sizes
arising from neutral mutations remain close to those of the WT BRCAL referéceA).

However, the Colony Size assay does not fully discriminate between pathogenic and neutral
mutants. Indeed, variant medians appeared to continuously decrease from M1689R (highest
median) to V1804D (lowest median), without clear gap between the pathogenic and neutral
regions. Moreover, the neutral M1652T mutation is clearly within the pathogenic sector and

the pathogenic R1699W mutation slightly overlaps the neutral region. In such situations, it is
critical to have a sound evaluation of the sensitivity, specificity and accuracy of the assay (see
the definitions in thes1 Tex), which depends on a non-arbitrary and optimal cut-off setting.

The standard method to define the best cut-off

The standard method is based on the Youden's index, a classical approach to compute the sens
tivity and specificity in a dataset. Using this, the cut-off of 17,910 cells per colony gives the best
combined sensitivity and specificity, with 96% (24/25) and 93% (14/15) respedtaely {

andS2A Fig. In total, 95% (38/40) of the mutations are correctly classified. The M1652T neu-
tral mutation is misclassified as pathogenic and the pathogenic R1699W mutation is misclassi-

fied as neutral$3 TablE From now on, we refer to "experimental best cut-off", "experimental

sensitivity", "experimental specificity” and "experimental accuracy" as the best cut-off, sensitivity
specificity and accuracy obtained from the experimental data.

The MWW method to define the best cut-off

The disadvantage of the standard method is that mutations are characterized by a single value,
here by the median of colony sizes, which can lead to paradoxes in the mutant classification.
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Fig 1. Relative position of the variants in the Colony Size assay and fluctuation of the best cut-off. (A) Waterfall distribution
of colony sizes, according to median values (standard method). Boxplot representation results from 9 (mutants) or 36 (BRCA1 and
Vector) colony size values. The red and blue colors of the boxes indicate the pathogenic and neutral mutations, respectively,
according to their prior classification. Box central bar, median; box, interquartile range (50% of the distribution); whiskers, extreme
values; dotted horizontal line, median of BRCA1,; thick horizontal line, experimental best cut-off (seeS2 Fig). The distribution of the
best cut-off fluctuation, obtained after random sampling (bootstrap), of the 9 mutants and 36 BRCA1 values, is visualized by the
pink, grey and light blue areas, that delimit 4%, 90% and 4.9% of the distribution, respectively, which altogether represents a total
coverage of 98.9%. (B) Waterfall distribution according to p values (MWW method). The p value assigned to each variantis
symbolized by a segment. The upside-down representation facilitates the comparison of the mutation arrangement with the one
obtained in A. Arrows pinpoint a modification of the mutation rank depending on the method used. Framed mutations indicate
identical p values (see S4 Table). Segment colors, thick horizontal line and colored areas, as inA.

doi:10.1371/journal.pgen.1006096.g001

Table 1. Experimental sensitivity, specificity and accuracy of functional assays and siRNA screening using the experimental best cut-off.

Assay

Colony Size

Liquid
Medium
Spot
Formation

Yeast
Localization

siRNA

Standard method MWW method

Best Youden's Sensitivity Speci city Accuracy Best cut- Youden's Sensitivity Speci city Accuracy

cut-off index off index

17 910 0.89 24/ 14/ 38/ 0.009 0.89 24/ 14/ 38/
25=0.96 15=0.93 40 = 0.95 25=0.96 15=0.93 40 =0.95

0.172 0.81 22/ 14/ 36/ 0.00023 0.80 20/ 15/ 35/
25=0.88 15=0.93 40 =0.90 25=0.80 15=1.00 40 =0.88

0.295 0.77 21/ 14/ 35/ 0.165 0.77 21/ 14/ 35/
25=0.84 15=0.93 40 =0.88 25=0.84 15=0.93 40 =0.88

0.057 0.69 19/ 14/ 33/ 0.186 0.69 19/ 14/ 33/
25=0.76 15=0.93 40 =0.83 25=0.76 15 =0.93 40 =0.83

604 1.00 1/1=1.00 2/2 =1.00 3/3=1.00 0.00044 1.00 1/1=1.00 2/2 =1.00 3/3=1.00

"Accuracy" is the number of mutations or siRNA correctly classi ed. Sensitivities, speci cities and accuracies, associated with the experimental best cut-
off, were referred to as "experimental”, to distinguish them from those computed using the probability system of variant classication.

doi:10.1371/journal.pgen.1006096.t001
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For instance, the neutral 11858L mutation displays a median of cells per colony higher than the
median of the neutral T1720A mutation. Thus, in the mutant ranking, 11858L is closer to the
pathogenic group of mutations than T1720A (arrowsin 1A). However, T1720A has three
values out of nine over the experimental best cut-off, which are thus in the pathogenic area,
while 11858L has non&EA Fig. Therefore, in terms of dispersion range, T1720A could be
considered as "more pathogenic" than 11858L. To overcome such paradoxes in variant classifi-
cation, we developed a nonparametric approach to define the best non-arbitrary cut-off value,
that takes into account more information from distributions than the median value alone. This
method is based on the MWW testF-14]. Since the p value of this test provides a quantifica-
tion of the overlap between two distributior$34(Fig, we compared each mutant distribution

to the WT BRCAL distribution. The p values obtained defined relative positions of the mutant
distributions using the WT BRCAL distribution as a reference positiani(BandS4 Tablg
Contrary to the standard method described above, the cut-off used to compute the sensitivity
and specificity parameters is a p value. Any mutant with a p value below the p value cut-off,
indicates a mutant classified as pathogenic. In contrast, a mutant distribution with a p value
over the p value cut-off is considered as neutral. Strikingly, the MWW method solves the para-
doxes observed with the standard method, since T1720A is closer to the pathogenic group of
mutations than 11858L (arrows ifig 1. Moreover, the experimental sensitivity and specific-

ity remains unchanged @éble landS2E Fi}§ This confirms that the M1652T and R1699W
mutations cannot be correctly classified by the Colony Size assay, even when using more infor-
mation from the experimental data than the variant medians alone. However, it also empha-
sizes that the variant classification, provided by the MWW method, does not diminish the high
sensitivity and specificity of the assay. From this, we conclude that the MWW method is a reli-
able alternative to the standard method to define a non-arbitrary cut-off in data from func-
tional assessments.

The probability system of classification

Recently, two-component models have been proposed for the probabilistic classification of var-
iants based on functional assessment. These parametric models require the normal distributior
of the neutral and pathogenic valu€s[. However, as shown i85A Figthe Colony Size

assay is poorly compatible with such models, due to the bimodal distribution of the pathogenic
values. Therefore, we designed an alternative nonparametric and more versatile system of clas
sification. This system is based on the fact that the best cut-off is a random variable that fluctu-
ates, depending on the experimental values. We asked what the variant classification would be
using the Colony Size assay, taking this fluctuation into account. For this, we performed sam-
pling with replacement (bootstrap) of the colony size values, by randomly choosing 9 values
among the 9 from each mutant, and 36 values among the 36 from the BRCA1 reference con-
trol. Next, using this new set of sampled data, we applied the standard or MWW method to
obtain the best cut-off. We repeated this procedure a large number of times, which allowed us
to define a best cut-off distribution for the standard and MWW meth&tsTable We also

used a third method, referred to as "standard with reference method". It is similar to the stan-
dard method, except that the best cut-off distribution obtained includes the fluctuation of the
WT BRCAL reference, as explained in #ieTextNotably, the standard with reference

method allows an additional comparison with the MWW method, which also includes the fluc-
tuation of the WT BRCAL reference. Finally, we designed the probability system of classifica-
tion. This system allows to assign a probability of pathogenicity to each assessed variant, using
the best cut-off fluctuationHig 2AandS6 Fid. The rationale is that the farther a variant is

from the core of the best cut-off fluctuation, the more robust is its classification as either
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Fig 2. Variant classification using the probability system. (A) Schematic of the probability system of classification. The left
figure depicts a theoretical waterfall distribution of pathogenic and neutral missense mutations, as irFig 1B. Horizontal black line,
experimental best cut-off. (1) Variant classification according to the experimental best cut-off (method used infable 1). (2)
Distribution of the best cut-off generated by bootstrap analysis from the experimental data. (3) Cumulative distribution function
(CDF) derived from the distribution of the best cut-off. This CDF provides a probabilistic classification of the variants, depending on
their positions in the CDF. (B) Classification of the BRCA1 variants assessed in four functional assays. Colored background in the
table indicates the five-class nomenclature, as inS1 Table. Names in red and blue indicate the pathogenic and neutral mutations,
respectively, according to their prior classification. The sensitivity, specificity and accuracy computation are detailed ir56 Table.

doi:10.1371/journal.pgen.1006096.9002
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pathogenic or neutral. A probability close to 1 indicates that the variant can be classified as
pathogenic, with a low risk of misclassification as neutral due to the fluctuation of the best cut-
off. A probability close to 0 indicates that the variant can be classified as neutral, with a low
risk of misclassification as pathogenic due to the fluctuation of the best cut-off. Finally, a prob-
ability of 0.5 designates no preferential classification as either neutral or pathogenic (variant
completely unknown). With such probabilities, the five-class nhomenclature proposed by Plon
etal 26). (S1 Tablecan be directly applied to functional assays. Probabilities obtained for the
Colony Size assay are showiirig 2B Strikingly, a level of uncertainty was generated, notably
with variants classified as "uncertain” (class 3). This highlights the critical influence of the best
cut-off fluctuation in variant classification. In addition, the MWW method exhibits the best
accuracy, with 37/40 mutations correctly classified versus 36/40 for the standard and standard
with reference methods. When including the number of misclassified mutations, the MWW
method shows a balance of 35 mutatiansaequavith the two other methods36 Tablg
Altogether, these results confirm the possibility to use the MWW method in variant classifica-
tion. In addition, the probability system seems to be an effective and simple way to obtain a
probabilistic classification of variants in functional assessment.

