
HAL Id: hal-01360556
https://hal.sorbonne-universite.fr/hal-01360556

Submitted on 6 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Static Analysis by Abstract Interpretation of the
Functional Correctness of Matrix Manipulating

Programs
Matthieu Journault, Antoine Miné

To cite this version:
Matthieu Journault, Antoine Miné. Static Analysis by Abstract Interpretation of the Functional
Correctness of Matrix Manipulating Programs. 23rd Static Analysis Symposium (SAS), Sep 2016,
Edimbourg, United Kingdom. pp.257-277, �10.1007/978-3-662-53413-7_13�. �hal-01360556�

https://hal.sorbonne-universite.fr/hal-01360556
https://hal.archives-ouvertes.fr

Static Analysis by Abstract Interpretation of the
Functional Correctness of Matrix Manipulating

Programs?

Matthieu Journault1 and Antoine Miné2

1 Computer Science Department, ENS Cachan, France
matthieu.journault@ens-cachan.fr

2 Sorbonnes Universités, UPMC Univ Paris 6,
Laboratoire d’informatique de Paris 6 (LIP6)

4, pl. Jussieu, 75005 Paris, France
antoine.mine@lip6.fr

Abstract. We present new abstract domains to prove automatically
the functional correctness of algorithms implementing matrix operations,
such as matrix addition, multiplication, GEMM (general matrix multi-
plication), or more generally BLAS (Basic Linear Algebra Subprograms).
In order to do so, we introduce a family of abstract domains parameter-
ized by a set of matrix predicates and by a numeric domain. We show
that our analysis is robust enough to prove the functional correctness
of several versions of matrix addition and multiplication codes result-
ing from loop reordering, loop tiling, inverting the iteration order, line
swapping, and expression decomposition. Finally, we extend our method
to enable modular analysis on code fragments manipulating matrices by
reference, and show that it results in a significant analysis speedup.

1 Introduction

Static analysis by abstract interpretation [7] allows discovering automatically
properties about program behaviors. In order to scale up, it employs abstrac-
tions, which induce approximations. However, the approximation is sound, as
it considers a super-set of all program behaviors; hence, any property proved
in the abstract (such as the absence of run-time error, or the validation of
some specification) also holds in all actual program executions. Static analy-
sis by abstract interpretation has been applied with some success to the analysis
of run-time errors [3]. More recently, it has been extended to proving func-
tional properties, including array properties [6,8,1], such as proving that a sort-
ing algorithm indeed outputs a sorted array. In this work, we consider func-
tional properties of a different kind, not tackled before: properties on matrices.
Consider as example Program 1.1 starting with the assumption N > 0. Our
analyzer will automatically infer the following postcondition for the program:

? This work is partially supported by the European Research Council under Consol-
idator Grant Agreement 681393 – MOPSA.

for (i=0; i<N; i++)

for (j=0; j<N; j++) {

C[i][j] = 0;

for (k=0; k<N; k++)

C[i][j] += A[i][k] * B[k][j];

}

Program 1.1: Matrix multiplication C = A×B.

1 /* N >= 5 */

2 i=0;

3 while (i<N) {

4 j=0;

5 while (j<N) {

6 C[i][j] = A[i][j] + B[i][j];

7 j++;

8 };

9 i++;

10 }

Program 1.2: Matrix addition C ← A+B.

∀u, v ∈ [0, N − 1], C[u][v] =
∑N−1

w=0 A[u][w] × B[w][v], i.e., the program indeed
computes the product of matrices A and B into C.

Introductory example. To explain how our method works in more details, we
focus on a simpler introductory example, the matrix addition from Program 1.2.
Note that we will show later that our method is also successful on the multipli-
cation from Program 1.1, as well as more complex, optimized variants of these
algorithms, such as the tiled addition in Program 1.6.

We wish to design a sound analyzer capable of inferring that, at line 10, the
addition of B and A has been stored into C. Note that the program is parametric
in the size N of the matrix, and we want our analysis to be able to prove that
it is correct independently from the precise value of N. Therefore, we would like

to infer that the formula φ
∆
= ∀a, ∀b, (0 ≤ a < N ∧ 0 ≤ b < N) ⇒ C[a][b] =

A[a][b] +B[a][b] holds for all the memory states reachable at line 10.
In order to do so, the static analyzer needs to first infer loop invariants

for each of the while loops. For the outermost loop (line 3), we would infer:

φi
∆
= ∀a, ∀b, (0 ≤ a < i ∧ 0 ≤ b < N) ⇒ C[a][b] = A[a][b] + B[a][b], and, for

the innermost loop (line 5): φj
∆
= (∀a, ∀b, (0 ≤ a < i ∧ 0 ≤ b < N)⇒ C[a][b] =

A[a][b]+B[a][b])∧(∀b, 0 ≤ b < j ⇒ C[i][b] = A[i][b]+B[i][b]). Note that the loop
invariants are far more complex than the formula we expect at the end of the
program. In particular, they depend on the local variables i and j. They express

the fact that the addition has been performed only for some lines (up to i) and,
for φj , only on one part of the last line (up to j). Every formula we need can
be seen as a conjunction of one or several sub-formulas, where each sub-formula
expresses that the addition has been performed on some rectangular sub-part of
the matrix. Therefore, we introduce the following formula Add(A,B,C, x, y, z, t)
with which we will describe our matrices in the rest of the introductory example:

Add(A,B,C, x, y, z, t)
∆
= ∀a, ∀b, (x ≤ a < z ∧ y ≤ b < t)

⇒ C[a][b] = A[a][b] +B[a][b]

The formulas φi, φj and φ can all be described as a conjunction of one or more
instances of the fixed predicate Add, as well as numeric constraints relating
only scalar variables, including program variables (i, j) and predicate variables
(x, y, z, t). Abstract interpretation provides numeric domains, such as poly-
hedra [9], to reason on numeric relations. We will design a family of abstract
domains combining existing numeric domains with predicates such as Add and
show how, ultimately, abstract operations modeling assignments, tests, joins,
etc. can be expressed as numeric operations to soundly reason about matrix
contents. While the technique is similar to existing analyses of array operations
[6,8,1], the application to matrices poses specific challenges: firstly, as matrices
are bi-dimensional, it is less obvious how to update matrix predicates after as-
signments; secondly, matrix programs feature large levels of loop nesting, which
may pose scalability issues.

