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Abstract We address the problem of verifying concurrent programs un-
der store-buffer-based weakly consistent memory models, such as TSO
or PSO. Using the abstract interpretation framework, we adapt existing
domains for arrays to model store buffers and obtain a sound abstrac-
tion of program states (including the case of programs with infinite state
space) parameterised by a numerical domain. Whereas the usual method
for this kind of programs implements a program transformation to come
back to an analysis under a sequentially consistent model, the novelty
of our work consists in applying abstract interpretation directly on the
source program, setting a clean foundation for special dedicated domains
keeping information difficult to express with program transformations.
We demonstrate the precision of this method on a few examples, tar-
getting the TSO model and incidentally being also sound for PSO due
to some specific abstraction choice. We discuss an application to fence
removal and show that our implementation is usually able to remove as
many or more fences, with respect to the state of the art, on concur-
rent algorithms designed for sequential consistency while still remaining
precise enough to verify them.

1 Introduction

Multicore architectures have become increasingly important in the performance
race of computers, hence concurrent programming is nowadays a wide-spread
technique. Its most abundant paradigm is shared memory: all threads run sim-
ultaneously on different cores, and they communicate by accessing the same
locations in the common memory.

The intuitive execution model of these concurrent programs is the sequential
consistency 3 [16]. It states that the possible executions of a concurrent program
correspond to sequential executions of the interleavings of its threads. However,
for optimisation reasons, modern processors or language implementations do
? This work is partially supported by the project ANR-11-INSE-014 from the French
Agence nationale de la recherche.

3 We will use the acronym SC, as it is usually done.



initial x = 0 && y = 0;

/* Thread 1 */
x = 1;
r1 = y;

/* Thread 2 */
y = 1;
r2 = x;

Figure 1. A simple program with counter-intuitive possible results on x86

/* Property to check: At labels (bp0; bp1), tail < h1 */
int head;

/* ENQUEUE */
int h1;

while true {
h1 = head;
bp0:
h1 = h1 + 1;
head = h1;

}

/* DEQUEUE */
int tail , h2;

tail = head;
while true {

h2 = head;
while (tail >= h2) {

h2 = head;
}
bp1:
tail = tail + 1;

}

Figure 2. A program with unbounded buffers and variable value space

not stick to this description, but add some additional possible behaviours. For
instance, after the execution on a x86 CPU of the program described in Figure 1,
it is possible that both registers r1 and r2 are equal to 0, because memory writes
are buffered and Thread 1 can read y to 0 even after Thread 2 has executed the
assignment y=1.4

The example program of Figure 1 is actually quite simple: the value space of
the variables is small (four variables, each one can be equal to 0 or 1), and the
size of the write buffers is bounded by a known and computable limit (that is 1).
However, the program described in Figure 2 is much more complicated: none of
these properties holds anymore. There are infinitely many reachable states, and
unbounded and nested loops. Furthermore, the actual execution model adds
again some possible behaviours, with unbounded write buffers. This makes it
even harder to reason on its correctness.

Weakly consistent memory models [1] aim to formally describe these addi-
tional behaviours in addition to the sequentially consistent ones. However, as
this complexity adds to the inherent difficulties of writing correct concurrent
programs, automatic verification becomes more and more useful.

4 The result set of this program is x = 1, y = 1, r1 ∈ {0, 1}, r2 ∈ {0, 1}. Most static
analyses are able to infer it exactly, and ours will too.



Several works [2,3,4,5,10,14,15,17] have been done in this area, using vari-
ous static analysis techniques and targetting different memory models (see Sec-
tion 6). Our work focuses on abstract interpretation [8], by giving an abstract
semantic of concurrent programs which takes into account the relaxed memory
effects of the TSO model. Amongst works that use this abstract interpreta-
tion framework, the usual method consists in applying a transformation on the
source program to obtain another program which exhibits the same behaviour
when run under sequential consistency. This resulting program is then verified
with existing SC analysers.

This paper describes a general method to adapt existing array abstractions in
order to represent the buffer part of the state of a concurrent program. Contrary
to existing work, this method applies abstract interpretation directly on the
source program. By doing so, we set a clean foundation for special dedicated
domains keeping information difficult to express with program transformations.
In particular, our analysis is able to prove the program in Figure 2 correct,
which is impossible with the state of the art since existing analyses are limited
to bounded write buffers or programs which are finite-state when they run under
SC.

After describing in Section 2 a concrete operational semantics of programs
running under the chosen memory model, Section 3 presents the formalisation
of an instance of our abstract domain using the summarisation approach from
Gopan et al. [11] Section 4 then describes how to formalise more precise and
complex abstractions. In Section 5, we give some experimental results obtained
with an implementation of the first instance. We finally discuss a comparison
with related works in Section 6. Section 7 concludes.

1.1 Weak Memory Models

We focus on two similar weak memory models, TSO and PSO, for total (resp.
partial) store ordering. TSO is especially known to be the base memory model
of the x86 CPU family [19]. In general, weak memory models can be described
in several ways, e.g. by giving axiomatic (based for instance on event reordering)
or operational semantics. We will work with the latter.

The operational model of TSO adds to the usual registers (or local variables)
and shared memory of the sequentially consistent concurrent programs a buffer
for each thread of the program. These buffers act as unbounded FIFO queues
for the writes issued by the corresponding thread: when some thread executes
an instruction such as x := n for some shared variable x, the value n does not
reach the memory immediately, but instead the binding x= $\mapsto$ =n is
pushed into the buffer. Conversely, when a thread attempts to read the value of
some shared variable x, it effectively reads the value corresponding to the most
recent binding of x in its own buffer. If this buffer contains no entry for x, then
its value is read from the memory: a thread cannot directly access the buffer of
another thread.