Evaluation of three additional functional assays

We validated three other functional assays, by assessing the same 40 mutations used in the Cc
ony Size assay. The Liquid Medium assay monitors the growth defect of yeast cells expressing
BRCA1 G7andS8Figs), as in the Colony Size assay, but in liquid instead of solid medium

[11]. The Spot Formation assay is derived from the observation that the BRCA1-mCherry
fusion protein accumulates in a single aggregate in the nucleus of yeast cells. This aggregate is
referred to as "spot” due to its visual signature using fluorescent microscopy. We previously
showed that pathogenic missense mutations decrease the proportion of cells showing one spof
[11]. Here, we confirmed this effect9and S10Figs). The last assay tested was the Yeast Local-
ization assay. Whereas cytoplasmic spots are rare in yeast cells expressing the WT BRCAL pre
tein, this event has a tendency to increase in the presence of pathogenic mutafidterg,

we confirmed this effec§(l1land S12Figs). However, albeit promising, none of these three
assays provided a better discrimination than the Colony Size assay, to distinguish between
pathogenic and neutral variants. This was notably shown by the experimental sensitivity and
specificity computediable landS3 Tablg

The classification model challenged by the four functional assays

We took advantage of the experimental differences among the four assays (recapitt@ted in
Tablg to detect potential flaws in the MWW method. In contrast, the MWW method con-
stantly overcomes the incoherent ranking generated by the standard method (see examples in
S7,S9%9andS11Figs). This is achieved without reducing the experimental accuracy compared to
the standard methodr@ble ), except for a minor decrease in the Liquid Medium assay (88%
versus 90%). Also, no flaws were detected in the probability system, which would result in an
unexpected high level of misclassificatidrig 5. Interestingly, accuracy of the MWW

method is globally better than in the standard or standard with reference method, with the best
accuracy of 93% in the Colony Size assay, 83% in the Spot formation assay, and with the best
ex-aequaccuracy of 73% in the Yeast Localization assay?@). Variant misclassification

was slightly higher in the MWW method, compared to the two other methods, with one more
misclassification in the Colony Size and in the Spot Formation assays, one less in the Liquid
Medium assay, anelx-aequan the Yeast Localization assay ("Total number of variants mis-
classified" column i66 Tably even if the balance between accuracy and misclassification
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maintains the MWW method as the best opg;aequavith the standard method ("Balance"
column inS6 Tablg Finally, contrary to the MWW method, the standard method suffers from

a lack of sensitivity in the Yeast Localization assay, since none of the pathogenic mutations are
classified as classBid 25. Overall, the analysis of four functional assays did not reveal any
major flaw in the probability system of classification. In addition, the results obtained with the
MWW method confirm the possibility to classify variants using more information from the
variant distribution than the median value alone.

The classification model in theoretical simulations

To complete the detection of potential flaws in our classification model, we analyzed theoretical
situations. A reference situation was designed, similar to that in the Colony Sizesassay (
Tablg. Next, different parameters were scrutinized: the position of the pathogenic mutations
(S13 FiY, neutral mutations$14 Fi, or WT BRCA1 referencé&(L5 FiY, the initial sensitivity

and specificity of the assay before using the probability systé& i, the number of neutral

and pathogenic variants usestl(7 Fij, the number of values in the variants and in the WT ref-
erence distributionsY18 Fiy, and the range of the variant and WT reference distributions
(S19 Fi) Results are recapitulateds® Tabland summarized iffable 2 The standard with
reference method shows strong usage limitations, notably when the WT reference exhibits a
negative median or a median close to zérae ZandS15E Figmiddle panel). Interestingly,

the MWW method is not affected by such situations. The main limitation detected is an
extreme situation in which the WT reference distribution falls outside of the range of the neu-
tral and pathogenic distributions (e.§15A Figleft panel), which impairs the sensitivity of the
probability system of classificationgble ZandS15E Figright panel). Except for this extreme
situation, we confirm the efficient behavior of our classification model, coupling the MWW
method and the probability system: (1) when the pathogenic and neutral distributions are

Table 2. Usage limits of the probability system of classification.

Method Limits Figure
All of them - Weak experimental speci city S16
- Weak experimental sensitivity S16
- Low number of values in the data set S18
- No dispersion in both the WT reference and the mutant distributions S19
Standard - Close neutral and pathogenic medians SilE
S14
Standard with - Close neutral and pathogenic medians Silist
reference S14
- WT reference median close to zero and uctuation of the raw best cut- S15

off far from this median
- WT reference with a negative median Sils
MWW - Close neutral, pathogenic and WT reference distributions S13,
S14
- WT reference distribution outside of the range of the neutral and S15

pathogenic distributions

This table recapitulates the results obtained with the three standard, standard with reference and MWW
methods, when challenged by theoretical distributions. Usage limits were de ned as situations in which the
neutral and pathogenic mutations, used to generate the uctuation of the best cut-off, are nally not

classi ed as class 1/2 and 4/5, respectively (neutral mutations nally classi ed as class 3, 4 or 5, and
pathogenic mutations nally classi ed as class 3, 2 or 1).

doi:10.1371/journal.pgen.1006096.t002
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strictly identical, all the mutations are classified as clagsal3¢ 2andS13D Figright panel),

(2) the sensitivity and specificity of the probability system of classification increase when path-
ogenic mutations move away from the WT BRCAL1 reference distribusiv8L) Figright

panel), and (3) when pathogenic mutations are contaminated by neutral mutations (experi-
mental specificity reduced), the sensitivity of the probability system of classification is
decreasediable 2andS16ES16G Figright panel), and vice versa. This last result is an
important criterion for classification, since unknown mutants that would be located in a patho-
genic region containing neutral mutations, could not be formally classified as pathogenic.
Therefore, it is noteworthy that the experimental sensitivity and specificity values are taken
into account by our classification model. Interestingly, the model is poorly sensitive to the
number of neutral or pathogenic mutations used to validate a given &kay$17G Fig

right panel), as long as the number of values in the dataset is high er®lgE$18G Fig

right panel). Supplemental information is provided in §ieText This notably includes an
extensive analysis of the best cut-off fluctuation, which explains the lack of sensitivity of the
standard method, mentioned above in the Yeast localization &Sga&3F and also shown in
theoretical situations (see the legen& o8 Fij It also contains specific procedures for variant
classification (e.g., Bayesian inference, combination of functional results, assessment of VUS),
as well as procedures to fit the proposed model to other situations. It finally includes the Pro-
Class toolbox that generates the probabilistic classification of variants, adapted to most kind of
functional assays.

The classification model in high throughput screening

We wondered if the classification model developed for genetic variants could be easily extende:
to other decision-making situations. The analysis of theoretical situations showed that variant
classification remains accurate when only one neutral and one pathogenic variant are available
(S17ES17G Fiy This indicates that the fluctuation of the best cut-off supports decision-mak-
ing in situations represented by a limited number of positive and negative controls. To confirm
this, we analyzed data from 406 genes targeted by small interfering RNAs (siRNAs), screened
for their capability to inhibit the proliferation of a human prostate tumoral cell lifig 8.

The "No siRNA" control, the siKIF11 positive control and the sSiGOLGA2 and siGL2 negative
controls were treated as WT reference, pathogenic and neutral variants, respectively. Structure
of the data is reported iB7 TableAs in the BRCAL functional assays, the experimental accu-
racy was not impaired using the MWW method, compared to the standard metladi().

In addition, no flaws were detected in the probability system, since the accuracy remained at 1,
whatever the standard, standard with reference or MWW method &se@Q. Finally, the
advantage of the MWW method is again highlighted in the final classification of the screened
siRNAs. Indeed, in the siRNA ranking, based on the median values, siGTSEL1 is closer to the
negative controls than silTGAEiQ 3A). By taking the distribution of these two siRNAs into
account, the MWW method switches their ranking positibg(3B, so that sSiIGTSEL is finally
classified as "unclear effect on cell growth inhibitiéin 6G MWW method), instead of "no

cell growth inhibition" Fig 3C standard and standard with reference methods). Thus, this
demonstrates that our probabilistic model is also adapted to the classification of experimental
data far beyond the functional assessment of genetic variants.