Contribution. The article presents a new static analysis for matrix-manipula-
ting programs, based on a combination of parametric predicates and numeric
domains. The analysis has been proved sound and implemented in a prototype.
We provide experimental results proving the functional correctness of a few basic
matrix-manipulating programs, including more complex variants obtained by
the Pluto source to source loop optimizer [5,4]. We show that our analysis
is robust against code modifications that leave the semantic of the program
unchanged, such as loop tiling performed by Pluto. In the context of full source
to binary program certification, analyzing programs after optimization can free
us from having to verify the soundness of the optimizer; therefore, our method
could be used in combination with certified compilers, such as CompCert [14],
while avoiding the need to certify optimization passes in Coq. The analysis we
propose is modular: it is defined over matrix predicates that can be combined,
and is furthermore parameterized by the choice of a numeric domain. Finally,
the performance of our analyzer is reasonable.

The rest of the paper is organized as follows: Sect. 2 describes the program-
ming language we aim to analyze; Sect. 3 formally defines the family of abstrac-
tions we are constructing. In Sect. 4, we introduce specific instances to handle
matrix addition and multiplication. In Sect. 5, we briefly present a modular
inter-procedural version of our analysis. Some technical details about the imple-
mentation of our analyzer prototype and our experimental results can be found
in Sect. 6. Section 7 discusses related works, while Sect. 8 concludes.

E ::= v ∈ R | X ∈ X | E1 + E2 | E1 × E2 | A[X1][X2] | A.n | A.m
B ::= E1 < E2 | E1 ≤ E2 | E1 = E2 | ¬B | B1 ∨B2 | B1 ∧B2

C ::= skip | X := E | A[X1][X2]← E | C1 ; C2 |
If B then C1 else C2 | While B do C done | Array A of E1 E2

Fig. 1: Syntax of the language.

2 Syntax and concrete semantics

2.1 Programming language syntax

We consider a small imperative language, in Fig. 1, based on variables X ∈ X,
(bi-dimensional) array names A ∈ A, and size variables denoting the width and

height of arrays S ∆
= {A.n | A ∈ A} ∪ {A.m | A ∈ A}, with arithmetic expressions

E ∈ E, boolean expressions B ∈ B, and commands C ∈ C. The command
Array A of E1 E2 denotes the definition of a matrix A of size E1 × E2.

2.2 Concrete reachability

We define the concrete semantic of our programming language. It is the most
precise mathematical expression describing the possible executions of the pro-
gram and it will be given in terms of postconditions for commands. This concrete
semantic is not computable; therefore, the rest of the article will propose com-
putable approximations. The soundness property of Thm. 1 (Sect. 4.1) will hold
with respect to this concrete semantic.
D is the domain of scalar values, and we assume from now on that D = R.

M is the set of memory states, which are pairs in M ∆
=MV ×MA containing

a scalar environment in MV
∆
= V → D and a matrix contents environment in

MA
∆
= A → (N × N) → D, where V (resp. A) is any subset of X ∪ S (resp.

A). EJEK ∈ M → D is the semantic of an expression E (it is well-defined only
on memory states that bind the variables and array names appearing in E).
BJBK ∈ ℘(M) defines the set of memory states in which B is true. PostJCK(S)
denotes the set of states reachable from the set of states S after a command
C. Finally, var(E), var(B), var(C) denote the variables appearing respectively
in an arithmetic expression, a boolean expression, a command. Figures 2 and 3
describe the behavior of expressions and the state reachability of the program.
The evaluation of boolean expressions was left out as it is standard.

3 Generic abstract semantics

3.1 Predicates

As suggested in Sect. 1, we define predicates to specify relations between matri-
ces. The language of predicates is based on the expressions from our program-

– ∀v ∈ R, EJvKm ∆
= v

– EJXKm ∆
= mV(X)

– EJE1 + E2Km
∆
= EJE1Km+ EJE2Km

– EJE1 × E2Km
∆
= EJE1Km× EJE2Km

– EJA.nKm ∆
= mV(A.n)

– EJA.mKm ∆
= mV(A.m)

– EJA[X1][X2]Km ∆
= mA(A)(mV(X1),mV(X2)) when mV(X1),mV(X2) ∈ N

Fig. 2: Evaluation of expressions. m designates the pair (mV ,mA).

PostJCK(S)
∆
= match C with :

| skip → S

| X := E → {(mV [X 7→ EJEKm],mA) | m ∈ S}
| A[X1][X2]← E → {(mV ,mA[A 7→ (mV(X1),mV(X2)) 7→ EJEKm])

| m ∈ S ∧mV(X1),mV(X2) ∈ N}
| If B then C1 else C2 → PostJC1K(S ∩ BJBK) ∪PostJC2K(S ∩ BJ¬BK)

| While B do C1 done → lfp⊆(λS0.S ∪PostJC1K(S0 ∩ BJBK)) ∩ BJ¬BK
| Array A of E1 E2 → {(mV [A.m 7→ EJE1Km,A.n 7→ EJE2Km],mA)

| m ∈ S}
| C1 ; C2 → PostJC2K(PostJC1K(S))

Fig. 3: Reachability semantics. m designates the pair (mV ,mA).

ming language, with added quantifiers. The predicate language is very general
but we will only be using one fragment at a time to describe the behavior of our
programs. In order to do so, we define terms t ∈ T , using dedicated predicate
variables y ∈ Y (such that X ∩ Y = Y ∩ S = ∅), atomic predicates g ∈ G, and
predicates P ∈ P, as shown in Fig. 4. Their interpretation will be respectively:
IT JtK, IGJgK, and IPJP K. Those interpretations are defined the same way as
interpretations of expressions and booleans; therefore, they are not detailed.

Example 1. Modulo some syntactic sugar, we can define a predicate such as:

P+(A,B,C, x, y, z, t)
∆
= ∀u ∈ [x, z− 1],∀v ∈ [y, t− 1], A[u][v] = B[u][v] +C[u][v].

t ::= A[x][y] | x ∈ Y | t1 + t2 | t1 × t2 | v ∈ R |
z∑

x=y

t

g ::= t1 = t2 | t1 ≤ t2 | t1 < t2

P ::= tt | ff | g ∈ G | ¬P1 | P1 ∧ P2 | P1 ∨ P2 | P1 ⇒ P2 | ∀x ∈ N, P1

Fig. 4: Terms, atomic predicates, and predicates.

The interpretation of such a predicate is the set of memory states in which the
matrix A is the sum of two matrices B and C on some rectangle.

Finally, we introduce the following relation P1 =S P2, meaning that ∃σ ∈
var(P1) → var(P2) a bijection such that P1σ = P2, i.e., P1 and P2 are syntac-
tically equivalent modulo a renaming of the variables (e.g., P+(A,B,C, x, y, z,
t) =S P+(A,B,C, x′, y′, z′, t′)). This definition is extended to sets of predicates,
P1 =S P2, meaning that there is a one-to-one relation between the sets and
every pair of elements in the relation are syntactically equivalent (e.g., {Q(A,B,
C, x, y, z, t), P (A, u, v)} =S {Q(A,B,C, x′, y′, z′, t′), P (A, u′, v′)}).