At any time between the execution of two instructions (which we consider
as being atomic), the oldest binding of a buffer can be flushed: it disappears



from the buffer and its value is used to update the memory at the corresponding
variable location. The mfence specific instruction also flushes every entry of the
buffer, enforcing consistency with memory updates.

This model therefore ensures that two consecutive writes issued by a thread
cannot be seen in the opposite order by another one. It also ensures that when
a write issued by a thread is visible to another one, then it is visible to every
other thread with no corresponding entry in its buffer.

PSO works almost the same way, except that there is not a single buffer per
thread, but a buffer per thread per shared variable — or equivalently, entries
concerning different variables in the buffer can be reordered before they reach
the memory. The mfence instruction will flush every buffer of the thread which
executes it.

We now illustrate the behaviour of buffers by describing a concrete example
of an execution of the program in Figure 2. We first note that as it involves
only one shared variable head, TSO and PSO are equivalent for this program:
there is only one buffer used (for thread ENQUEUE, as thread DEQUEUE does not
write anything to head), which we will denote as the list of the values written
in it (most recent first). Let us set the initial value of head for this particular
execution to 0.

– After one iteration of the loop of the ENQUEUE thread, h1 is equal to 1, head
is still equal to 0 in the shared memory, but the buffer of the ENQUEUE thread
contains one entry for head: {1}.

– Then thread DEQUEUE executes tail = head: it has no entry for head in its
buffer, thus it reads from the memory, and tail is now equal to 0.

– Thread ENQUEUE starts a new iteration. It executes h1 = head and reads the
most recent entry in its buffer: h1 is equal to 1.

– Thread ENQUEUE finishes its iteration: its buffer now contains {2, 1} and h1
is equal to 2.

– Thread ENQUEUE starts a new iteration and executes h1 = head: h1 reads
from the buffer and is now equal to 2.

– Thread ENQUEUE flushes one entry from its buffer: it now contains {2} and
head is equal to 1. It reaches label bp0.

– Thread DEQUEUE enters its outer loop. It executes h2 = head, which still
reads from the memory. It can now read the write from thread ENQUEUE
which has been flushed: h2 is equal to 1.

– tail is equal to 0 and h2 is equal to 1: thread DEQUEUE does not enter the
inner loop and reaches label bp1.

– tail is equal to 0, h1 is equal to 2: the property holds, but we only tested
it for a particular reachable state. Our analysis will be able to prove it for
every possible execution path.

For three main reasons, our main target is TSO:

– It is a “real-life” model, corresponding to x86 processor architecture, whereas
PSO is mainly of theoretical interest.



– It fills a sweet spot in the relaxation scale: most algorithms designed with
sequential consistency in mind become incorrect, yet one can usually get back
the desired behaviour with only a few modifications, such as fence insertion
at selected points.

– It is a conceptually simpler and less permissive model than some other more
relaxed ones like POWER, C11 or Java, which is a sensible property to lay
the ground for works on the latter.

However, the abstraction choices made in our implementation happens to lose
enough information to make our analysis also sound for PSO. For this reason, we
mention and use this model in our formalisation. Yet we do not seek a precise
abstraction of the special sfence instruction of PSO (which ensures that all
stores preceding it will be flushed before the following ones), as it does not exist
on our target model (if needed, it can soundly be abstracted by the identity).
Section 4 will present abstractions able to exploit the additional precision of
TSO (though we did not implement them).

1.2 Use of Array Abstractions

Presentation of the Technique. When using these operational models, buf-
fers constitute the main difficulty for abstracting weakly consistent states: they
behave as an unbounded FIFO queue whose size can change in a dynamic and
non-deterministic way on virtually every execution step. We chose to use array
abstractions to build computable abstract representations of these buffers.

On top of usual operations over fixed-size arrays, these abstractions must
support (or be extended to support) an operation adding an element, and an
operation removing one. Then we adapt them to go from arrays, which are
fixed-size structures with immediate access to each element, to buffers, which
behave mostly like FIFO queues whose size can change a lot during program
execution, but are only accessed either at the beginning or the end, not at
arbitrary positions.

A first and direct encoding consists in representing a buffer5 B of size N
with N different variables B1, ..., BN . Adding an entry E at the top of the buffer
amounts to adding BN+1, shifting all the variables (BN+1 := BN ; ...;B2 := B1),
and assigning E to B1. We also consider, for each shared symbol x, an abstract
variable xmem which holds the memory value of x. This model is very concrete
and results in unbounded buffers. To ensure termination, existing work enforce a
fixed or pre-computed bound on the buffers, and the analysis fails if this bound
is exceeded. As we will see shortly, our method does not have this limitation.

Dan et al. [10] propose another encoding of the buffers which does not need
the shifting operation. The obtained analysis is usually more precise and efficient,
but it suffers from the same limitation: buffer sizes must be statically bounded
or the analysis may not terminate.
5 In TSO, these buffers contain a tuple (variable name, variable value). In PSO, as
there is one buffer for each variable, they simply contain integers. The abstract
variables Bi share the same type.