Discussion

We provide the statistical validation of foBRRCAIfunctional assays, as well as a classification
model that facilitates the incorporation of functional assay results into clinical decision-mak-
ing. The probabilistic model is based on the fluctuation of the best cut-off, which is driven by
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Fig 3. High throughput siRNA screening and fluctuation of the best cut-off. An average of 150 human
prostate tumoral cells were plated, treated with siRNAs targeting the indicated gene and grown for 72 hours
before cell counting. The WT reference (No siRNA), the positive control of cell growth inhibition (siKIF11), the
two negative controls of cell growth inhibition (SiIGOLGA2 and siGL2) and 8 among 406 siRNA targeted genes
are shown. The complete analysis of the 406 targeted genes is available using the ProClass toolbox and the
included siRNA full.txt file, as explained at the end of the README.doc file. A) Waterfall distribution of cell
growth after siRNA treatment, according to median values (standard method). As in~ig 1A, except that boxplot
representation results from 12 (siRNA) or 1,140 (No siRNA) values. B) Waterfall distribution according to p
values (MWW method), as inFig 1B. (C) Classification of the siRNA targeted genes, as inFig 2B, except that
probabilities are related to cell growth inhibition, with the corresponding five-class nomenclature: "no inhibition"
(blue, class1), "likely no inhibition" (light blue, class2), "unclear inhibition" (grey, class3), "likely inhibition" (light
red, class4) and "inhibition" (red, class5).

doi:10.1371/journal.pgen.1006096.9003

the fluctuation of the experimental data. Thus, the variant classification provided reflects the
robustness of a cut-off-based decision-making towards data fluctuation. The model has the
advantage to be nonparametric, easy to handle and easy to adapt to most kind of functional
assays. Moreover, among the variants incorporated in functional assays, the model only
depends on those previously classified by genetic/epidemiological methods as pathogenic or
neutral. It is not influenced by unknown variants, meaning that the subsequent incorporation
of unknown variants in a functional assay does not require a new analysis of the best cut-off
fluctuation. These features of our model contrast with parametric models, proposed for variant
classification,8].

We achieved a widespread analysis of the best cut-off fluctuation dedicated to decision-
making (completed in th&1 Tex}). This analysis is focused on the classification of genetic vari-
ants, but itis also valid for other decision-making situations compatible with our classification
model, such as high throughput siRNA screenings. Using many different kinds of data struc-
tures (four BRCAL1 functional assays, one siRNA screen and 93 theoretical situations), three
different methods of best cut-off fluctuation were scrutinized: the standard, the standard with
reference and the MWW methods. From this study, we conclude that the standard with refer-
ence method is poorly compatible with a versatile classification model, due to important lacks
of accuracy when the WT reference exhibits a negative median or a median close$d zero (
Fig, middle panel). The standard method has the advantage to support decision-making in
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experimental situations devoid of a WT reference. The MWW method has the advantage to
use more information from the distribution of the classified elements than the median value
alone. This refines the ranking and the final probabilistic classification. Contrary to the stan-
dard method, the MWW method is adapted to experimental situations in which the neutral
and pathogenic variants (or the negatives and positives controls) are represented by a single
value if the WT reference encompasses a significant number of different &lGésHigcom-

pare the left and right panels for the mutant with one value). However, the MWW method is
poorly adapted to experimental situations where the WT reference distribution is more or less
outside of the range of the neutral and pathogenic distributions $8.94 Figleft panel).

Thus, we propose to prioritize the MWW method if the data are compatible with this method,
notably if the WT reference is well embedded in the neutral/negative distributions, or if the
WT reference is between the neutral/negative and the pathogenic/positive distributions, and
to use the standard method otherwise. The different methods are proposed in the ProClass
toolbox available online (see thé Tex)

Interestingly, none of the four yeast assays is able to correctly classify the R1699W patho-
genic and the K45Q neutral variants. Pathogenicity of R1699W has been long-established in
independent studies, using different genetic/epidemiological meth®els/], confirming that
yeast cells are unable to detect the deleterious impact of R189RVIt{is emphasizes that
the mechanism of R1699W, leading to tumor development, is different from the other patho-
genic missense variantsBRIRCA1 It is probably related to a protein-binding defect without
major BRCA1 structural destabilizatiohd]. The classification of K45Q has been established
by a single epidemiological study], with little evidences of neutrality (e.g., probability of
being pathogenic of 11% by family history prediction). However, the absence of any functional
impact has been confirmed in three different functional assays using mammalia@G2Hs [
which stresses a specific effect of K45Q in yeast cells, that remains to be explained.

Finally, this work showed that the yeast organism can be used to classify variants positioned
in both Nter and Cter parts of BRCA1. Among the four assays analyzed, the Colony Size assay
is the most accurate (93%) and the most robust to data fluctuation (one class 3 variant). The
Liquid Medium and Yeast Localization assays may also be attractive for diagnosis due to the
absence of false negative results detected, notably when using the MWW method. Interestingly
the Yeast Localization assay allows the identification of pathogenic variants that delocalize the
BRCAL protein into the cytoplasm. If confirmed in human cells, this assay could define subcat-
egories in the pathogenic variants of BRCA1, based on different cellular mechanisms leading tc
tumor development.

Methods
Plasmids

All plasmids are derived from pJL48]], a modified version of pESC-URA (Agilent Technolo-
gies), in which thé1YC epitope has been removed $&l- Xhd digestion and vector ligation.

In this plasmid expression of the cDNA is controlled by @l 1promoter, inducible by

galactose and repressed by glucose. The backbone of the BRG&AI(MIM# 113705)

cDNA used, corresponds to the AY888184.1 GenBank sequence with a TGA stop codon
instead of TAG. To facilitate the cloning of BRCA1 missense mutations, silent mutations were
inserted in the cDNA to generate 4 new restriction sites: Sall (c.2026/Ac.1023% C),

Avrll (c.4662A>T), Fsel (c.4839TG + ¢.48424 G + ¢.4845% C) and Xhol (c.5502€T).

Of note, the WT BRCA1 and BRCA1-mCherry plasmids used in this study (pPT60 and pPT63
respectively, sé&l0 Tablgare different from the pJL45 and pGM40 plasmids, used in our pre-
vious publication 1], by the addition of the 4 restriction sites. The 40 missense mutations
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were generated by targeted mutagenesis (Genscript Company, Piscataway, NJ, USA) on inter-
mediate plasmids. Next, we inserted the mutated cDNA fragment into the pPT60 and pPT63
plasmids by a single digestietigation step. All resulting plasmid constructs were verified by
sequencing the promoter, the full cDNA and the terminator.

Yeast strains

Transformation of th&Saccharomyces cerevibimgloid BY4741 or YKR082W-GFP strains

were performed as previously describEf.[The strains generated are referencedin

Table To facilitate the description, we referred to the cells transformed with pESC-URA as the
name of the cDNA inserted into the plasmid. Thus, "BRCAL" refers to yeast cells transformed
with the plasmid containing the WT BRCAL cDNA; "M18T" refers to yeast cells transformed
with the plasmid containing the M18T mutated version of the BRCA1 cDNA; and "vector"
refers to yeast cells transformed with the same plasmid without inserted cDNA. Three indepen-
dent transformants per strain, also referred to as "clones", were selected after each transforma
tion. We observed that lithium acetate transformation can result in diploidisation of haploid
cells. To control this, the ploidy of each clone was verified by FACS analysis, using the yeast
strain BY4741 (haploid) and BY4743 (diploid) as a control. Next, in the different assays, cells
were grown in glycerol-lactate medium (GL-URA) as previously desctitipahddition of

galactose in the medium (GAL) induced the expressi®@REE A1 while addition of glucose

(GLU) strongly repressed the expressioBRICAL

Fluorescence-activated cell sorting (FACS) analysis

Cells were grown in log phase in YPD medium (1% yeast extract, 2% peptone, 2% dextrose,
60 M Adenine, 8 M NaOH). 10 cells were collected and put at 4°C to block the cell cycle.

Cells were centrifuged at 4°C and resuspended in 70% ethanol. After 1 hour incubation at
room temperature (RT), cells were centrifuged and resuspended in freshly made sodium citrate
[50 mM] pH7. Sonication was performed to dissociate cell aggregates (Vibracell and probe
CV33 (Bioblock Scientific, lllkirch, France), pulse 30%, time 15 seconds). Cells were centri-
fuged and resuspended in sodium citrate [50 mM] pH7 + RNAse A [0.25 mg/ml]. After 1 hour
incubation at 50°C, cells were centrifuged, resuspended in sodium citrate [50 mM] pH7 + Pro-
pidium lodide [16 g/ml] and analyzed using an Accuri (BD Bioscience, San Jose, CA, USA).