3.2 Abstract states

We now assume we have an abstraction of the state MV of the scalar, numeric
variables (e.g., the interval or polyhedra [9] domain) that we call M]

V , with
concretization function γV , join ∪V , widening OV , meet with a boolean constraint
∩B,V or a family of boolean constraints uB,V , and a partial order relation @V .

The set of variables bound by an abstract variable memory state a ∈ M]
V is

noted var(a) ⊂ X ∪ Y ∪ S. In the following, we define an abstraction for the
analysis of our programming language, this abstraction being built upon a set
of predicates describing relations between matrices and a numeric domain. To
simplify, without loss of generality, we forbid predicates from referencing program
variables or array dimensions, hence Y ∩ (X ∪ S) = ∅. We rely instead on the
numeric domain to relate predicate variables with program variables, if needed.

We need abstract states to be disjunctions (expressing the different possible
states a program can be in at some point) of conjunctions of predicates (that
describe a possible state of the program, as a set of constraints and predicates
that hold). The conjunctions are necessary as a predicate may hold on several
rectangles; the disjunctions are necessary because, within the same loop, the
number of predicates may vary from one loop iteration to another (a graphical
illustration is given in Fig. 7). Hence, we will introduce a monomial as a con-
junction of some predicates and a numeric abstract domain element; an abstract
state will be a disjunction of such monomials. Moreover, we want our state to
be a set of monomials as small as possible (and in all cases, bounded, to ensure
termination); therefore, we would rather use the disjunctive features provided
by the numeric domain, if any, than predicate-level disjunctions. We enforce this
rule through a notion of well-formedness, explained below.

Definition 1 (Monomial). We call a well-named monomial an element (P,

a) ∈ M
∆
= ℘(P) ×M]

V such that
⋃

P∈P var(P) ⊂ var(a) and ∀P1 6= P2 ∈ P,
var(P1) ∩ var(P2) = ∅.

Definition 2 (Abstract memory state). We build an abstraction M] for

memory states M that is M] ∆
= ℘(M). We will say that an abstract memory

state is well-named if every one of its monomials is well-named. The following

concretization function is defined on every well-named abstract state as:

γp(S]) =
⋃

(P,a)∈S]
{(mV|X∪S,mA) | mV ∈ γV(a) ∧ ∀P ∈ P, (mV ,mA) ∈ IP(P)}

where mV|X∪S is the restriction of mV to X ∪ S.

Example 2. (P+ is the predicate defined in Example 1). Let us consider an ab-
stract state {(P, a)} where P = {P+(A,B,C, x, y, z, t)} and a is a polyhedron
defined by the set of equations {x = 0, y = 0, z = n, t = 1, i = 1, j = n,A.n = n,
B.n = A.n, C.n = A.n, C.m = B.m, B.m = A.m, A.m = n}. In this case: γp({(P,
a)}) is the set of memory states in which the first column of the matrix A is the
sum of the first columns of B and C.

Definition 3 (Well-formed). We will say that an abstract state S] is well-
formed if ∀(P1, a1), (P2, a2) ∈ S], (P1 =S P2) ⇒ (P1, a1) = (P2, a2), i.e., no
two monomials in S] can be made equal through variable renaming.

Definition 4 (Shape). We will say that two abstract states S]
1, S

]
2 have the

same shape, noted S]
1 =F S]

2, when S]
1 ⊂F S]

2 ∧ S
]
2 ⊂F S]

1 where S]
1 ⊂F S]

2
∆
=

∀(P1, a1) ∈ S]
1,∃(P2, a2) ∈ S]

2, P1 =S P2

Remark 1. All the previous definitions amount to say that a well-named, well-
formed abstract state is of the form :
(Mon1 : numeric constraints 1 ∧ predicate 1 1 ∧ predicate 1 2 ∧ . . .)

∨
(Mon2 : numeric constraints 2 ∧ predicate 2 1 ∧ predicate 2 2 ∧ . . .)

∨
...

(Monn : numeric constraints n ∧ predicate n 1 ∧ predicate n 2 ∧ . . .)
where no two lines have the same multi-set of predicates.

Let us now define an algorithm wfp that transforms any well-named abstract
state into a well-named, well-formed abstract state, by transforming every pair of
monomials (P1, a1), (P2, a2) ∈ S]

1 such that P1 =S P2 into (P2, a1σ∪Va2) where
P1σ = P2 for some permutation σ. However, we only have γp(S]) ⊂ γp(wfp(S]))
in general and not the equality. Indeed, we transform a symbolic disjunction into
a disjunction ∪V on the numeric domain, therefore this transformation might not
be exact. Figure 5 gives the basic operations on the sets of abstract statesM]: a
join (tp), a widening (Op),3 a meet with booleans (up,B), and an inclusion test
of the numeric component with boolean expressions (vB,V).

3 Op can not be used when the two abstract states do not have the same shape, in
which case the analyzer will perform a join. However, ultimately, the shape will
stabilize, thus allowing the analyzer to perform a widening. This widening technique
is similar to the one proposed by [18] on cofibred domains.

tp: S]
1 tp S

]
2
∆
= wfp(S]

1 ∪ S
]
2)

Op: When two abstract states S]
1, S

]
2 have the same shape, there is a one-to-one

function f from the monomials of S]
1 onto the monomials of S]

2 such that
∀m = (P1, a1) ∈ S]

1, if (P2, a2) = f(m) ∈ S]
2, then P1 = P2σ. Thus allowing us to

define S]
1OpS

]
2
∆
= {(P1, a1OVa2σ) | m = (P1, a1) ∈ S]

1 ∧ (P2, a2) = f(m)}.

up,B: S]
1 up,B B

∆
=

⋃
(P,a)∈S]1

{(P, a ∩B,V B)}

vB,V : a ∈M]
V vB,V

∧
i∈I Bi ∈ B

∆
= ∀i ∈ I, γV(a) ⊆ BJBiK

Fig. 5: Operations on abstract states.

Post]JskipK(S]
1)

∆
= S]

1

Post]JX := EK(S]
1)

∆
=

⋃
(P,a)∈S]1

{(P,Post]VJX := EK(a))}
Post]JA[X1][X2]← EK(S]

1)
∆
= wfp(

⋃
(P,a)∈S]1

{Post]M(P, a, A,E,X1, X2)})
Post]JIf B then C1 else C2K(S]

1)
∆
=

Post]JC1K(S]
1 up,B B) tp Post]JC2K(S]

1 up,B (¬B))

Post]JWhile B do C doneK(S]
1)

∆
=

Res(fp(λS] → let S]
P = S] tp Post]JCK(S] up,B B) in

if S]
P =F S] then S]OpS

]
P else S]

P)(S]
1) up,B (¬B))

Post]JC1 ; C2K(S]
1)

∆
= Post]JC2K(Post]JC1K(S]

1))

Fig. 6: Abstract postconditions.