Summarisation of Unbounded Buffers. To get a computable abstraction
which allows unbounded buffers, we use the summarisation technique described
by Gopan et al. [11]

This technique consists in regrouping several variables under the same sym-
bol. For instance, if we have a state (x, y, z) ∈ {(1, 2, 3); (4, 5, 6)}, we can group
x and y in a summarised variable vxy and get the possible states as follows:

(vxy, z) ∈ {(1, 3); (2, 3); (4, 6); (5, 6)}

This is indeed an abstraction, which loses some precision (since we cannot
distinguish anymore between x and y): the summarised set also represents the
concrete state (x, y, z) = (1, 1, 3), which is absent of the original concrete set.
The advantages are a more compact representation and, more importantly for
us, the ability to represent a potentially infinite number of variables within the
usual numerical domains.

We consider the PSO memory model, therefore we have a buffer for each
variable for each thread, containing numerical values. For each buffer xT of the
variable x and the thread T where they are defined (that is when N ≥ 2), we
group the variables xT2 ...xTN into a single summarised variable xTbot, whose pos-
sible values will therefore be all the values of these buffer entries. We distinguish
all these older entries from xT1 because it plays a special role as being the source
of all reads of x by the thread T (if it is defined). Hence we need to keep it as a
non-summarised variable to prevent a major loss of precision on read events.

Numerical Abstraction of Infinite States. This abstraction only allows to
analyse programs with a finite number of reachable states after summarisation
(finite state programs when run under SC). To be able to verify more com-
plex programs, we use abstractions such as numerical domains (e.g. Polyhedra)
to represent elements with an unbounded (and potentially infinite) number of
states (each one still having an unbounded finite buffer). We will develop this
abstraction in the next part, but the key idea is to partition the states with
respect to the variables they define, so that the states that define the same vari-
ables can be merged into a numerical abstract domain. Using widening, we can
then verify the program in Figure 2.

2 Concrete Semantics

We consider our program to run under the PSO memory model (therefore our
analysis will a fortiori be sound for TSO). We specify in Figure 3 the direct
encoding domain used to define the corresponding concrete semantics.

Notations. Var is the set of shared variable symbols, and VarReg is the set of
registers (or local variables). Unless specified, we use the letters x, y, z for Var and
r, s for VarReg, and e denotes an arithmetic expression over integers and registers
only. Thread is the set of thread identifiers, typically some {1, 2, ...,K},K ∈ N.



VarMem , {xmem | x ∈ Var} (1)

Mem , VarMem→ V Reg , VarReg→ V (2)

∀x ∈ Var, T ∈ Thread, N ∈ N,VarBuf(x, T,N) ,
{
xTi | 1 ≤ i ≤ N

}
(3)

Buf(x, T,N) , VarBuf(x, T,N)→ V (4)

BufSizes , (Var× Thread)→ N (5)

S ,
⋃

N∈BufSizes

Mem× Reg×
∏
x∈Var

T∈Thread

Buf(x, T,N(x, T ))

 (6)

D , P(S ) (7)

Figure 3. A concrete domain for PSO programs

V is the numerical set in which the variables are valued, for instance Z or Q
(respectively the set of integers and rational numbers). N>0 is the set of strictly
positive integers. ◦ is the function composition operator.6

∏
denotes cartesian

product:
∏
m≤i≤nXi = Xm ×Xm+1 × ...×Xn.

Bindings of variables in Var exist both in the memory and in the buffers,
therefore we duplicate the symbols using VarMem and VarBuf. In the definition
of the states set S , for each x ∈ Var, T ∈ Thread, N(x, T ) is the size of the
buffer for the variable x in the thread T . For a given state S, such a N is unique.
We will note it NS thereafter. A concrete element X ∈ D is a set of concrete
states: D = P(S ).

Remark 1. D is isomorphic to a usual numerical points concrete domain. As
such, it supports the usual concrete operations for variable assignment (x := e),
condition evaluation and so on. We will also use the add and drop operations,
which respectively add an unconstrained variable to the environment of the
domain, and delete it along with its constraints.

We define in Figure 4 the concrete semantics of the instructions of a thread.
Formally, for each instruction ins and thread T of the program, we define the
concrete operator JinsKT that returns the set of concrete states obtained when
the thread T performs this instruction from an input set of states. We build
J.KT using basic operations on numerical domains as defined in Remark 1. These
operations are noted with J.K and operate from sets of states to sets of states. For
convenience, we first define J.KT on state singletons, and then lift it pointwise on
general state sets.
6 (f ◦ g)(x) is f(g(x)). That means operators are listed in the equations in reverse
application order.



∀T ∈ Thread, J.KT : D → D (8)

Jx := eKT {S} , JxT1 := eK ◦ JxT2 := xT1 K ◦ ...

... ◦ JxTNS(x,T )+1 := xTNS(x,T )K ◦ Jadd xTNS(x,T )+1K{S}
(9)

Jr := xKT {S} ,
{

Jr := xmemKS if NS(x, T ) = 0
Jr := xT1 KS if NS(x, T ) ≥ 1

(10)

JmfenceKT {S} ,
{
S if ∀x ∈ Var, NS(x, T ) = 0
∅ otherwise

(11)

Jflush xKT {S} ,
{
∅ if NS(x, T ) = 0
Jdrop xTNS(x,T )K ◦ Jxmem := xTNS(x,T )K{S} if NS(x, T ) ≥ 1

(12)

∀X ∈ D , JinsKTX ,
⋃
S∈X

JinsKT {S} (13)

Figure 4. Concrete semantics in PSO

The control graph of a program being the product of the control graphs of
each thread, the concrete semantics of a program is then the least fixpoint of
the equation system described by this graph where edges are labelled by the
corresponding operators of Figure 4. The non-determinism of flushes is encoded
by a self-loop edge of label Jflush xKT for each x ∈ Var, T ∈ Thread on each
vertex in the graph.