Colony size assay

This assay was previously named "small colony phenotype" (SCP) assay. The method already
published 1] was slightly improved as follows: (1) GL-URA+galactose and GL-URA+glucose
plates were incubated 63 hours and 50 hours respectively (instead of 52 hours), and (2) the big
gest colony of each plate, representing the size of at least five other colonies on the plate, was
chosen for cell counting. This prevents the choice of rare but extremely big colonies (outliers).
For the simultaneous assessment of 10 variants by a single technician, the time required
between the delivery of the intermediate plasmids (see above) and the final results is 20 days.

Liquid medium assay

This method already publishedl]] was slightly improved as follows: during glucose induction,
cells were diluted at 0.5x3€ells/ml (instead of facells/ml) for the 15 hour culture time at

30°C. Galactose induction conditions remained as before. For the simultaneous assessment of
10 variants by a single technician, the time required between the delivery of the intermediate
plasmids (see above) and the final results is 20 days.
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Spot formation and yeast localization assays

This method already describetl] was slightly improved as follows. Briefly, Nup133-GFP

cells, expressing the WT or mutated BRCA1 protein fused to mCherry, were induced for 4
hours with galactose before analysis using live fluorescent microscopy. The previously named
"yeast localization phenotype" (YLP) asddjas subdivided into two assays in this study.

The Spot Formation assay monitors the proportion of cells showing a single aggregate of WT or
mutated BRCAL, visible in fluorescent microscopy, without considering the intracellular locali-
zation. This aggregate is also referred to as "spot". Cells with several aggregates were not consi
ered in this assay. The Yeast Localization assay monitors the proportion of spot volumes
localized in the cytoplasm of yeast cells. Picture acquisitions were previously de$d}ilbed [

each clone, at least three fields, containing at least 100 cells, were acquired. For the Spot Forme
tion assay, the number of cells showing one spot was manually counted. Next, the proportion of
cells containing one spot was computed by dividing the number of cells showing one spot to the
total number of cells (one value per clone). For the Yeast Localization assay, images of the three
fields were deconvolute@d and the volume Vglof each spot i, in the field j, was measured

using the 3D Object Counter plugif4] of ImageJ. Next, each spot was manually categorized as
"inside" or "outside" the nucleus. Finally, the proportion of volume outside the nucleus was com-
pUIEd USing the formulﬁSjVOhj/outsida / (SiSjVOIijloutside+ SiSjVOIij/inSidgv which led to one

value per each clone assessed. This proportion quantifies the cytoplasmic localization of the
mCherry protein fused to BRCAL. For the simultaneous assessment of 10 variants by a single
technician, using the Spot Formation and Yeast Localization assays, the time required between
the delivery of the intermediate plasmids (see above) and the final results is 21 days.

High throughput siRNA screening

IGR-CaP1 epithelial cells, derived from a human prostate primary tuddhnjere plated in
384-well plates at 750 cells/well, were allowed to adhere overnight and then were transfected
with a single siRNA from a siRNA library targeting 406 different genes. siKIF11, siGL2 and
SiGOLGA2 were used as controls. After 72 hours, cells were fixed and nuclei were stained with
DAPI. Images were acquired with an INCell 2000 automated wide-field system (GE Health-
care, Little Chalfont, UK) and cell counts were quantified in each well with the INCell Analyzer
workstation software (GE Healthcare). The pictures analyzed represent 20% of the well surface
which corresponds to an average of 150 cells initially plated for this surface.

Statistical and computational methods
Statistical and computational methods, as well as R source codes, are providéd.imdhie

Supporting Information

S1 Supporting Information. Joined Supplementary Methods, Figures and Tables.
(PDF)

S1 Text. Supplementary Methods.
(PDF)

S1 Fig. Position of the BRCA1 missense mutations selecRtNG domain (amino acid

8-96); BRCT, BRCA1 C-terminal domains (amino acid 8486 and 176€1.855). Patho-

genic and neutral mutations are in red and blue, respectively. Fourteen mutations (3 neutral
and 11 pathogenic) map within the RING domain. An additional neutral mutation, N132K,
flanks the Cter part of this domain, resulting in 15 mutations located in the Nter extremity of
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BRCA1. Twenty-five mutations (11 neutral and 14 pathogenic) lie in the BRCT domain, at the
Cter extremity of the protein. Of note, the RING domain suffers from a lack of neutral mis-
sense mutations classified by genetic/epidemiological methods, explaining why only 3 neutral
mutations from our selected panel, lie in this domain. Moreover, no pathogenic missense
mutations, between the amino acids 65 and 1684, are documented in the BRCA1 mutation
databasesS@ Tablg Therefore, this study was restricted to the RING and BRCT domains of
BRCAL.

(PDF)

S2 Fig. Experimental best cut-off, experimental sensitivity and experimental specificity of
functional assays{A-D) Standard method. The medians of the mutant distributions were
ordered (as in the waterfall distributiofig 14) and each average position between two conse-
cutive medians was defined as a cut-off. For examplegihA the cut-off between the two

first mutations, M1689R and V1838E, was (1,877,333 + 1,621,333) / 2 = 1,749,333 cells per co
ony. Next, sensitivity was defined as the proportion of pathogenic mutant medians above (for
the Colony Size, Liquid Medium and Yeast Localization assays) or below (for the Spot Forma-
tion assay) a selected cut-off. The associated specificity was defined as the proportion of neutr:
mutant medians below (Colony Size, Liquid Medium and Yeast Localization assays) or above
(Spot Formation assay) the same selected cut-off. For example, for the cut-off between
M1689R and V1838E iRig 1A the sensitivity was 1/25 = 4% and the specificity was 15/

15 = 100%. Sensitivity and specificity were computed for each cut-off (left panels). Areas sur-
rounding the curves delimit the 95% confidence interval according to the binomial law. The
ROC curve (right panel) pinpoints the best cut-off (black number), meaning the cut-off that
maximizes both sensitivity and specificity of the assay. Precisely, the best cut-off is the one
associated with the highest vertical distance of the ROC curve to the dotted diagonal. This
highest vertical distance is referred to as "Youden's index", which is equal to max[sensitivity

+ specificity—1]. In other words, the best cut-off is the cut-off of the Youden's index. Other
cut-off values are also positioned on the ROC curve (grey numbers). Blue, red and orange dots
on the curves of the left and right panels represent the different cut-offs tested. The black verti-
cal bar, in the left panel, pinpoints the best cut-off defined on the ROC ci&). MWW

method. As inA-D for mutant p values, instead of mutant medians. In all assays, sensitivity

was defined as the proportion of pathogenic mutant p values below a selected cut-off, and the
associated specificity was defined as the proportion of neutral mutant p values above the same
selected cut-offA, E) Colony Size assa,(F) Liquid Medium assayQ, G) Spot Formation
assay.d, H) Yeast Localization assay.

(PDF)

S3 Fig. Supplemental information in the colony size ass&) Dotplot distribution of col-

ony sizes. For each missense variant, the nine represented values result from three independe
clones examined in three independent experiments. For the BRCAL reference and the Vector
control, the 36 values result from three independent clones examined in twelve independent
experiments (represented in the three panels, except for the Vector values absent in the top
panel). Grey bar, median; dotted horizontal line, median of BRCAZ1; black horizontal line,
experimental best cut-off. The top panel (Nter extremity of BRCA1) has a y-axis scale magni-
fied compared to the middle and bottom panels (Cter extremity of BRCBIA in A with

glucose instead of galactose media (se81heex) to verify that each clone had no intrinsic
growth defect, independent of WT or mutated BRCA1 expression. The three independent
clones fromA were examined in one experiment.

(PDF)
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S4 Fig. The MWW method(A) Upper-sided MWW test. The theoretical examples are based

on the Colony Size assay but are also valid for the Liquid Medium and Yeast Localization
assays. Each distribution of the WT BRCAL1 reference (black) and the missense mutation (pur-
ple) are composed of 8 theoretical values, represented by 8 dots in the diagram. The p value of
the MWW test is used to score the overlap of the mutant and the WT BRCAL distributions.

See th&1 Texfor full details. From left to right: (1) when all the mutant values are below the
BRCA1 values, the upper-sided MWW test results in a p value close to 1; (2) the p value
decreases when the mutant distribution begins to overlap the BRCAL distribution; (3) the p
value is approximately 0.5 when the two distributions completely overlap; (4) the p value con-
tinues to decrease when the mutant distribution is above the BRCA1 distribution, with a partial
overlap; (5) finally, the p value is lowest when the mutant distribution is fully above the BRCA1
distribution. In theory, neutral and pathogenic mutations should have a p value close to 0.5
and 0, respectively, as depicted by the color scale below the diagram. However, the absolute p
value attributed to each variant is not determinant. What is significant is the relative positions
between the mutant distributions, indicated by the p values, using the WT BRCA1 distribution
as a reference position. The lowest p values represent systematically the pathogenic mutations
and the highest the neutral mutations. Thus, the upper-sided MWW test is used when patho-
genic mutations are above the neutral ones in the experimental Bataower-sided MWW

test. All of the theoretical examples shown are based on the Spot Formation assay. As in the
upper-sided MWW test, the lowest and highest p values still represent the pathogenic and neu-
tral mutations, respectively, but the pathogenic mutations are below the neutral ones in the
experimental data.