3.3 Abstract transfer functions

We describe, in Fig. 6, how program commands are interpreted using the memory
abstract domain to yield a computable over-approximation of the set of reach-
able states. We assume that the numeric domain provides the necessary transfer
functions (Post]VJCK) for all instructions involving only scalar variables. When
interpreting loops, the call to fp(f)(x) computes the fixpoint of f reached by
successive iterations of f starting at x (terminating in finite time through the
use of a widening).

Two functions are yet to be defined: Post]M and Res. Indeed, these functions
will depend on our choice of predicates. For instance, Sect. 4.1 will introduce
one version of Post]M, named Post]+,M, able to handle expressions of the form
A[X1][X2] ← B[X1][X2] + C[X1][X2] to analyze additions, while Sect. 4.2 will
discuss multiplications. In practice, the developer will enrich the functions when
adding new predicates to analyze new kinds of matrix algorithms in order to
design a flexible, general-purpose analyzer. Depending on E and the predicates
already existing in the abstract state, Post]M(. . . , E, . . .) will either modify vari-
ables appearing in predicates, produce new predicates, or remove predicates. In

the worst case, when Post]M cannot handle some expression E, it yields the
approximation >, thus ensuring the correctness of the analyzer.

The function Res geometrically resizes the abstract state: it coalesces pred-
icates describing adjacent matrix parts into a single part, as long as their join
can be exactly represented in our domain (over-approximating the join would be
unsound as our predicates employ universal quantifiers). An algorithm for Res
for the case of the addition is proposed in Sect. 4.1. As expected, the problem
of extending a bi-dimensional rectangle is slightly more complex than that of
extending a segment, as done in traditional array analysis [6,8]. New rewriting
rules are added to Res when new families of predicates are introduced.

Example 3. For example, we set Post]MJA[0][0]← B[0][0] + C[0][0]K(∅, ∅) =
({P+(A,B,C, x, y, z, t)}, {x = y = 0, z = t = 1}) and Res({P+(A,B,C, x, y, z, t),
P+(A,B,C, a, b, c, d)}, {x = y = 0, z = 1, t = 10, a = 1, c = 2, b = 0, d = 10}) =
({P+(A,B,C, x, y, z, t)}, {x = 0, z = 2, y = 0, t = 10}).

Maximum number of predicates. As widenings are used on pairs of abstract
states with the same shape, we need to ensure that the shape will stabilize;
therefore, we need to bound the number of possible shapes an abstract state
can have. In order to do so, we only authorize a certain amount of each kind of
predicates in a given abstract state. This number will be denoted as Mpred. This
bound is necessary to ensure the termination of the analysis, but it can be set to
an arbitrary value by the user. Note, however, that Res will naturally reduce the
number of predicates without loss of precision, whenever possible. In practice,
Mpred depends on the complexity of the loop invariant, which experimentally
depends on the number of nested loops and is usually small (Mpred = 4 was
enough to prove the correctness of all the programs considered here).

4 Abstraction instances

4.1 Matrix addition

We now consider the analysis of the assignment E
∆
= A[X1][X2]← B[X1][X2] +

C[X1][X2], as part of proving that a matrix addition is correct. As suggested by
the introductory example in Sect. 1, let us define the following predicate:

P+(A,B,C, x, y, z, t)
∆
= ∀a, b ∈ [x, z − 1]× [y, t− 1], A[a][b] = B[a][b] + C[a][b]

We define now versions Post]+,M and Res+ to compute postconditions and
possible resize over P+. Even though the analyzer we implemented can handle
predicates on arbitrary many matrices, we will make the description of the algo-
rithms and the proof of correctness simpler by only allowing our analyzer to use
predicates of the form P+ such that ∃A,B,C, ∀P+(A′, B′, C ′, . . .) ∈ P, A′ =
A∧B′ = B ∧C ′ = C (i.e., the source and destination matrices are the same for
all the addition predicates used in an abstract state).

Algorithm 1: Post]+,M, computes the image by the transfer functions
(associated to the expression E = A[X1][X2]← B[X1][X2] + C[X1][X2])

Input : (P, a),A,B,C,i,j
Output: (P′, a′) the postcondition

1 if ∃P0 ∈ P, find extension((P0, a),A,B,C,i,j) = res 6= None then
2 x′, y′, z′, t′ ← fresh();
3 I ← switch res do
4 case Some(Right)
5 (x = x′ ∧ y = y′ ∧ z + 1 = z′ ∧ t = t′)
6 case Some(Down)
7 (x = x′ ∧ y = y′ ∧ z = z′ ∧ t+ 1 = t′)
8 case Some(Left)
9 (x = x′ + 1 ∧ y = y′ ∧ z = z′ ∧ t = t′)

10 case Some(Up)
11 (x = x′ ∧ y = y′ + 1 ∧ z = z′ ∧ t = t′)

12 endsw
13 return ((P \ P0) ∪ {P+(A,B,C, x′, y′, z′, t′)}, a uB,V I)

14 else
15 if ∀P+(A′, B′, C′, , , ,) ∈ P, A′ = A ∧B′ = B ∧ C′ = C then
16 if]P < Mpred then
17 x′, y′, z′, t′ ← fresh();
18 I ← (x′ = i ∧ y′ = j ∧ z′ = i+ 1 ∧ t′ = j + 1);
19 return (P ∪ {P+(A,B,C, x′, y′, z′, t′)}, a uB,V I)

20 else
21 return (P, a)
22 end

23 else
24 return (∅, a)
25 end

26 end

Algorithm 2: Res+,M, resizes possible predicate of a monomial

Input : (P, a)
Output: (P′, a′) resized state

1 (Po, ao)← (P, a);
2 while ∃(P0, P1) ∈ Po, find resize(P0, P1, ao) 6= None do
3 P+(A,B,C, x0, y0, z0, t0) = P0;
4 P+(A,B,C, x1, y1, z1, t1) = P1;
5 x′, y′, z′, t′ ← fresh();
6 I ← ((x′ = x0) ∧ (y′ = y0) ∧ (z′ = z1) ∧ (t′ = t1));
7 (Po, ao)← ((Po \ {P0, P1}) ∪ P+(A,B,C, x′, y′, z′, t′), ao uB,V I)

8 end
9 return (Po, ao)