Remark 2. An equivalent point of view is to consider the asynchronous execu-
tion of two parallel virtual processes for each thread: the first one is actually
executing the source code instructions of the program and does not perform
any flush, and the second one is simply performing an infinite loop of flushes.
The non-determinism of this asynchronous parallel execution matches the non-
determinism of the flushes.

This equivalent simulation of the execution of the program explains why
the concrete operators of each actual instruction do not perform any flush, and
especially why JmfenceK does not actually write anything to the memory: the
mfence instruction simply prevents the execution of the actual thread to continue
until the associated flushing thread has completely emptied the buffer of every
variable. Therefore, its semantics are the same of a instruction like while (some
variable can be flushed) {}, that is a filter on states with no possible flush.

Properties of this concrete semantics are usually undecidable: not only be-
cause of the classic reasons (presence of loops, infinite value space, infinitely
many possible memory states), but also because buffers have an unbounded
possible size. Thus we use the abstract interpretation framework [8] to describe
abstract operators whose fixpoint can be computed by iteration on the graph.



B[ , Var× Thread→ {0; 1; 1+} (14)

δ : S → B[ (15)

δ(S) , λ(x, T ).


0 if NS(x, T ) = 0
1 if NS(x, T ) = 1
1+ if NS(x, T ) > 1

(16)

Figure 5. A partial information on states buffers to partition them

D −−−→←−−−
α1

γ1 (
B[ → D

)
(17)

α1(X) , λb[.
{
S ∈ X | δ(S) = b[

}
(18)

γ1(Xpart) , {S ∈ S | S ∈ Xpart(δ(S))} (19)

Figure 6. The state partitioning abstract domain

3 Abstract Semantics

3.1 Partitioning

Our first step towards abstraction consists in partitioning the concrete states of
some concret element. We do this partition with respect to a partial information,
for each thread, on the presence of each variable in its buffer: either it is absent,
or it is present once, or it is present more than once. We respectively use the
notations 0, 1 and 1+ for these three cases. We define this partitioning criterion
δ in Figure 5.

We then formalise in Figure 6 the resulting domain. We use the usual state
partitioning domain, given as a Galois connection D −−−→←−−−

α1

γ1 (
B[ → D

)
. We em-

phasise that this abstraction does not lose any information yet.

3.2 Summarising

In order to be able to represent and compute potentially unbounded buffer
states, we then use summarisation [11]. In each concrete partition where they
are defined, we group the variables xT2 ...xTN into a single summarised variable
xTbot.

We denote by D\ the abstract domain resulting from the summarisation of
these variables from D , and suppose we have a concretisation function which
matches the representation notion of Gopan et al. [11]:

γsum : D\ → D



Jfold x, yKX = Jdrop yK(X ∪ Jx := yKX) (20)
Jexpand x, yKX = Jadd yKX ∩ (Jswap x, yK ◦ Jadd yKX) (21)

Figure 7. Summarisation operations fold and expand

γ2 : (B[ → D\)→ (B[ → D) (22)

γ2(X]) , λb[.γsum(X](b[)) (23)

γ : (B[ → D\)→ D (24)

γ , γ1 ◦ γ2 = λX].
{
S ∈ S | S ∈ γsum(X](δ(S)))

}
(25)

Figure 8. Summarising the buffers to regain a bounded representation

D\ should also implement the fold and expand operation described by Go-
pan et al. [11] We recall that Jfold x, yKX is the summarisation operation: y is
removed from the environment of X and, for each state, its value is added as a
possible value of x (where the remaining part of the state remains the same); and
Jexpand x, yK is the dual operation that creates a new variable y whose possible
values are the same as x (put in another way, it inherits all the constraints of x,
but the value of y is not necessarily equal to that of x).

We give in Figure 7 an equivalent formulation of fold and expand as described
by Siegel and Simon [20], which can also be used for implementing them on
domains where they are not natively defined. Jswap x, yKX swaps the value of x
and y in each state of X.

We formalise in Figure 8 the resulting abstract domain. As Gopan et al. [11]
doe not give an abstraction function (not least since it does not necessarily exist
after numerical abstraction, see next Section 3.3), we only provide a concretisa-
tion function γ2 from the summarised domain to the partitioned domain. We
also define a global concretisation function γ from the summarised domain to
the original concrete domain D .

We give the corresponding semantics of our resulting abstract domain in
Figure 9. We first define partial abstract operators {|.|}]T that give, for one ab-
stract input partition (b[, X\), a partition index b[result and a summarised ele-
ment X\

result. Then the full operator J.K]T is computed partitionwise, joining the
summarised elements sent in the same partition index.