(PDF)

S5 Fig. Distribution of the pathogenic and neutral valuegA) Colony Size assay. The left

panel exhibits dotplot distributions. Boxplots provide distribution parameters: box central bar,
median; box, interquartile range (50% of the distribution); whiskers, extreme values. The mid-
dle panel shows the normal Quantile-Quantile (QQ) plot of the pathogenic values. Dots form-
ing a straight line suggest that the values are normally distributed. Black line, straight line
through the quantiles 25% and 75%. The right panel shows the normal QQ plot of the neutral
values.B) Liquid Medium assayQ) Spot Formation assayD] Yeast Localization assay.

(PDF)

S6 Fig. Description of the probability system of classificatiofd) As in Fig 2A (B) Theoret-

ical example showing how the values from the best cut-off fluctuation, derived from the MWW
method, are converted into probabilities of pathogenicity. Top table: best cut-off distribution
composed of 10 best cut-off values, resulting from 10 bootstrgps{a= 10). The probabil-

ity attributed to each best cut-off value was Lddwap Bottom table: cumulative distribution
functions (CDF) generated from the best cut-off distribution. In this table, probabilities of each
repeated cut-off value were summed. For instance, the best cut-off value of 0.9 is repeated 4
times in the top table, leading to a probability of 0.4. The CDF represents the sum of the proba-
bilities present in the second row of the bottom table. Three CDF were computed. The first
reaches the cumulated probability of 1. The second begins with the cumulated probability of O.
The third is the average of the two first CDF. This average CDF delivers the probability of path-
ogenicity used to classify variants. Right panel: plot of the average CDF. To classify a variant
(e.g., M18T), the variant p value, derived from the MWW method, is positioned on the x-axis
(vertical grey bar). Next, the closest average CDF value is attributed to the variant as a probabil
ity of pathogenicity. In this example, the best cut-off value, closest to M18T, is 0.5. Thus, the
corresponding probability 0.75 is attributed to M18T-K) Average CDF of the Colony Size

(CS), Liquid Medium (LM), Spot Formation (SF) and Yeast Localization (YL) assays, obtained
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with the standard(), standard with referenc®j or MWW method (). The same procedure,
described iB, was applied to the 2,000 best cut off values obtained for each assay and each
method used. The CDF is ascending when the pathogenic mutations are above the neutral
ones, and descending when the pathogenic mutations are below. The number of different best
cut-off values is indicated (n = 2,000 when no identical best cut-off values within distribu-
tions).

(PDF)

S7 Fig. Relative position of the variants in the Liquid Medium assay and fluctuation of the
best cut-off.(A-B) As inFig 1. One OD unit corresponds to 18ells / ml. Arrows pinpoint the
ranking of the L22S and C47G mutations, which is improved using the MWW method, as
explained in the main text introducing this method. The incoherent ranking observed with the
standard method results from L22S that exhibits four values below the experimental best cut-
off while C47G has non&gA Fig.

(PDF)

S8 Fig. Supplemental information in the liquid medium assagA-B) Same as for the Colony
Size assay@ Fi). One OD unit corresponds to $@ells / m.
(PDF)

S9 Fig. Relative position of the variants in the Spot Formation assay and fluctuation of the
best cut-off.(A-B) As inFig 1, except that boxplots and p values resulted from 3 (mutants) or
12 (BRCAL1) values. Arrows pinpoint the ranking of the M18T and C39Y mutations, which is
improved using the MWW method, as explained in the main text introducing this method.
The incoherent ranking observed with the standard method results from M18T that exhibits
one value above the experimental best cut-off (shown by the top whisker overlaying the thick
horizontal line) while C39Y has none.

(PDF)

S10 Fig. Supplemental information in the Spot Formation ass@yup133-GFP cells, express-

ing the WT or mutated BRCAL protein, fused to mCherry, were analyzed using live fluorescent
microscopy.f) Examples of images acquired. Nup133-GFP allows visualization of the nuclear
membrane within the cell, in the green channel. Overlayed images of GFP and mCherry
(Merge) as well as transillumination images (Trans) are also shown. ScalerhafBblmage
quantifications. Bars and whiskers indicate median and extreme values for each distribution,
respectively. For each assessed clone, the total number of cells showing one spot, two spots,
more than two spots, or a diffusive signal, was counted. Three clones were assessed once, for
each missense mutation, and 4 times for the WT BRCAL reference. Thus, each bar in the dia-
gram is the result of 3 values, for each missense mutation, and 12 values for the WT BRCA1
reference. In the Spot Formation assay, only the "1 spot" category is considered. The dotted
horizontal line represents the median of BRCAI).otplot representation of the 12 BRCA1
values. The equivalent dotplot distribution of each mutant is showBnvith the 3 values

from each mutant represented by the top of the dark grey bar and the two whisker extremities,
and also if5S9A Figwhere the 3 values correspond to the median bar and the two whisker
extremities.

(PDF)

S11 Fig. Relative position of the variants in the Yeast Localization assay and fluctuation of
the best cut-off.(A-B) As in Fig 1, except that the boxplots and p values are the results of 3
(mutants) or 12 (BRCAZ1) values. Delocalization of the mCherry fluorescent signal from the
nucleus ranges from 0 (no cytoplasmic delocalization) to 1 (full cytoplasmic delocalization).
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Arrows pinpoint the ranking of the A1669S and D67Y mutations, which is improved using the
MWW method, as explained in the main text introducing this method. The incoherent ranking
observed with the standard method results from A1669S that exhibits one value above the
experimental best cut-off while D67Y has no@).otplot representation of the 12 BRCA1
values forming the BRCAL1 boxplotf The equivalent dotplot distribution of each mutant is
shown inA, with the 3 values from each mutant represented by the median bar and the two
whisker extremities.

(PDF)

S12 Fig. Supplemental information in the yeast localization assBiuorescent images
acquired in the Yeast Localization assay, &L FigThe arrow points to rare cytoplasmic
spotin cells expressing the WT BRCA1-mCherry protein. Scale b, 2

(PDF)

S13 Fig. Effect of the position of the pathogenic mutations on the probability system of
classification (theoretical situation)The parameters of the theoretical distributions used are
detailed inS8 TableThe reference situation is as followg:fn:= 9, Nerca1= 36, Meutrai= 15

and Nyaiogenic= 25. In addition, medians and ranges of the neutral and WT BRCAL distribu-
tions were made systematically equal. Distributions of the neutral and pathogenic mutations
were identical, except for the shift of the pathogenic values from the neutral mutations, accord-
ing to the formula y + 36 x s, with s representing the shift intensity apdepresenting the

value i of the pathogenic mutation j. When s = 0, pathogenic and neutral distributions are iden-
tical. Fluctuations from the best cut-off were obtained exactly as performed for the Colony
Size, Liquid Medium, Spot Formation and Yeast Localization aséa@3Hxamples of shift
intensities and best cut-off fluctuation results. The graphs depicted are similar to thasé,in
except that the standard, standard with reference and MWW methods are shown respectively
on the left, middle and right of the figure. In the standard and standard with reference meth-
ods, boxplots are replaced by dotplots with the median of the distributions indicated by a grey
segment. The s values are indicated (top left). In the subsequent supplemental figures, the posl
tion of the pathogenic mutation medians are a€ifs = 2). The grey horizontal line indicates

the median of the best cut-off fluctuatio® ) Probabilities of pathogenicity obtained for the
neutral (blue line) and pathogenic variants (red line), depending on the shift intensity of the
pathogenic mutations. Y-axis, log10(p-ft)) with p being the probability of pathogenicity

of the variants (0 corresponds to p = 0.5); right colored classes, five-class nomenclature with
the horizontal grey lines showing the 0.99, 0.95, 0.05 and 0.001 limits of the clasSés (see
Tablg. In the standard method, the slight erratic curves and the lack of specificity sometimes
observed (blue line in the class 2 instead of class 1) is due to the fact that this method generate:!
a low number of different best cut-off values (between 8 and 64) in the best cut-off distribu-
tions, as explained in th&l TextAs summarized 59 Tablgthese results confirm that the
probability system of classification is an efficient variant classifier. Indeed, whatever method is
used, when the pathogenic and neutral distributions are strictly identical, they all locate inside
the class 3 area (i.e., the system cannot classify any variants in such kind of functional assay).
Moreover, the probability system of classification is improved when the pathogenic mutations
shift from the neutral sector towards the pathogenic sector, since the probability of pathogenic-
ity increases for the pathogenic variants and decreases for the neutral ones.