Algorithm 3: find extension, finds possible extension of a monomial

Input : (P, a),A,B,C,i,j
Output: None ‖ Some(dir): the direction in which the rectangle can be extended

1 P+(A′, B′, C′, x, y, z, t) = P ;
2 if A = A′ ∧B = B′ ∧ C = C′ then
3 if a vB,V ((z = i) ∧ (y = j) ∧ (t = j + 1)) then
4 Some(Right)
5 else if a vB,V ((x = i) ∧ (z = i+ 1) ∧ (t = j)) then
6 Some(Down)
7 else if a vB,V ((x = i+ 1) ∧ (y = j) ∧ (t = j + 1)) then
8 Some(Left)
9 else if a vB,V ((x = i) ∧ (z = j) ∧ (y = j + 1)) then

10 Some(Up)
11 else
12 None

13 else
14 None

15 end

Algorithm 4: find resize, finds possible resize among two predicates in
a monomial
Input : P0, P1, a
Output: None ‖ Some(dir): the direction in which the two rectangles can be

merged
1 P+(A′, B′, C′, x0, y0, z0, t0) = P0;
2 P+(A′′, B′′, C′′, x1, y1, z1, t1) = P1;
3 if A′′ = A′ ∧B′′ = B′ ∧ C′′ = C′ then
4 if a vB,V ((x0 = x1) ∧ (z0 = z1) ∧ (t0 = y1)) then
5 Some(Right)
6 else
7 if a vB,V ((y0 = y1) ∧ (t0 = t1) ∧ (z0 = x1)) then
8 Some(Down)
9 else

10 None

11 end

12 end

13 else
14 None

15 end

Post]+,M. The computation of Post]+,M(P, a, A,B,C,X1, X2) is described in
Algorithm 1. It starts by looking whether one of the predicates stored in P (the
variables of which are bound by a) can be geometrically extended using the fact
that the cell (X1, X2) (also bound by a) now also contains the addition of B and
C. This helper function is detailed in Algorithm 3: we only have to test a linear
relation among variables in the numerical domain. In this case, the variables in a
are rebound to fit the new rectangle. If no such predicate is found and P already
contains Mpred predicates then Post]+,M gives back (P, a). If no such predicate is
found but P contains less than Mpred predicates, then a new predicate is added
to P, stating that the square (X1, X2, X1 + 1, X2 + 1) contains the addition of
B and C. Finally, the other cases in the algorithm ensure that all predicates of
the abstract state are describing the same matrices. The soundness of Post]+,M

comes from the fact that we extend a predicate only in the cell where an addition
has just been performed and from the test on line 15 in Algorithm 1 that ensures
that if we start to store the sum of some newly encountered matrices in a matrix
where some predicates held, then all the former predicates are removed.

Res+. The function Res+ tries to merge two predicates when they correspond
to two adjacent rectangles, the union of which can be exactly represented as
a larger rectangle (the resize conditions are also given by linear relations). A
description of a function Res+,M can be found in Algorithm 2, with the help of
Algorithm 4, and Res+ is the application of Res+,M to every monomial in the
abstract state considered. The soundness of Res+ comes from the soundness of
the underlying numerical domain and the tests performed by find resize.

Theorem 1. The analyzer defined by the Post] function is sound, in the sense
that it over-approximates the reachable states of the program:

∀C ∈ C, ∀S], PostJCK(γp(S])) ⊆ γp(Post]JCK(S]))

The idea of the proof is to show that the proposed functions Post]+,M and
Res+,M are sound, and to underline that the termination of the analysis of the
while loop is ensured by a convergence of the shape of the abstract states.

4.2 Matrix multiplication

Consider Program 1.3 that implements a matrix multiplication. It employs two

kinds of matrix assignments: E1
∆
= A[X1][X2] ← c ∈ R and E2

∆
= A[X1][X2] ←

A[X1][X2]+ B[X1][X3]×C[X3][X2], the first one being used as an initialization,
and the other one to accumulate partial products. To achieve a modular design,
we naturally associate to each kind of assignments a kind of predicates, and show
how these predicates interact. More precisely, in our case, we consider the two
predicates:

Ps(A, x, y, z, t, c)
∆
= ∀i, j ∈ [x, z − 1]× [y, t− 1], A[i][j] = c

P×(A,B,C, x, y, z, t, u, v)
∆
=

∀i, j ∈ [x, z − 1]×[y, t− 1], A[i][j] =

v∑
k=u

B[i][k]× C[k][j]

1 n >= 1;
2 i := 0;
3 while (i < n) do
4 j := 0;
5 while (j < n) do
6 A[i][j] <- 0;
7 j := j +1
8 done;
9 i := i +1

10 done;
11 i := 0;
12 while (i < n) do
13 j := 0;
14 while (j < n) do

15 k := 0;
16 while (k < n) do
17 A[i][j]<-A[i][j]+
18 B[i][k]*C[k][j];
19 k := k + 1;
20 done
21 j := j + 1;
22 done
23 i := i + 1;
24 done

Program 1.3: Multiplication with
inner loop on k.

which state respectively that the matrix A has been set to c on some rectangle,
and that the matrix A received a partial product of B and C.

Predicates can interact together in two ways. Firstly, in a non productive
way, for example an addition is performed in a matrix A and then the matrix
A is reset to 0. In order to ensure soundness, we need to remove the predicate
stating that A received an addition. Secondly, in a productive way, meaning that
a matrix A is set to 0 as a prerequisite to receiving the product of two matrices,
by summation over k of the partial products B[i][k]× C[k][j].

Removing predicates. The analysis suggested for the addition in terms of
postconditions can be extended to the set predicate Ps the same way. Indeed,
we add a function Post]s,M, that enlarges the predicates Ps(A, x, y, z, t, c) and

a function Ress,M, that resizes them when possible, and likewise Post]×,M and
Res×,M for predicate P× (it is done the same way as the addition predicate).

However, for the analyzer to be sound, we need to ensure that Post]×,M and

Post]s,M check whether the matrix that was modified (A) by the evaluated com-
mand (resp. A[X1][X2] ← B[X1][X2] + C[X1][X2] and A[X1][X2] ← c) appears
in some other predicate P . If it is the case, then P is removed from the state,
thus loosing information but ensuring soundness.