Theorem 1. The abstract operators defined in Figure 9 are sound:

∀X] ∈ B[ → D\, JinsKT ◦ γ(X]) ⊆ γ ◦ JinsK]T (X])

Proof. Our abstract domain is built as the composition of two abstractions: the
state partitioning and the summarisation. Therefore the soundness ensues from



∀T ∈ Thread, {|.|} : (B[ ×D\)→ P(B[ ×D\) (26)

{|r := x|}]T (b[, X\) =
{{

b[, Jr := xmemKX\
}

if b[(xT ) = 0{
b[, Jr := xT1 KX\

}
otherwise

(27)

{|x := e|}]T (b[, X\) =



{
b[[xT := 1], JxT1 := eK ◦ Jadd xT1 KX\

}
if b[(xT ) = 0{

b[[xT := 1+],
JxT1 := eK ◦ JxTbot := xT1 K ◦ Jadd xTbotKX

\
}

if b[(xT ) = 1{
b[, JxT1 := eK ◦ Jfold xTbot, x

temp
2 K

◦Jxtemp2 := xT1 K ◦ Jadd xtemp2 KX\
}

if b[(xT ) = 1+
(28)

{|mfence|}]T (b[, X\) =
{{

b[, X\
}

if ∀x ∈ Var, b[(xT ) = 0
∅ otherwise

(29)

{|flush x|}]T (b[, X\) =


∅ if b[(xT ) = 0{
b[[xT := 0], Jdrop xT1 K ◦ Jxmem := xT1 KX\

}
if b[(xT ) = 1 b[, Jdrop xtempK ◦ Jxmem := xtempK

◦Jexpand xTbot, x
tempKX\;

b[[xT := 1], Jdrop xTbotK ◦ Jxmem := xTbotKX
\

 if b[(xT ) = 1+

(30)

∀T ∈ Thread, J.K]T : (B[ → D\)→ (B[ → D\) (31)

JinsK]TX
] = λb[.

⋃\

∃b[
1∈B[,

(b[,X\)∈{|ins|}]
T

(b[
1,X

](b[
1))

X\ (32)

Figure 9. Abstract semantics with summarisation

the soundness results on these two domains, provided we compute the right
numerical elements and send them in the right partitions.

Therefore we will not detail the state partitioning arguments, as it is a fairly
common abstraction. We will simply check that {|.|}]T sends its images into the
right partition. However, summarising is less usual, thus we provide more ex-
planations about the construction of the numerical content of the partitions.

The read operation involves no summarised variable, therefore its semantics
is direct and corresponds almost exactly to the concrete one. The buffers are
left unmodified in the concrete, hence the partition does not change. The fence
operation is also an immediate translation of the concrete one.

The write operation distinguishes two cases: if the variable has a count of 0
in the abstract buffer, no summarisation is involved. If it has a count of 1, it
involves the variable xTbot, but here summarisation still does not appear, since
this variable actually only represents x2 from the concrete state. In both these
cases, the abstract operator is almost the same as the concrete one, and there



is only one partition in the destination, obtained by adding 1 to the presence of
xT .

In the third case, when the variable is present more than once, summarisation
does apply. The numerical part is obtained by translating each step of Equa-
tion (9) into D\, following the results of Gopan et al. [11] The steps JxT1 := eK,
JxT2 := xT1 K and Jadd xTNS(x,T )+1K are directly translated into the corresponding
parts in Equation (28). JaddxTNS(x,T )+1K is translated as the identity, since xTbot
already exists. We now consider the operations of the form JxTi+1 := xTi K, for
i ≥ 2. They all translate into:

Jdrop x′K ◦ Jfold xTbot, x
′′K ◦ Jx′′ := x′K ◦ Jadd x′′K ◦ Jexpand xTbot, x

′K

After applying Jx′′ := x′K, x′′ and x′ become interchangeable: they share the
exact same constraints. Therefore, we can rewrite this formula as:

Jdrop x′′K ◦ Jfold xTbot, x
′K ◦ Jx′′ := x′K ◦ Jadd x′′K ◦ Jexpand xTbot, x

′K

Then, Jdrop x′′K and Jfold xTbot, x
′K being independent, we can make them

commute:

Jfold xTbot, x
′K ◦ Jdrop x′′K ◦ Jx′′ := x′K ◦ Jadd x′′K ◦ Jexpand xTbot, x

′K

However, Jdrop x′′K ◦ Jx′′ := x′K ◦ Jadd x′′K trivially reduces to the identity.
Therefore we obtain Jfold xTbot, x

′K ◦ Jexpand xTbot, x
′K, which Siegel and Simon

also demonstrates to be the identity [20]. All the JxTi+1 := xTi K for i ≥ 2 being
reduced to the identity in the abstract semantics, we indeed get the formula of
Equation (28).

As for the partition, it does not change, since adding one element to a buffer
containing more than one element still makes it contain more than one element.

The flush operation is the most complex. When the partition only has the
variable once in the buffer, it is direct (with no summarisation) as in the other
operations.

However, when a flush is done from a partition which has more than one
variable in its buffer, the abstract element represents concrete states where this
variable is present twice — the concrete image states having it once, and more
than twice — the image states having it more than once.

Hence, in the 1+ case, the abstract flush operator performs two computa-
tions, respectively considering both possibilities, and sends these results into two
different partitions. The contents of these partitions follow directly from the res-
ults of Gopan et al. [11]. ut

Example 1. Let us consider the result of the execution (from a zeroed memory)
by the thread 1 of the instructions x = 1;x = 2, with no flush yet. The resulting
concrete state is xmem 7→ 0, x1

1 7→ 2, x1
2 7→ 1. We now consider the abstraction of

this resulting concrete state. In the abstract buffer part, x1 will be bound to 1+,
and the numerical part will be xmem 7→ 0, x1

1 7→ 2, x1
bot 7→ 1. This abstract state

does not only describe the actual concrete state, but also other concrete states



where the buffer could have other entries with the value 1, such as xmem 7→ 0,
x1

1 7→ 2, x1
2 7→ 1, x1

3 7→ 1. Therefore, for soundness, the abstract flush of the last
entry of the buffer should not only yield the abstract state (x1 7→ 1), (xmem 7→ 1,
x1

1 7→ 2), but also the abstract state (x1 7→ 1+), (xmem 7→ 1, x1
1 7→ 2, x1

bot 7→ 1).