(PDF)

S14 Fig. Effect of the position of the neutral mutations on the probability system of classifi-
cation (theoretical situation).See513 Fidor details. Neutral mutations were shifted accord-
ing to the formula y + 36 x s, with s representing the shift intensity apdepresenting the
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value i of the neutral mutation j (when s = 0, medians and extreme values of the BRCA1 and
neutral distributions are identical. When s = 2, pathogenic and neutral distributions are identi-
cal). A-D) Examples of shift intensities and best cut-off fluctuation results. The s values are
indicated (top left). ) Probabilities of pathogenicity obtained for the neutral (blue line) and
pathogenic variants (red line), depending on the shift intensity of the neutral mutations. As
summarized ir89 Tablgthese results highlight divergences between the different methods.
With the standard method and the standard with reference metigdsf{ and middle pan-

els), sensitivity and specificity of the probability system of classification decrease when the neu
tral mutations approach the pathogenic mutations. With the MWW metlifdight panel),

the probability system of classification results in a complete misclassification of the pathogenic
mutations when the neutral distributions do not overlap the WT reference distributiorifs

Of note, these analyses treat extreme situations. In practice, the WT reference should be well
embedded within the neutral distributions. The opposite situation would raise question about
the WT reference or neutral mutations used.

(PDF)

S15 Fig. Effect of the position of the WT BRCAL reference on the probability system of
classification (theoretical situation)See513 Fidor details. Values of the WT BRCA1 distri-
bution were shifted according to the formularnB6 x s, with s representing the shift intensity

and y representing the value i of the BRCAL1 reference (when s = 0, medians and extreme val-
ues of the neutral and BRCAL distributions are identical. When s = 2, medians and extreme
values of the pathogenic and BRCA1 distributions are identical). Of note, these theoretical
analyses treat extreme situations. In practice, the WT reference should be well embedded in thi
neutral distributions. The opposite situation would raise question about the WT reference or
neutral mutations usedA¢D) Examples of shift intensities and best cut-off fluctuation results.
The s values are indicated (top lef§) Probabilities of pathogenicity obtained for the neutral
(blue line) and pathogenic variants (red line), depending on the shift intensity of the WT refer-
ence. As summarized B0 Tablethese results highlight divergences between the different
methods. As expected, the standard method is not affected by the position of the WT BRCA1
distribution (E, left panel). In contrast, the standard with reference method is strongly influ-
enced by the position of this referenéehiddle panel). When the WT BRCA1 median shifts
towards the null value, sensitivity and specificity of the probability system of classification are
decreased, with a complete loss of sensitivity and specificity (i.e., systematic classification as
class 3) when the WT BRCA1 median is null (80.514). This was expected since the standard
with reference method is based on best cut-off values divided by the WT BRCA1 median.
Thus, a division by zero generates relative best cut-offs with an infinite value. Such issues are
compensated only when best cut-offs are close to the WT BRCAL median. This was shown in
the Liquid Medium and Yeast Localization assays. Using the standard or standard with refer-
ence method provided similar variant classificatioig B, even if the WT BRCAL medians

of these assays approached zero, with 0.144 and 0.03 respestiviedp(e In conclusion, a
situation, in which the WT reference median is close to zero, with the fluctuation of the raw
best cut-off far from this median, will guarantee a weak sensitivity and specificity of the proba-
bility system of classification. Concerning the standard with reference method, it is also note-
worthy that a negative value of the WT reference median-&514) inverts the classification

(E, middle panel), as expected, regardless of the values from the neutral and pathogenic muta-
tions. When comparing the standard with reference method versus the MWW method, the
later has the advantage of being independent of the WT reference values, as only overlapping
distributions matter. Specificity of the probability system of classification is not affected by the
position of the WT reference, contrary to sensitivieyright panel). The main weakness of the
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MWW method occurs when the WT reference distribution falls outside of the range of the
neutral and pathogenic distributions (asAnleft panel), which generates misclassification of
the pathogenic mutations as neutral.

(PDF)

S16 Fig. Effect of the experimental sensitivity and specificity on the probability system of
classification (theoretical situation)See513 Fidor details. The experimental sensitivity and
specificity were modulated by assigning certain pathogenic mutants in the neutral region and
certain neutral mutants in the pathogenic region, respectively. The experimental sensitivity
and specificity values indicated were those obtained with the experimental best cut-off, as
explained in52 Fig These values are referred to as "initial" sensitivity and specificity, as
opposed to the sensitivity and specificity of the probability system of classification, obtained
after bootstrap analysisA{D) Examples of experimental sensitivities/specificities and best
cut-off fluctuation results H-G) Probabilities of pathogenicity obtained for the neutral (blue

line) and pathogenic variants (red line), depending on decreases from experimental specificity
(B), experimental sensitivity] or both (G). As summarized B9 Tablgthese results confirm

that the probability system of classification is an efficient variant classifier. A decrease of the
experimental specificity indicates that the pathogenic area is contaminated by neutral variants,
which reduces the probability of pathogenicity of the pathogenic variants (class 5 towards class
3). In the same manner, a decrease of the experimental sensitivity indicates that the neutral
area is contaminated by pathogenic variants, which enhances the probability of pathogenicity
of the neutral variants (class 1 towards class 3). This was observed using the three standard,
standard with reference and MWW methods. Of note, the situations studied used systemati-
cally: experimental sensitivity + experimental specificify(otherwise representing an inap-
propriate use of the experimental information, i.e., pathogenic and neutral sectors incorrectly
positioned).

(PDF)

S17 Fig. Effect of the number of neutral and pathogenic mutations on the probability sys-
tem of classification (theoretical situation)See513 Fidor details. A-D) Examples showing
the number of neutral and pathogenic mutations tested, with best cut-off fluctuation results.
(E-G) Probabilities of pathogenicity obtained for the neutral (blue line) and pathogenic vari-
ants (red line), following a decrease in the number of neutral mutatiinpdthogenic muta-
tions (F) or both (G). As summarized ii59 Tablethese results show that the probability
system is poorly sensitive to the number of neutral and pathogenic mutations incorporated,
whatever method is used.

(PDF)

S18 Fig. Effect of the number of mutant and BRCAL1 values on the probability system of
classification (theoretical situation)See513 Fidor details. Number of values was modulated

so that the range and median of the distributions remained the same, as she@&marle

(A-D) Examples showing the number of mutant or BRCAL values tested, with best cut-off fluc-
tuation results.E-G) Probabilities of pathogenicity obtained for the neutral (blue line) and
pathogenic variants (red line), following a decrease in the number of mutant vBlues (

BRCAL1 valuesH), or both G). As summarized i59 Tablethese results confirm that the
probability system of classification is an efficient variant classifier. Whatever method is used, a
decreasing number of values in the dataset affects the probabilities of both the pathogenic and
neutral variants@), which tend toward 0.5 (class 3). Thus, the probability system prevents
decision-making when data is lacking. As expected, the standard method is not affected by the
number of BRCA1 value§ (left panel). The standard with reference and the MWW methods
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are insensitive to the number of mutant values if the number of BRCA1 values ighigial{

dle and right panels). However, a decrease in the number of BRCAL values lowers the probabil
ity of pathogenicity of the pathogenic variarfisihiddle and right panels), but with a strong
recovery when the fluctuation of the best cut-off is no longer influenced by the fluctuation of
the WT reference gkcai=1). Of note, the best cut-off does not fluctuate whgp =1

and rsrcai= 1 (G), which results in a probability of pathogenicity equal to 0.5 for both the
pathogenic and neutral variants. Moreover, using the standard method, whghnn 9, the
classification of the neutral mutations is clasg,2€ft panel), which explains the lack of speci-
ficity frequently observed i813-S19Figs.

(PDF)

S19 Fig. Effect of the range of mutant and BRCAL distributions on the probability system

of classification (theoretical situation)Sees13 Fidor details. Distribution ranges were mod-
ulated so that medians remained the same, as sho@@ irableThe range factor r, indicated

on the graphs, illustrates the relative dispersion of the distributions. When r = 0, the dispersion
is null. (A-D) Examples showing the ranges of the mutant and BRCA1 distributions tested,
with best cut-off fluctuation result€&{G) Probabilities of pathogenicity obtained for the neu-

tral (blue line) and pathogenic variants (red line), following a range decrease of the mutant dis-
tributions (E), BRCAL distributionk), or both G). As summarized i89 Tablethese results
indicate that the probability system of classification is affected mainly when the range of the
BRCAL1 and mutant distributions is null, whatever method is used. In this situation, the fluctu-
ation of the best cut-off is null and all the mutations are considered as absolutely unknown
(probability of pathogenicity equal to 0.5).

(PDF)

S20 Fig. Western blot analysigfter 4 hours of BRCA1 expression, lysates of 6xéls

were examined for the presence of the protein (theoretical size: 200 kDa) with an anti-BRCA1
antibody. Tubulin or Actin was used as a loading control and was probed using an anti-Tubu-
lin or anti-Actin antibody on the same membrane after stripping the first labeling. Signal inten-
sities of full lanes, relatively to the BRCAL1 lane, are indicated below. Of note, protein levels
three times higher than the WT BRCAL protein level (normalized to 1) systematically corre-
spond to pathogenic mutation®dY BRCAL1 (Colony Size and Liquid Medium assay). (
BRCA1-mCherry (Spot Formation and Yeast Localization ass@y§).[Dotplot with the
Spearman coefficient of correlation indicated. Pathogenic and neutral mutations, as well as the
WT BRCAL reference, are represented by a red, blue or black dot, respe&@)vebyrrélation
between the relative signal intensitied@ndB. (D-E) Correlation between the relative signal
intensities oA and medians of the Colony Size or Liquid Medium as$ay)( correlation

between the relative signal intensitieB@nd medians of the Spot Formation or Yeast Locali-
zation assay.