Splitting predicates. In Program 1.3, matrix A is set to 0 before the main loop.
This is necessary if we want to compute the product of B and C into A. Therefore,
we can only assert P×(A,B,C, i, j, i + 1, j + 1, 0, 1) after a command A[i][j]

<- A[i][j] + B[i][k]*C[k][j] if some precondition states that A[i][j] = 0

(e.g., a Ps predicate). Therefore the postcondition Post]×,M checks whether a
predicate states that A[i][j] = 0. If no such predicate exists, we can not produce
a multiplication predicate. If it exists, then we can but we have to split the zero
predicates. In order to illustrate this case, Fig. 7 depicts the evolution of the
different predicates during the analysis of Program 1.3. Notice that we have only
drawn the evolution of predicates that will lead to a successful result (meaning
that, among all the possible states the matrix can be according to the abstract
state, Fig. 7 only depicts the most advanced one, i.e., the one that is the most

i

k

j

i

k

j

i

k

j

i

k

j

(a) at 5 (b) at 8 (c) at 8 (d) at 10
i = 0, j = 0 i = 0, j = 1 i = 3, j = 2 i = 7, j = 7

i

k

j

i

k

j3

i

k

j6

i

k

j

(e) at 19 (f) at 19 (g) at 19 (h) at 24
i = 0, j = 0, k = 1 i = 0, j = 4, k = 3 i = 5, j = 3, k = 6 i = 7, j = 7, k = 7

Fig. 7: Evolution of the predicates for Program 1.3. The predicates are, in order
of apparition: Ps(A,B,C, . . .) (in b, c, e, f, g), Ps(A,B,C, . . .) (in c, d, e, f, g),
P×(A,B,C, . . .) (in e, f, g), P×(A,B,C, . . .) (in f, g), P×(A,B,C, . . .) (in g, h).

precise about the contents of the matrix). An abstract state is the superposition
of all possible states, hence not only those shown in Fig. 7.

Finally, we notice that the variables occuring in the P× predicate mentioned
above do not have the same role. Indeed, x, y, z, t variables denote a localization
in the matrix while u, v variables depict the evolution of the multiplication.
To be able to analyze matrix multiplicating programs where loops on k and i
have been interchanged we had to introduce new predicates including existential
quantification over matrices, which we do not detail here for lack of space.

5 Function calls

In this section, we extend our analysis to support analyzing function calls in
a modular way. Our goal is to be able to efficiently analyze larger programs,
where different functions need different predicates to prove the correctness of
the whole program. In order to do so, we do not want to have to inline and
prove again the correctness of each function when called. Therefore, we propose
a method to compute pre and postconditions of functions and achieve a modular
inter-procedural analysis. For the sake of presentation, function arguments are
limited to matrices (we omit the handing of scalar function arguments as this
is standard). Moreover, we assume that we are given a domain that can express
symbolic equalities between matrices, which is useful to bind formal and actual

matrix arguments during function calls, but the presentation of which we also
omit for the sake of concision (and as it does not present additional difficulties).

Function calls. We will store the result of the analysis of a function for further
use. However, the context in which functions are called may differ from one
call to another. Those differences can be either the size of the matrices or the
contents of the matrices. In our analyzer, pre and postconditions are expressed
as abstract states: when the analysis of a function f is made, starting from an
abstract state S]

i yielding a postcondition S]
o, we store (f, S]

i , S
]
o). Then, when

a call to f is made under a context S], we test whether S] v S]
i , in which case

γ(S]) ⊆ γ(S]
i) therefore Post(γ(S])) ⊆ Post(γ(S]

i)) and the soundness of the

analyzer gives us Post(γ(S])) ⊆ γ(Post](S]
i)) and finally Post(γ(S])) ⊆ γ(S]

o).

Therefore, when S] v S]
i holds, a possible postcondition is S]

o, which enables
us to avoid reanalyzing the function. In order for this method to be efficient,
we need to store elements (S]

i , S
]
o) such that S]

i is the biggest possible, so that
it covers many different calling contexts for the function, but small enough, so
that the evaluation of the function produces an interesting state S]

o. To ensure

this, in our implementation, we chose to enlarge the entry context S]
i found at

call sites in the following way:

– Conditions of the form A.n = n ∈ N∗ stored in the ground domain a are
replaced with A.n ≥ 1. But we keep (in)equalities between the sizes of ma-
trices. That way, we generalize the precondition in order to be able to reuse
the analysis on matrices of different sizes.

– Predicates on the matrices are forgotten.

These choices can prevent us from analyzing precisely programs we could ana-
lyze using the non-modular analysis of Sect. 4 by inlining functions; however, it
makes the efficient and modular analysis easier to perform. Finding more clever
abstractions of the calling context that are precise enough to enable the analysis
and that maximize the possibility of reuse is a hard problem on which future
work is required.

The aliasing problem. To present the aliasing problem, let us start by looking
at Program 1.4. The analyzer proposed in Sect. 3.1 will not conclude that this
program is storing in A the addition of the initial value of B and A (because
when a command A[X1][X2]← B[X1][X2] + C[X1][X2] is encountered, it needs
to check that A 6= B ∧A 6= C). However, we would like our analyzer to conclude
on Program 1.5 that at the end of function main we have A = B+B+C where
+ is the matrix addition. Firstly, let us note that the analyzer will reanalyze
the code of a function each time it is called with a different aliasing. Indeed, the
analysis made for a call add(A,B,C) is not the same as the analysis that will be
made for add(A,B,A). Note that each aliasing is analyzed only once and there
are a finite number of possible aliasing (i.e., partitions of {A,B,C}).

1 i := 0;
2 while (i < n) do
3 j := 0;
4 while (j < n) do
5 A[i][j] <- B[i][j] +

A[i][j];
6 j := j + 1;
7 done
8 i := i + 1;
9 done

Program 1.4: Addition.

1 function add(A,B,C) {
2 i := 0;
3 while (i < A.n) do
4 j := 0;
5 while (j < A.n) do
6 A[i][j] <- B[i][j] + C[i][j];
7 j := j + 1;
8 done
9 i := i + 1;

10 done
11 }
12 function main () {
13 add(D,E,F)
14 add(A,B,C);
15 add(A,B,A)
16 }

Program 1.5: Addition with aliasing.

Callee analysis. We consider new predicates, called equality predicates: Eq(A,
B, x, y, z, t) = ∀a, b ∈ [x, z − 1] × [y, t − 1], A[a][b] = B[a][b] that we will use in
the analysis of the callee. In order to analyze a function call function f(A0,
. . . , An−1) = { C }, we perform two substitutions in the code C of the callee: a
first one to match the semantic of the function call ((λA.C)B → C[B/A]) and
a second one which transforms every matrix name (B) in the body of the callee
into an auxiliary name (B′). We add equality predicates stating that those two
matrices are the same (B = B′) at the entry of the function. When a read is
made in an auxiliary version (B′) and the equality predicates specify that the
two matrices are identical (Eq(B,B′, . . .)) we can state that the read was made
in the original matrix (B). When a write is made to a matrix, we destroy the
equality predicate in the corresponding cell. This method gives us:

– Input/Output relations between matrices (expressed as symbolic or predicate
relations between matrices and their auxiliary versions).