3.3 Numerical Abstraction

Eventually, we abstract the D\ part of our elements using numerical domains.
We can do this in a direct way because, after partitioning and summarisation,
each partition is a set of summarised states which all have the same dimensions
(the same variables are defined in each state of one partition).

We obtain the same kind of formulas for our abstract operators as in Figure 9,
as long as we use domains which can provide the fold and expand operations
as described by Gopan et al. [11] For instance, the authors define them for
Polyhedra and Octagons, and Figure 7 provides a way to compute them with
very common operations of abstract domains, so we can use a wide variety
of abstractions at this step. We hence obtain a resulting abstraction which is
parameterised by the choice of a numerical abstract domain, which can be fine-
tuned to obtain some desirable invariant building capabilities.

The abstract domain built this way allows us to approximate efficiently com-
putations on concrete sets containing an unbounded number of states, each of
them presenting buffers of unbounded length. The soundness proof remains the
same after using numerical domains to abstract sets of summarised states.

4 Towards a Better Precision

We now describe additional abstractions we designed to gain more precision on
the analysis. Unlike the basic abstractions described in the previous section, we
did not implement these domains for lack of time, but they use the same idea of
adapting some array abstraction and show that our framework is generic enough
to add some additional information if needed.

4.1 Non-Uniform Abstraction of Shape Information

We can first improve the precision by using non-uniform abstractions, e.g. the
ones described by Cousot et al. [9] As example, let us consider the program in
Figure 10.

During the concrete execution of this program, the value of x in the memory
can only increase, because of the FIFO property of buffers. However, the pre-
vious abstraction does not keep this information: due to summarisation, after
widening, the abstract variable x0

bot will have every possible natural integer value.
Therefore the instructions r1 = x and r2 = x in Thread 1 will respectively as-
sign all these possible values to r1 and r2, with no relation between them: the
property cannot be verified.



initial x = 0;

/* Thread 0 */
counter = 0;
while (true) {

counter ++;
x = counter ;

}

/* Thread 1 */
while (true) {

r1 = x;
r2 = x;
assert (r1 <= r2);

}

Figure 10. A program with writes in ascending order

To solve this problem, we can use, together with the summarisation, an ab-
straction able to keep the information “the buffer is sorted”. This information
will indeed be valid (say in decreasing order) for the buffer of the first thread,
and the analyser can know it because of the relation x0

1 > x0
bot which ensures

it stays true after writes into x. Therefore the flush operator will be able to
keep the relation x0

bot > xmem, the last element of the buffer being the smallest
one. Then, between r1 = x and r2 = x, the analysis will compute that either
nothing happens, and r1 and r2 have the same value, or some combination of
writes (not modifying xmem) and flushes (increasing xmem) happens, and r1 is
smaller than r2 (or equal if there is no flush). The property holds.

4.2 Handling TSO with Order-Preserving Abstractions

Although all these abstractions were designed to target TSO programs, they
are also sound for PSO (and defined using this model, as a consequence). They
remain sound for TSO, since PSO is strictly weaker; but may lack precision for
some programs to be verified, if these programs rely on the specific guarantee of
TSO which is write order preservation even between different variables. Let us
consider for instance the program in Figure 11.

This program implements Peterson’s lock algorithm for threads synchron-
isation [18]. In TSO, it is indeed correct as written in Figure 11. In PSO, the
following sequence of events could happen:

– Thread 0 writes true into flag_0 and turn, these are not flushed yet.
– Thread 1 writes true into flag_1 and false into turn. turn is flushed, but

not flag_1 (which is possible under PSO).
– Thread 0 flushes its buffers. It immediately overwrites the previous false

value of turn, which simulates the absence of this write instruction from the
program.

– Thread 0 reads false from flag_1 and true from turn in the memory. It
skips the loop and enters the critical section.

– Thread 1 flushes flag_1. It reads true from flag_0 and turn in the memory,
skips the loop and also enters the critical section.



/* Property to check: mutual exclusion at (crit1, crit2) */
initial not flag_0 && not flag_1 && not turn;

/* Thread 0 */
flag_0 = true;
// mfence ;
turn = true;
mfence ;

f = flag_1 ;
t = turn;
while (f && t) {

f = flag_1 ;
t = turn;

}
crit1:
flag_0 = false ;

/* Thread 1 */
flag_1 = true;
// mfence ;
turn = false ;
mfence ;

f = flag_0 ;
t = turn;
while (f && not t) {

f = flag_0 ;
t = turn;

}
crit2:
flag_1 = false ;

Figure 11. A program where the order between variables is important

In TSO, this kind of execution cannot happen, since Thread 0 cannot flush
turn before flag_1 in the memory. However, since our previous abstractions are
sound in PSO, they cannot verify that this program is indeed correct in TSO
without uncommenting the two additional mfence (which prevent the problem-
atic reordering from happening). To be able to do it, we need to add to the
abstraction some information on the write order of different variables. With the
summarisation abstraction, the difficulty lies in the non-distinction between the
older entries for each variable. If a buffer contains [y 7→ 1; y 7→ 2;x 7→ 0; y 7→ 3],
the summarisation loses the distinction between y 7→ 2 and y 7→ 3, so we cannot
express that x 7→ 0 is between them.

