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Embedded software often involves intensive numerical computations and suffers from a number of run-time
errors. The technique of numerical static analysis is of practical importance for checking the correctness
of embedded software. However, most of the existing approaches of numerical static analysis consider se-
quential programs, while interrupts are a commonly used facility that introduces concurrency in embedded
systems. Therefore, a numerical static analysis approach is highly desired for embedded software with in-
terrupts. In this paper, we propose a static analysis approach specifically for interrupt-driven programs
based on sequentialization techniques. We present a method to sequentialize interrupt-driven programs
into non-deterministic sequential programs according to the semantics of interrupts. The key benefit of us-
ing sequentialization is the ability to leverage the power of the state-of-the-art analysis and verification
techniques for sequential programs to analyze interrupt-driven programs, for example, the power of numer-
ical abstract interpretation to analyze numerical properties of the sequentialized programs. Furthermore,
to improve the analysis precision and scalability, we design specific abstract domains to analyze sequen-
tialized interrupt-driven programs by considering their specific features. Finally, we present encouraging
experimental results obtained by our prototype implementation.
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1. INTRODUCTION
An interrupt is a signal to the processor indicating an event that needs immediate at-
tention and requiring the interruption of the current code the processor is executing.
Interrupts are commonly used in embedded systems to introduce concurrency, which
is required for real-time applications. For example, embedded control software often
uses interrupts to obtain sensor data from the physical environment. In a program,
during the running of the normal tasks, an interrupt service routine (ISR) is invoked
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once an interrupt alerts the processor to a higher-priority condition. Such a program is
said to be interrupt-driven. In interrupt-driven programs (IDP), interrupts may cause
unexpected interleaving and even unexpected erroneous behaviors [Yang et al. 2015].
Therefore, there is a great need in practice to ensure that IDPs work correctly in the
presence of interrupts, since IDPs are often used in safety critical fields such as avion-
ics, spaceflight and automotive. However, analyzing and verifying IDPs are challeng-
ing. The main reason is that an ISR may be triggered at any time and the number
of possible execution interleavings caused by concurrency between tasks and ISRs is
quite huge.

IDPs often appear in embedded systems, while embedded software usually involves
intensive numerical computations which have the potential to cause numerical run-
time errors (such as division by zero, arithmetic overflow and array out-of-bound)
[Blanchet et al. 2003]. Hence, analyzing numerical properties of IDPs is of signifi-
cant importance to check for the correctness of embedded software. Numerical static
analysis is a commonly used technique to discover numerical properties of programs.
However, most of the existing numerical static analysis approaches consider only se-
quential programs. For IDPs, if we perform numerical static analysis over each task
and each ISR separately without considering the interleaving between them, the anal-
ysis results may be not sound.

1: int x, y, z;
2: void task(){
3: if(x < y){
4: z = 1/(x− y);
5: }
6: return;
7: }

1: void ISR1 (){
2: x++;
3: y−−;
4: return;
5: }

Fig. 1. A motivating example

Fig. 1 shows a motivating example, where the functions task() and ISR1 () repre-
sent the entry functions of a task and an interrupt service routine respectively. task()
performs the division operation only when x is strictly less than y. ISR1 () increases
x by 1 and decreases y by 1. Performing numerical static analysis over task() without
considering interrupts would answer that the program is safe. However, when taking
interrupts into consideration, the task() function is not safe. For example, if x = 1, y = 3
and the interrupt is triggered between line 3 and 4 of task(), there will be a division-
by-zero error in this program. Thereby, a sound numerical static analysis method is
desired for IDPs.

Recently, a few numerical static analysis approaches have been proposed for general
concurrent programs such as multi-threaded programs [Miné 2011; 2014], but very
few approaches have considered the specific features of IDPs [Cooprider and Regehr
2006; Monniaux 2007]. Compared with multi-threaded programs, IDPs have their own
specific features. For example, higher-priority interrupts will never be interrupted by
lower ones. In other words, tasks and lower priority interrupts will never be aware of
the intermediate states of higher priority interrupts during their running. Moreover,
IDPs in embedded systems usually make use of hardware features such as interrupt
mask registers (IMR) to control the interference between tasks and interrupts.

In this paper, we propose a sound numerical static analysis approach specifically
for IDPs, which enables the use of existing analysis and verification techniques for
sequential programs. The basic idea is to sequentialize IDPs by a semantic sound pro-
gram transformation and then to analyze the resulted sequential programs by abstract
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interpretation enriched with newly designed abstract domains specific to the features
of IDPs. The main contributions are as follows.