(PDF)

S21 Fig. Exact probability distribution of the best cut-off in the standard, standard with
reference and MWW methods (theoretical situation].he theoretical situation was analyzed

as follows: one neutral and one pathogenic mutatigg (= 1 and Qamogenic= 1), with two

values per mutant (Rutant= 2, Value 1 and 2 for the neutral mutant, and value 3 and 4 for the
pathogenic mutant) and two values in the WT BRCAL1 referengigdty= 2, value 1 and 2).

(A) The graphs depicted are similar to thosé&ig 1, except that boxplots are replaced by dot-

plots with median of the distributions indicated by a grey segment. The black horizontal line
represents the experimental best cut-off. The best cut fluctuations (colored areas) are not repre
sented but quantiles are showrFn(B) Table recapitulating all of the possible results when
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sampling 2 values, with replacement, among the 2 neutral, 2 pathogenic and 2 WT BRCAL val-
ues. Each row is a different combination that provides a best cut-off value, for each method
used. The framed row highlights the combination identical to the experimental situa#ion in

In this simple situation (1 neutral and 1 pathogenic variant), the best cut off computed, in each
row, is the median of the two variant medians (standard method), the median of the two vari-
ant medians divided by the WT BRCA1 median (standard with reference method) and the
median of the two variant p values (MWW method}-E) Variant classification using the
probability system, with the standar@)( standard with referenc®j and MWW (E) meth-

ods, as irb6B FigColored numbers in the table correspond to the different probabilities of
pathogenicity designed by the model. The color code respects the five-class nomenclature
depicted inS1 Tablegrey, class 3; light blue, class 2; pink, class 4. Positions of the neutral and
pathogenic variants are represented by a blue and red arrow, respectively. The number below
each arrow designates the variant value used in the probability system to attribute the probabil-
ity of pathogenicity, which corresponds to the median, median divided by the WT reference
median or p value, indicated in the framed rowBofor instance, in the standard methdg) (

the pathogenic variant, with a median of 3.5, has the probability 0.94 (claBp\Arignt clas-
sification using the quantile system. Quantiles were computed from the 27 best cut-off values
from B, for each method. The colored background defines the intervals within the best cut-off
distribution, as explained i623 FigArrows depict the position of the neutral and pathogenic
variants, as itc-E

(PDF)

S22 Fig. Additional information about the classification mode(A) Schematic of the exact
best cut-off distribution influenced by different parameters, assuming no ties. The number of
neutral (Meutra) @and pathogenic (funogeni} Variants influence the exact best cut-off distribu-
tion only if the number of values per mutant{fiany is above 1. The number of values in the
WT reference (Brcay) does not influence the exact best cut-off distribution in the standard
method, only in the standard with reference and MWW metho8sSchematic of the approx-
imate best cut-off distribution influenced by the number of bootstraps performed. Importantly,
a single bootstrap (Rostrap= 1) does not lead to the experimental best cut-off, exceptdf n
exact= 1. (C) Accuracy of the probability and quantile systems of classification. The schematic
illustration is valid, using either the exact or approximate best cut-off distribubrC¢rrect-

ing factor ., used in the probability system of classification, depending on the parameter a
(See thes1 Tex}. fcor: (nneutral+ npathogeni}/ (n neutral ™ npathogenic+ a)- The framed value
(a=2)was the value used#i3-S15Tables.

(PDF)

S23 Fig. Description of the quantile system of classificatiqi\) The left figure depicts a the-
oretical waterfall distribution of pathogenic and neutral missense mutations;-aslif (1)

Variant classification according to the experimental best cut-off. This cut-off (horizontal black
line), that maximizes the experimental sensitivity and specificity in the waterfall distribution, is
obtained by ROC curve analysis, aSinFigIn the case of the Colony Size assay, mutations
above the best cut-off are classified as pathogenic and mutations below are classified as neutrz
(2) Bootstrap analysis provides a fluctuation of the best cut-off, depending on the values of the
mutations and the WT BRCAL1 reference randomly chosen. The fluctuating best cut-off values
form a distribution, as depicted in the schematic. (3) Quantile system of variant classification
according to the fluctuation of the best cut-off. The reasoning is the following: the distribution
of the fluctuating best cut-off defines quantiles (Q) that delimit the probability of the presence
of this variable. As an example, the quantile Q0.99 is the value that separates the 99% lowest
values from the 1% highest values in a distribution. This means that the probability to have the
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best cut-off above the quantile Q0.99 is 1%. Thus, in the Colony Size assay using the standard
method, a mutation with the median above the quantile Q0.99 can be considered as pathogeni
with a 1% probability of error. Indeed, this mutation could be neutral, but only if the best cut-

off is above the median, which has a 1% probability, or less, to occur. This reasoning allows sep
aration of the best cut-off distribution into 5 intervals, based on the five-class nomenclature
proposed by Plon et aPf], with each interval defining the probability of the best cut-off pres-
ence within the waterfall distributionBJ Quantiles that delimit the 5 intervals of classification
according to the assay and the method used. CS, Colony Size; LM, Liquid Medium; SF, Spot
Formation; YL, Yeast Localization assay. Note that the quantiles differ, depending on whether
the pathogenic mutations are above or below the best cut-off. For instance, in the standard
method, the quantiles of the Colony Size assay are Q0.99, Q0.95, Q0.05 and Q0.001 (patho-
genic mutants above the best cut-off), while quantiles are Q0.01, Q0.05, Q0.95 and Q0.999 in
the Spot Formation assay (pathogenic mutants below the best cut-off). However, these two
cases generate the same intervals (e.g., probability 1% for the clagsahadBg Cut-off val-

ues corresponding to these quantiles are listébiabldor each assay and for each method.

(C) Interval limits in the case of the Colony Size assay, using the standard or the standard with
reference method. P(X Q0.99) = 1% is the probability to obtain the best cut-off variable X
strictly over the quantile Q0.99, shown here as 26,222 cells per colony for the standard method
and 2.416 x 11,200 (BRCA1 median of the experimental data) = 27,062 cells per colony for the
standard with reference metho@)Interval limits in the case of the Colony Size assay, using

the MWW method.

(PDF)

S24 Fig. Variant classification using the quantile systeiames in red and in blue indicate

the pathogenic and neutral mutations, respectively, according to their prior classification. See
alsoS16 TableThe black frames pinpoint the divergent classification compared to that in the
probability systemHig 2B.

(PDF)

S25 Fig. Quantile system of classification (theoretical situatioEffect of different experi-

mental parameters was assessed in theoretical situations, exactly as for the probability system
of classification, meaning that the best cut-off fluctuations depicted were those 64€d in
S19igs. Red line, position of the median or p value of the pathogenic mutants; blue line, posi-
tion of the median or p value of the neutral mutants. The pink, grey and blue areas define inter-
vals within the best cut-off distribution, as explaine&iB FigFor clarity, the extreme red

and blue areas were not displayed. Sensitivity of the quantile system is maximal when the red
line is beyond the pink area. Specificity is maximal when the blue line is beyond the light blue
area. Accuracy is maximal when sensitivity and specificity are maximal. Finally, sensitivity,
specificity and accuracy of the quantile system are null when both lines are in the grey area, or
in the wrong side of the best cut-off fluctuatioA-D) Evolution of the best cut-off fluctuation
depending on either the shift intensity of the pathogenic mutati8isdy the shift intensity of

the neutral mutationsk), or the shift intensity of the WT referenc@)( or the experimental
sensitivity and specificity)). The corresponding panels, depicted for the probability system of
classification, are shown #1.3D Fidor A, S14E Fidor B, S15E Fidor CandS16ES16G Fig

for D. As summarized i®17 Tablgthese results did not reveal any flaws. The quantile system
behaves as the probability system, in these situations.

(PDF)

S26 Fig. Quantile system of classification (theoretical situatioi\volution of the best cut-
off fluctuation depending on either the number of neutral and pathogenic muta#gres (he
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number of mutant and BRCA1 value®)( as inS25 FigThe corresponding panels, depicted

for the probability system of classification, are showaliiES17G Fidor A andS18ES18G

Figfor B. As summarized i517 Tablgthese results reveal a major flaw in the quantile system

of classification. Using the standard and MWW methods, the sensitivity and specificity is max-
imal, regardless of the number of values present within the mutant or BRCAL1 distributions

(B). Using the standard with reference method, the sensitivity is affected when the number

of values in the BRCA1 distribution is decreased, but is maximal wdierniF 1. Thus, con-

trary to the probability system, the quantile system is not correctly influenced by the amount of
experimental values resulting from functional assessment.