We propose to alleviate this problem by extending the summarisation idea to
the order between entries: we keep the information that a given abstract variable
x{0,bot} is more recent than an abstract variable y{0,bot} if and only if all the
concrete buffer entries represented by this x are more recent that all the concrete
entries represented by that y. On the buffer [y 7→ 1; y 7→ 2;x 7→ 0; y 7→ 3], that
gives us the only information “y0 is more recent than x0”. This can be used to
ensure that the flush of the y 7→ 1 entry does not happen before the flush of the
x 7→ 0 one, but will allow the flush of y 7→ 2 before x 7→ 0.

Peterson’s algorithm could then be proved: turn being more recent than
flag_1 in the buffer of Thread 1, it cannot be flushed earlier, hence the prob-
lematic behaviour is forbidden.

In these two cases (non-uniform and order-preserving abstractions), the form-
alisation will be sensibly the same as the one simply using summarisation. The
additional precision will be expressed as a finer paritioning: some partitions will
have extra information such as “the buffer is sorted”, and this information can



be used for restricting the possible output values of some abstract operators
on these partitions. For instance, the Jflush xKT operator will return ⊥ on a
partition where ybot is known as being older than xbot.

5 Experimentations

We implemented our approach and tested it against several concurrent algorithms
(for PSO). Our implementation is written in OCaml. It runs with the library
ocamlgraph [7], using a contributed module which iteratively computes the fix-
point of the abstract semantics over the product graph of the interleavings of
the threads, with the general method described by Bourdoncle [6]. We used
the (logico-)numerical relational domains provided by the libraries Apron [13]
and Bddapron [12]. Our experiments run on a Intel(R) Core(TM) i7-3612QM
CPU @ 2.10GHz computer with 4GB RAM. We used the formulas of Siegel
and Simon [20] to implement for the Bddapron domains the expand and fold
operations.

Our objective was to be able to verify the correctness of these algorithms after
removing the maximal number of fences (with respect to the sequentially con-
sistent behaviour where a fence is inserted after each write). For each algorithm,
this correctness was encoded by a safety property, usually some boolean con-
dition expressing a relation between variables that must be true at some given
point of the execution.7

A secondary goal was to obtain an analysis as fast as possible by adjusting the
settings concerning the parametric numerical domain. We tried four relational
or weakly relational logico-numerical domains: Octagons, Polyhedra, Octagons
with BDD and Polyhedra with BDD.8 For each of these domains, we give in
Figure 12 the number of fences needed to verify the correctness property of the
algorithm, the time needed to compute this verification and the memory used
(line Average resident set size of $ time -v).

We also give, for comparison, the results obtained for PSO by Dan et al. (domain
AGT9) [10]. It should be emphasised that we focus on a different problem: while
they provide a fence removal algorithm which uses an existing analyser and
a program transformation, we design an analysis which works directly on the
source program with fences. We discuss fence removal as a case study, removing
them with a systematic method not automated for lack of time and measuring the
analysis performances on the program with a minimal fence set. The raw Time
7 On lock algorithms, the correctness being mutual exclusion, this condition was simply

false, meaning the program state at the given point (the conjunction of the critical
sections of each thread) should be ⊥.

8 These domains, provided by Bddapron, are essentially numerical domains for the
integer variables linked to the leaves of a Binary Decision Diagram which abstracts
the boolean variables.

9 Abstraction Guided Translation.



and Memory numbers comparison is therefore not accurately relevant, but still
a reference order of magnitude to evaluate our performances (our test machine
being almost as powerful as theirs). However, the number of fences needed is an
objective measurement of the precision reachable by the analysis.

When no result is shown for a particular domain, it means that this domain
does not allow the verification of the property. It is in particular the case for
programs involving some boolean computations with numerical-only domains,
because they do not provide abstractions for such operations (we first tried to
implement it by encoding booleans into integers, but it usually led to a big
loss of precision, making the extra-complexity to implement it non-naively not
worthwile against logico-numerical domains.) Some programs verified by Dan
et al. [10] are not shown here, because they require operations that our imple-
mentation does not provide yet (such as atomic Compare-And-Swap, or more
generally patterns requiring cooperative scheduling10).

Interpretation. These results show that our method is competitive against the
state of the art: in most cases, we are able to verify the property of the algorithm
with the same number of fences, and in a space and time efficient way if we
compare to the characteristic numbers of the abstraction-guided translation.

In two cases (Loop2 TLM and Queue), we strictly improve the result obtained
by Dan et al. [10] by being able to verify the algorithm with no inserted fence,
compared to respectively 2 and 1. Queue is the program of Figure 2: on top
of an unbounded state space in SC (which their method is able to deal with),
it exhibits unbounded buffers. Our method allows performing this verification
by being able to precisely represent these buffers, whereas they need a finite
computable maximal size, hence they have to insert supplementary fences to
prevent an unbounded number of writes to be waiting for a flush.

However, the additional abstraction of summarising the buffer even when its
size is actually bounded sometimes comes at a precision cost, and our method
is not able with this implementation to verify the Bakery algorithm (yet it is
able to verify it when the while true infinite loop of lock/unlock operations
is replaced with some for loop of fixed size).

Regarding the numerical domain parameter of our abstraction, the results show
that Octagons and Polyhedra almost yield the same precisions and efficiency
results. In Queue however, Octagons allow verifying the program with no fence,
where Polyhedra fail at it. We did not observe the opposite behaviour, and as
Octagons are also usually faster due to complexity results, they seem the best
go-to choice for abstracting this kind of programs with our method.