– What matrices were unmodified by the function call (as matrices are passed
by reference to the functions, knowing it was not modified is necessary if we
want to ensure that relations existing in the caller before the function call
are still holding).

Example 4. Let us consider Program 1.5. The function add is analyzed twice,
because of the two different aliasing. A first analysis of add is performed on line
13, this concludes that add(G,H,I) stores the sum of H and I in G and leaves H

and I unchanged. Therefore on line 14, no new analysis of add is performed as
we are able to reuse the first analysis. However, on line 15, we need to perform a
new analysis as no stored analysis result can be found to match the arguments.
We are able to conclude at the end of the analysis of main that E,F,B,C were
not modified, that A=B+B+C, and D=E+F.

The method proposed in this section can also be exploited to accelerate the
analysis of nested loops. Traditional abstract interpretation by induction on the

syntax requires reanalyzing inner loops completely for each iteration of outer
loops, which is very costly for deeply nested loops. By considering each loop level
as a module to be analyzed separately, we can compute pre and postconditions
that are expressive enough, so that each evaluation of the loop body is reduced
to a table lookup. This was used to improve the performance of our analyzer
(Sect. 6).

6 Implementation

1 /* n >= 10 */;
2 /* n = 32 * a + b */
3 /* 1 <= b < 32 */
4 Array A of n n;
5 Array B of n n;
6 Array C of n n;
7 i := 0;
8 while (i <= a) do
9 j := 0;

10 while (j <= a) do
11 ii := 0;
12 if (i = a) then
13 endi := 32
14 else
15 endi := b;
16 while (ii < endi) do
17 jj := 0;
18 if (j = b) then
19 endj := 32

20 else
21 endj := b;
22 while (jj < endj) do
23 x = 32 * i + ii;
24 y = 32 * j + jj;
25 A[x][y] <- B[x][y] +

C[x][y];
26 jj := jj + 1;
27 done;
28 ii := ii + 1;
29 done;
30 j := j + 1;
31 done;
32 i := i + 1;
33 done

Program 1.6: Addition tiled with
reminder.

Results. We implemented the algorithms proposed above as well as various
improvements to make the analysis more robust, notably symbolic equality do-
mains [15] able to improve the pattern matching used in the assignment transfer
function. Our prototype was able to prove the functional correctness of all the
programs mentioned earlier (addition and multiplication). We also analyzed tiled
versions of these algorithms, which is a classic optimization (performed by hand
or automatically) that increases cache efficiency, but makes the algorithm more
difficult to understand. Program 1.6 gives one example of optimized matrix ad-
dition, with a tiling factor of 32. Our method successfully analyzes the tiled
algorithms, as long as the tiling size is a constant, which is the case for all the
optimizers we know of. Note that the tiling transformation causes a doubling in
the depth of nested loops and adds some complex conditionals to handle border
cases (partially filled tiles), resulting in a more challenging program to analyze.
Additionally, we analyzed alternate versions where loops are interchanged, or
indices run in decreasing order (from n− 1 to 0). In all those cases, the analyzer
still proves the functional correctness of the program. All of those programs
were analyzed using only few predicates, thus showing that multiple versions

2 loops 3 loops 4 loops 6 loops

Set to 0 0.022

Addition 0.042 0.772 50.9 (3.36 using §5)

Multiplication 0.232 110.0

Addition with rest 1.389

GEMM 0.54

Fig. 8: Analysis time in seconds.

of a program can be analyzed using a single predicate. Hence, the analysis is
robust against all the following transformations: loop tiling, switching the loops
(row-major or column-major iteration), reverting the loops (iterating downward
instead of upward).

Implementation. The implementation of the different analyzers has been writ-
ten in Ocaml using the Apron module (for numerical domains). The final imple-
mentation using all proposed abstract domains is about 6000 line long (not
counting the parser). It enables us to parse code written in a C like language
and analyze this code using the previously mentioned abstractions. This an-
alyzer computes the abstract reachability at every code point depending on
the initial abstract states. The implementation has been tested mainly on pro-
grams performing additions, products, GEMM (general matrix multiplication:
C ← αAB+βC), scaling, with various optimizations and on every possible loop
order. As examples, we mostly used programs optimized by Pluto and pro-
grams we found in a BLAS library (Basic Linear Algebra Subprograms). Those
programs are all successfully analyzed by the final implementation. Figure 8
gives the time it took for the analyzer to prove the functional correctness of
programs proposed in this article. The number of loops indicated is the biggest
number of interlocked while loops that can be found in the program (additions
and multiplications require respectively 2 and 3 nested loops without tiling, and
4 and 6 nested loops with tiling enabled, addition tiled twice require 6 loops). For
the (twice) tiled addition, we also show the benefit of the loop-modular analysis
of Sect. 5.

Trace partitioning. In order to make the analysis more precise, we used trace
partitioning [17] to separate some monomials according to their history. We recall
that abstract states are of the form (P, a) and that we ensured a finite number
of possible shapes for monomials by bounding the number of predicates the
analyzer can use. Hence, we modified abstract states to be of the form (i,P, a)
where i ∈ N is called a flag. We now say that two monomials have the same
shape if they have the same flag and they have the same shape according to
the previous definition. We encode in a flag i the program path taken by each
monomial along the analysis (whether it has been through each loop or not and
in which branch of a condition it has been).

Numerical abstract domain. The abstract states defined in this paper require
an underlying numerical domain. Some of the numerical variables stored in the
numerical domain are used to describe ”zones” in a matrix where some relations
hold. As we wanted our analyzer to be robust against operations such as tiling
we needed relations such as 32i− j = 0 and 32i− j ≤ 0 to be precise, therefore
we chose the polyhedra domain [9]. As most of the operations performed by
our analyzer are done on the numerical abstract domain, the cost of the analysis
depends mainly on the cost of the operation in the underlying numerical domain.
However for a different set of predicates (e.g., not describing rectangular shapes),
a less expensive numerical domain could be used (such as intervals or octagons).