(PDF)

S27 Fig. Quantile system of classification (theoretical situatioi\volution of the best cut-

off fluctuation, depending on the range of the mutant and BRCA1 distributions S&5ifrig

The corresponding panels, depicted for the probability system of classification, are shown in
S19ES19G FigAs summarized i517 Tablgthese results reveal a major flaw in the quantile
system of classification. A null range means that all of the values, present in a distribution, are
identical (ties). Because ties are related to a low measurement accuracy, an efficient variant
classifier should penalize a high number of ties in a dataset, which is not observed here, what-
ever method is used.

(PDF)

S1 Table. IARC variant classificatiorkive-class nomenclature proposed by the International
Agency for Research on Cancer (IARC) for variant classification, with specific recommenda-
tions for clinical management, depending on the probability of pathogenicity obtained by epi-
demiological method<f].

(XLS)

S2 Table. BRCA1 mutations selectetEmpty cell, no datd. HGVS: human genome varia-

tion society (ittp://www.hgvs.org/mutnome/® IARC classification as i1 Table? UMD-

BRCAL database (29-January-20t&,//www.umd.be/BRCA)/® LOVD-IARC database
(29-January-20151ltp://hci-exlovd.hci.utah.edu/home.php?select_db:BF).éA(DVD Lei-

den database (29-January-201t§y://databases.lovd.nl/shared/genes/BRCHis database
gathers all information from the literature, including functional assays, which explains the high
level of ambiguous results. Blue cell, neutral; red cell, pathogenic; grey cell, conflicting reports.
9 Mutations recommended by the ENIGMA consortium. C64Y is namely classified as "Clini-
cally important” which is here converted to "4/5".

(XLS)

S3 Table. Misclassified mutations using the experimental best cut-offsperimental best
cut-offs fromTable 1
(XLS)

S4 Table. Experimental data from the 4 functional assays and the siRNA screerftedative
median, median divided by the WT BRCA1 median or by the No siRNA median; sample size,
number of values; framed mutations indicate identical p values. The "ties" column indicates the
number of values repeated. For instance, in the first row, one value is repeated twice, another
one four times, and a third twice ("ties" is the statistical term used to designate "identical val-
ues").

(XLS)

S5 Table. Distribution of the best cut-offs after bootstrap analysialues obtained after
sampling, with replacement, using the original data obtained from the four functional assays
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and the siRNA screen (see the bootstrap procedure A imtfiieodsection). Q indicates the
quantile (Q0.050 is the quantile 5%). For the standard with reference method, the results
shown represent values either relative to the median of the WT reference (BRCAL1 reference or
No siRNA), which allows an immediate comparison of the cut-off distributions between the
different assays (top), or the same values multiplied by the experimental median of the WT ref-
erence observed in the corresponding assay (bottom). For example, 0.960 is the quantile 0.1%
in the Colony Size assay, which corresponds to 11,200 x 0.960 = 10,754 cells per colony. Expe
mental medians used are 11,200 cells per colony (Colony Size assay), 0.144 OD600 (Liquid
Medium assay), 32% (Spot Formation assay), 3% (Yeast Localization assay) and 945 (SiRNA
screen), as indicated #¥ TableOf note, in the standard method, the WT reference was

ignored during the sampling. Thus, the resulting fluctuation of the best cut-offs does not
depend on the fluctuation of the WT reference. This explains why distributions were narrowed
in the standard method, compared to the standard with reference method. For example, 12,13z
cells per colony is the quantile 0.1% in the Colony Size assay, but in the standard with referenc
method, the same quantile is slightly farther from the distribution median, with a value of
11,200 x 0.960 = 10,754 cells per colony.

(XLS)

S6 Table. Quantitative analysis ¢fig 2B. "Balance" indicates the number of mutations cor-
rectly classified (class 1 + 2 + 4 + 5) minus the total number of mutations misclassified. "Sensi-
tivity" and "Specificity" represent the number of variants correctly classified, divided by the
number of variants in the prior classification (npathogenic = 25 and nneutral = 15). "Accuracy"
is the number of mutations correctly classified (class 1 + 2 + 4 + 5) divided by the total number
of mutations (n = 40).

(XLS)

S7 Table. Features of the assa8ge54 Tabldor details.
(XLS)

S8 Table. Examples of theoretical situations analyz&tie "reference situation" column indi-

cates the initial values and parameter settings. From this, distribution parameters were modified
and the resulting variant classification was scrutinized. The separating factor s (BRCA1, neutral
or pathogenic) shifts the values of the distribution, according to the formu&6 x s, with y
representing the value i of the distribution j (BRCAL, neutral or pathogenic). The range factor r
modulates the extreme values of a distribution, according to the formula me + 17.5 x r, where
me represents the median of the distribution. Whatever the value of r, the values of any distribu-
tion are equally spread.

(XLS)

S9 Table. Effect of functional assay parameters upon the probability system of classifica-

tion. Sensitivity and specificity are defined here as the probabilities of pathogenicity (p) attrib-
uted to the pathogenic and neutral mutations, respectively, which reflects the accuracy of the
probability system of variant classification. Sensitivity is maximal iD®5 for the pathogenic
mutations. Specificity is maximal ifip 0.05 for the neutral mutations. Misclassification is

defined as p 0.95 for the neutral mutations andg0.05 for the pathogenic mutations. The
experimental sensitivity and specificity derives from the experimental best cut-off, as explained
in S2 Fig They differ from the sensitivity and specificity described above, since they are related
to the initial position of the pathogenic and neutral mutants before random sampling. +++,
very influenced; 0, no effect.

(XLS)
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S10 Table. Plasmids use@iMutation and deletion nomenclature according to the human
genome variation societit¢p://www.hgvs.org/mutnomep/” The BRCA1 cDNA used in

Millot et.al [11], corresponds to the AY888184.1 GenBank sequence, slightly modified in this
study (see th&lethodssection).

(XLS)

S11 Table. Yeast strains usétd'mCherry" was omitted in the main text. For instance, the
P1859R-mCherry strain was referred to as "P1859R".
(XLS)

S12 Table. Average CDF of the probability system of classification when using the standard
method. SeeS6C Fidor details. The 272 middle values of the average CDF, derived from the
Colony Size assay, were removed to simplify the table. Colored numbers indicate the 5-class
nomenclature$1 TablE dark blue, class 1; light blue, class 2; pink, class4; red, class 5. This
table was used to attribute the probabilities of pathogenicity depicted B For instance, in

the Colony Size assay, the median of P1776H is 12,253 cells per colony. The closest best cut-c
value of this median belongs to rank 8, meaning that, when using the standard method, the
probability of pathogenicity attributed to P1776H is 0.00475. Of note, if a best cut-off value is
not repeated, among the 2,000 best cut-off values used to derive the CDF, then the associated
probability is 1 / 2,000 = 0.0005 for this value. This indicates the minimal probability incremen-
tation between two non repeated consecutive best cut-off values in the CDF (probability unit).
In the Yeast Localization assay, no variant can be classified as class 5 due to a lack of unre-
peated values at the "pathogenic” side of the best cut-off distribution (the highest cut-off value,
0.2151616, is present 97 times, leading to a probability of 0.0485 and an average cumulative
probability of 0.97550 in the CDF, which is inferior to the 0.99 probability threshold of the

class 5)).

(XLS)

S13 Table. Basic and corrected probability of pathogenicity when using the standard

method. See~ig 2Bfor details. Values in the "Probability” columns are thosedr?B Muta-

tions are ordered as ifig 2Bto facilitate comparisons. Odds in favor of pathogenicity are the
ratio p / (1—p;), with p; being the probability of pathogenicity of the variant i. The Liquid

Medium and Yeast Localization assays were not included in the combined odds, since the Lig-
uid Medium and Colony Size, as well as the Spot Formation and Yeast Localization, are not
independent assays. Combined probabilities of pathogenicity result from the ratio+0),),

with O; being the combined odds of the variant i. Probabilities were also corrected according to
nneutral + npathogenic = 40 and a = 2 (see#ielex). CS, Colony Size assay; SF, Spot For-
mation assay.

(XLS)

S14 Table. Basic and corrected probability of pathogenicity when using the standard with
reference methodSeeS13 Tabldor details.
(XLS)

S15 Table. Basic and corrected probability of pathogenicity when using the MWW method.
Sees13 Tabléor details.
(XLS)

S16 Table. Quantitative analysis &24 Fig Framed numbers highlight the differences with
the results obtained using the probability system of classificatid §blp
(XLS)
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S17 Table. Effect of functional assay parameters upon the quantile system of classification.
Sensitivity and specificity are defined here as the distance between the best cut-off fluctuation
and the position of the pathogenic and neutral mutations, respectively, which reflects the accu-
racy of the quantile system of variant classification. For instance, the MWW method exhibits a
null sensitivity in variant classification if the p values of the pathogenic mutations are in the
grey area (class 3), and shows a maximal sensitivity in variant classification if the p values are
in the pink area (class 4) or beyond (class 5). Misclassification is defined as class 4 or 5 for the
neutral mutations and class 2 or 1 for the pathogenic mutationss$eéeabldor further

details. The framed text indicates differences, as compared to the probability system of classifi-
cation §9 Tablg

(XLS)
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