When analysing programs which make some consistent use of logical expres-
sions, the boolean-aware domains of Bddapron offer good properties of precision
10 We did not implement cooperative scheduling nor atomic Compare-And-Swap, but

it would make no difference for our abstraction: the only changes would be in the
generation of the control graph.



Algorithm Domain Fences Time Mem Domain Fences Time Mem
Abp Oct - - - Bdd+Oct 0 0.3 32

Poly - - - Bdd+Poly 0 0.3 32
AGT 0 6 167

Bakery Oct - - - Bdd+Oct - - -
Poly - - - Bdd+Poly - - -
AGT 4 3429 10951

Concloop Oct 2 0.19 38 Bdd+Oct 2 0.29 34
Poly 2 0.24 37 Bdd+Poly 2 0.29 34
AGT 2 6 504

Dekker Oct 4 23 52 Bdd+Oct 4 62 42
Poly 4 22 50 Bdd+Poly 4 66 43
AGT 4 121 1580

Kessel Oct - - - Bdd+Oct 4 4 33
Poly - - - Bdd+Poly 4 4 34
AGT 4 6 198

Loop2 TLM Oct - - - Bdd+Oct 0 4.3 34
Poly - - - Bdd+Poly 0 4.2 34
AGT 2 36 1650

Peterson Oct 4 1.53 39 Bdd+Oct 4 2.77 32
Poly 4 1.53 39 Bdd+Poly 4 2.94 33
AGT 4 20 901

Queue Oct 0 0.15 36.9 Bdd+Oct 0 0.70 34.3
Poly 1 0.2 34.7 Bdd+Poly 0 0.31 33.3
AGT 1 1 108

Figure 12. Experimental results. Times in sec, Mem in MB.

of efficiency. The overhead over purely numerical domains is however not negli-
gible on programs which do not need this additional expressivity (up to 100%
and more time consumed), so these results tend to suggest that they should not
be used by default if not necessary on this kind of program.

Another experimental result that does not appear in this table is the number of
partitions actually present in the abstract domain. While the maximum theoret-
ical number is 3nb_threads×nb_var, in practice a lot of them are actually empty. We
did not measure it precisely for each test, but for instance, in the Peterson case
(3 variables, 2 threads), only one state exhibits 9 non-empty partitions. Most
of them have 4 or less, often 2. Our analysis is sparse in that empty partitions
are not represented at all; hence, we greatly benefit from the small number of
non-empty partitions. Partitioning therefore seems to be a good choice since it
yields a significantly better precision while not having too much impact on time
and space performances. However we do not know to which level a more precise
partitioning, as we describe in Section 4, would still verify this statement.



6 Related Work

Ensuring correctness of concurrent programs under weakly memory models has
been an increasingly important topic in the last few years.

A lot of work has been focused on finite state programs, usually using model-
checking related techniques [5,2,4,15].

Kuperstein et al. [14] propose to use abstract interpretation to model pro-
grams with potentially unbounded buffers. However, their method uses abstract
domains on a statewise basis: for each state, if the buffer grows above a fixed
arbitrary size, it is abstracted; but they do not use abstract domains to repres-
ent the possibly still unbounded sets of resulting states. As such, their work is
only able to analyse programs which have a finite state space when run under
sequential consistency (although they can have an infinite state space in TSO,
due to unbounded buffers).

The work of Dan et al. [10], which we compared with in Section 5, can manage
programs with infinite sequential consistency state space, but they are limited
to bounded buffers.

By contrast to these two methods [14,10], our work uses array abstractions
and numerical domains to efficiently represent potentially infinite sets of states
with unbounded buffers: our analysis has no limitation on the state space of our
program, whether it is on state size or on state number.

A common approach for verifying the correctness of weakly consistent execu-
tions is to rely on already existing analyses sound under sequential consistency,
by performing source-to-source program transformations to bring back the prob-
lem to a SC-analysis [10,3,17]. This especially appears to be a useful technique
when coupled with automatic fence generation to get back properties verified
under sequential consistency. However, some properties can be difficult to ex-
press with a program transformation (for instance “the values in the buffer are
increasingly sorted”), and the final SC analyser has no way to retrieve informa-
tion lost by the transformation. Furthermore, these transformations may not be
sufficient to efficiently analyse the program, and one may have to modify the SC
tool to take into account the original memory model (for instance, by considering
that some variables actually come from one buffer, which would make no sense
for the original SC analyser).

We believe that, by applying abstract interpretation directly on the original
source program, our method can serve as a good baseline for future work on
special dedicated abstractions using advanced information related to the model
that leverages these two issues.

7 Conclusion

We designed a new method for analysing concurrent programs under store-buffer-
based relaxed memory models like TSO or PSO. By adapting array abstractions,
we showed how to build precise and robust abstractions, parameterised by a
numerical domain, which can deal with unbouded buffer sizes.



We gave a formalisation of a particular abstraction which uses summarisa-
tion. We implemented this approach and our experimental results demonstrate
that this method gives good precision and performance results compared to the
state-of-the-art, and sometimes is able to verify programs with strictly fewer
fences thanks to its ability to represent unbounded buffers.

As a future work, we shall focus on scalability. While we obtained good
performances on our test cases, our method will suffer from the same problem as
the previous ones, that is it does not scale well with the number of threads. By
using modular analysis techniques (analysing each thread separately instead of
considering the exploding product control graph), we should be able to analyse
programs with more than two threads in acceptable times. We believe we can do
it while reusing the abstractions defined here. However, it is significantly more
complex and raises additional problems that need to be solved.
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