7 Related work

A standard way to efficiently handle possibly unbounded arrays when a low
level of precision is sufficient is to abstract arrays as a single cell containing a
non-relational abstract value, using weak update. As the static analysis of ar-
ray properties has drawn some significant attention lately, more precise methods
have been devised. Gopan et al. [11] extend this standard method by allowing
relational (but still uniform) abstractions. A class of analyses [12,13,8] dynami-
cally partitions arrays, which allows expressing non-uniform properties of arrays
as well as strong updates. Allamigeon has designed companion numeric domains
specifically targeting array partition bounds [1]. String analysis for C programs
can be seen as a special case of array analysis, and similar partitioning-based
methods have been proposed [2]. All these methods differ on whether a partition
or a covering is used, how partition bounds are expressed and inferred, the rela-
tionality between partition contents and partition bounds, etc. Fluid updates [10]
address the problem of weak updates in a different way, by expressing array parts
using constraints, manipulated by a SMT solver, instead of explicit partitions.
Monniaux et al. [16] propose an original method by abstraction through ad-hoc
Galois connections into purely scalar programs that are then analyzed with stan-
dard methods. Our work is much closer to parametric predicate abstraction [6],
which also analyzes arrays using predicates of fixed shape conjoined with numeric
properties. The large majority of these works only focus on properties of uni-
dimensional arrays. Nevertheless some array abstractions are powerful enough
to consider array elements of arbitrary types, and could be possibly nested to
handle matrices as arrays of arrays of numbers (this is explicitly mentioned as
a possibility in [8] but without details nor experiments) while the method of
[16] can analyze matrix initialization (and possibly more) when parameterized
with the correct predicate. As far as we know, none of these methods has been
applied to prove matrix multiplication algorithms correct, nor do they address
the problem of deeply nested loops in optimized matrix algorithms.

8 Conclusion

We have proposed new abstractions to prove the functional correctness of matrix-
manipulating programs, such as addition and multiplication. They are paramet-
ric in a set of predicates (corresponding to the functional properties to prove)
and classic relational numeric domains. Our prototype implementation provided
encouraging experimental results, both in term of performance and precision. In
particular, precision-wise, we could prove the correctness of several variants of
additions and multiplications, including basic loop reordering but also versions
generated from a source-to-source loop optimizer which introduces tiling (mak-
ing the code significantly more complex, with in particular more nested loops).
We also showed how our method can be embedded in a modular inter-procedural
analysis, with clear benefits for the efficiency of the analysis.

Future work will include enriching our predicates in order to tackle a wider
range of matrix and vector manipulations, such as Gauss elimination, LU decom-
position, linear system resolution, eigenvectors, or eigenvalues computation, etc.
Another direction for future work is to make the analysis robust against more
varied program transformations and optimizations, such as instruction-level re-
ordering, loop pipelining, or vectorization. Ultimately, we would like to be able
to analyze the assembly or low-level representation output by a compiler, and
prove that the functional correctness still holds despite compiler optimization,
without the burden of certifying the optimizing part of the compiler itself. Our
analysis currently assumes a real semantics, while actual implementations of ma-
trix operations employ floating-point arithmetic. Hence, with respect to a float
implementation, we prove that, e.g., a matrix addition program computes one
float approximation of the matrix addition, but not that it does so while respect-
ing the order of operations specified in the original, unoptimized program (and
this may change the result due to rounding errors). While we believe that this
already provides an interesting correctness criterion (especially because matrix
libraries seldom guarantee an evaluation order), future work will include design-
ing predicates reasoning on floats in order to take execution order and rounding
into account. Finally, we have only demonstrated our method on a simple proto-
type for a toy language, but future work will consider more realistic C programs,
such as actual BLAS libraries or scientific applications.

References

1. Xavier Allamigeon. Non-disjunctive numerical domain for array predicate abstrac-
tion. In ESOP 2008, volume 4960 of LNCS, pages 163–177. Springer, 2008.

2. Xavier Allamigeon, Wenceslas Godard, and Charles Hymans. Static analysis of
string manipulations in critical embedded C programs. In SAS 2006, pages 35–51.
Springer, 2006.

3. Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. A static ana-
lyzer for large safety-critical software. In Proc. of PLDI’03, pages 196–207. ACM,
Jun. 2003.

4. Uday Bondhugula, Muthu Manikandan Baskaran, Sriram Krishnamoorthy, J. Ra-
manujam, Atanas Rountev, and P. Sadayappan. Automatic transformations for
communication-minimized parallelization and locality optimization in the polyhe-
dral model. In CC 2008, volume 4959 of LNCS, pages 132–146. Springer, 2008.

5. Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. A practical
automatic polyhedral parallelizer and locality optimizer. In Proc. of PLDI 2008,
pages 101–113. ACM, 2008.

6. Patrick Cousot. Verification by abstract interpretation. In Verification: Theory and
Practice, Essays Dedicated to Zohar Manna on the Occasion of His 64th Birthday,
volume 2772 of LNCS, pages 243–268. Springer, 2003.

7. Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of fixpoints.
In Proc. of POPL 1977, pages 238–252. ACM, 1977.

8. Patrick Cousot, Radhia Cousot, and Francesco Logozzo. A parametric segmenta-
tion functor for fully automatic and scalable array content analysis. In Proc. of
POPL 2011, pages 105–118. ACM, 2011.

9. Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints
among variables of a program. In Proc. POPL 1978, pages 84–96. ACM, 1978.

10. Isil Dillig, Thomas Dillig, and Alex Aiken. Fluid updates: Beyond strong vs. weak
updates. In ESOP 2010, pages 246–266. Springer, 2010.

11. Denis Gopan, Frank DiMaio, Nurit Dor, Thomas Reps, and Mooly Sagiv. Numeric
domains with summarized dimensions. In TACAS 2004, pages 512–529. Springer,
2004.

12. Denis Gopan, Thomas W. Reps, and Shmuel Sagiv. A framework for numeric
analysis of array operations. In Proc. POPL 2005, pages 338–350. ACM, 2005.

13. Nicolas Halbwachs and Mathias Péron. Discovering properties about arrays in
simple programs. SIGPLAN Not., 43(6):339–348, June 2008.

14. Xavier Leroy. Formal certification of a compiler back-end, or: Programming a
compiler with a proof assistant. In Proc. POPL 2006, pages 42–54. ACM, 2006.

15. Antoine Miné. Symbolic methods to enhance the precision of numerical abstract
domains. In VMCAI 2006, volume 3855 of LNCS, pages 348–363. Springer, 2006.

16. David Monniaux and Francesco Alberti. A simple abstraction of arrays and maps
by program translation. In SAS 2015, volume 9291 of LNCS, pages 217–234.
Springer, 2015.

17. Xavier Rival and Laurent Mauborgne. The trace partitioning abstract domain.
ACM Trans. Program. Lang. Syst., 29(5), 2007.

18. Arnaud Venet. Abstract cofibered domains: Application to the alias analysis of
untyped programs. In SAS’96, volume 1145 of LNCS, pages 366–382. Springer,
1996.

	Static Analysis by Abstract Interpretation of the Functional Correctness of Matrix Manipulating Programs