(1) We present a method to sequentialize IDPs into non-deterministic sequential pro-
grams according to the semantics of interrupts and the interaction between tasks
and interrupts. The data flow dependency and IMR information are used to opti-
mize the transformation and reduce the size of the resulted sequential programs.

(2) We design specific abstract domains to improve the precision of numerical static
analysis with reasonable scalability. These abstract domains incorporate the spe-
cific features which often appear in the sequentialized interrupt-driven programs.

(3) We conduct a set of experiments to evaluate the approach on both benchmarks and
real-world programs from open source communities as well as industrial commu-
nities. The preliminary results show that our approach is promising.

The rest of this paper is organized as follows. Section 2 presents the program syn-
tax of IDPs. Section 3 presents methods for sequentializing IDPs. In Section 4, we
show how to use abstract interpretation to analyze the sequentialized IDPs. Sec-
tion 5 presents our implementation together with preliminary experimental results.
Section 6 discusses some related work. Finally, conclusions as well as suggestions for
future work are given in Section 7.

This paper is an extended version of our EMSOFT 2015 paper [Wu et al. 2015].
On top of [Wu et al. 2015], we have added more algorithms and examples to describe
our approach in detail (Section 3). We have designed a new specific abstract domain
namely syntactic equality abstract domain to improve the precision of the analysis of
sequentialized IDPs (Section 4). We have collected more benchmarks and real-world
IDPs from open source communities as well as aerospace industrial communities, and
have conducted more experiments (Section 5).

2. INTERRUPT-DRIVEN PROGRAMS
An IDP consists of a fixed set of a finite number of tasks and interrupts, each of which
has an entry function. In this paper, recursive functions are not allowed in IDPs, and
all functions have been inlined (except the entry functions of tasks and interrupts).
Tasks are scheduled in a cooperative, round-robin manner and interrupts are assigned
priorities. Moreover, the tasks execute with interleaved semantics (on a uniprocessor)
and each task can finish its job within the given time slice. Each interrupt has a fixed
priority level attribute p which is a positive integer and a larger priority level means
higher priority. It means that higher-priority interrupts can preempt lower-priority
interrupts and tasks, but the opposite preemption can not happen. Without loss of
generality, we use the following two assumptions throughout this paper:

1) We assume that an IDP only consists of a single task. Since tasks are scheduled
in a cooperative, round-robin manner, for an IDP including multiple tasks, we can
design a wrapper function which consists of calling each of the tasks one by one in
sequence to simulate the round-robin scheduling of multi-tasks.

2) We assume that each priority level contains only one interrupt. For an IDP which
contains multiple interrupts with the same priority, we can design a new wrapper
ISR of that priority to over-approximate the program behaviors. The new wrapper
ISR consists of a loop in which each iteration non-deterministically calls one of the
original interrupts of that priority.

We now present a simple language to model IDPs. The syntax of our language is de-
picted in Fig. 2. An IDP consists of one task and N interrupts. ISR := 〈entry, p〉 repre-
sents the ISR entry function of an interrupt and its priority. Without loss of generality,
we use ISRi to represent the interrupt with priority p = i where i ∈ [1, N ]. enableISR(i)
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AExpr := l | C | E1 � E2 (where l ∈ NV , C is a constant, E1, E2 ∈ AExpr
and � ∈ {+,−,×,÷})

BExpr := true | false | AE1 �1 AE2 | BE1 �2 BE2 (AE1, AE2 ∈ AExpr ,
BE1, BE2 ∈ BExpr , �1 ∈ {>,≥, <,≤} and �2 ∈ {&&, ||})

Stmt := l = g | g = l | l = ea | skip | return | enableISR(i) | disableISR(i) | S1;S2

| if eb then S1 else S2 | while eb do S (where l ∈ NV , g ∈ SV ,
ea ∈ AExpr , eb ∈ BExpr , i ∈ [1, N ], S1, S2, S ∈ Stmt )

Task := entry (where entry ∈ Stmt)
ISR := 〈entry, p〉 (where entry ∈ Stmt , p ∈ [1, N ])
Prog := Task ‖ ISR1 ‖ . . . ‖ ISRN

Fig. 2. Syntax of interrupt-driven programs

and disableISR(i) represent the instructions that enable and disable the i-th interrupt
respectively by writing to the interrupt mask register (IMR). We assume that at the
exit-point of an ISR, the IMR is reset to the initial value of IMR at the entry-point of
this ISR. We use SV and NV respectively represent the set of shared and non-shared
variables. We restrict that the task has and only has one return statement.

For the sake of simplicity but without loss of generality, we restrict that shared
variables can only appear in the following two kinds of statements:

— l = g which represents reading the value from a shared variable g to a non-shared
variable l,

— g = l which represents writing the value of a non-shared variable l to a shared
variable g.

In fact, any program statement involving shared variables can be transformed into
these forms by introducing auxiliary variables. E.g., a test {if(g > e) . . . } can be trans-
formed into the sequence {l = g; if(l > e) . . . }. Moreover, we assume that the state-
ments g = l and l = g are atomic.

In this paper, we consider analyzing IDPs at the level of source code rather than that
of machine code. However, one program statement in the source code can be translated
into several machine instructions. Hence, an interrupt may be triggered during the
running of a program statement if the statement is not atomic. For example, consider
an IDP that contains one task {z = x + y; } and one interrupt whose ISR is {x =
1; y = 1; }. Suppose that both shared variables x, y are initialized to 0. If we consider
only the case that the interrupt is triggered before or after the assignment statement
{z = x + y; } in the task, the value of variable z can be 0 or 2. However, the interrupt
may be triggered during the running of this statement at machine instruction level.
For example, the interrupt may be triggered after reading x and before reading y, and
then the value of variable z can be 1 in this case. In order to avoid this ambiguity, we
only allow two kinds of statements (i.e., l = g and g = l) that are atomic to access a
shared variable variable g in the syntax shown in Fig. 2.

3. SEQUENTIALIZING INTERRUPT-DRIVEN PROGRAMS
In this section, we will describe how to sequentialize IDPs into non-deterministic se-
quential programs in a sound way. In other words, we will guarantee that the program
behaviors of the sequentialized program are an over-approximation of the behaviors of
the original IDP. In the following, we will first show in Sect. 3.1 how to sequentialize
IDPs into sequential programs by considering IDPs as priority preemptive scheduling
systems. Then we will make use of data flow dependency information between tasks
and interrupts to remove unnecessary scheduling in Sect. 3.2. After that, we will con-
sider further the IMR information at program points to remove unnecessary schedul-
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ing in Sect. 3.3. In addition, we will consider the interrupts which have no data flow
dependency with tasks in Sect. 3.4. On this basis, we will give the overall algorithm of
our sequentialization approach in Sect. 3.5. Finally, we will discuss the soundness of
our sequentialization approach in Sect. 3.6.

3.1. Sequentializing IDPs by simulating priority preemptive scheduling
First, let us review the running process of an IDP. During the running of a task, the
i-th interrupt may be triggered before any program statement of the task. If the i-th
interrupt is triggered, the task is preempted and resumes only when ISRi has finished.
Hence, this situation can be simulated by calling the ISRi function in the stack once
the i-th interrupt is triggered. Similarly, before each program statement of the i-th
interrupt, if the j-th interrupt with higher priority (i.e., satisfying i < j) is triggered,
ISRi is preempted and resumes only when ISRj has finished. This situation also can be
simulated by calling the ISRj function in the stack when the j-th interrupt is triggered.
In general, because the ISR of a preempted lower-priority interrupt (or task) will not
resume until the ISR of a higher-priority interrupt has finished, the task and ISRs in
an IDP can share the same stack. It means that, in IDPs, interrupt preemption can be
modeled as merely a function call.

Based on this insight, inspired from [Kidd et al. 2010] where a Schedule() function
is used by Kidd et al. to simulate the priority preemptive scheduler for sequentializing
multi-tasking programs, we add an explicit call to the Schedule() function before each
program statement of the task and ISRs in an IDP. That is, if a task or ISR consists
of program statements St1, . . . , Stn, then we will get St′1, . . . , St

′
n, where each St′ is

defined as: St′ def
= Schedule();St. The Schedule() function works as follows: It passes

through the interrupts the priority of which is higher than the current running task
or ISR, and non-deterministically calls the ISR function of a higher-priority interrupt
which has not yet been triggered. For the sake of presentation, in this subsection,
we make the following assumption temporarily: Each statement in the task and ISRs
is atomic and a higher-priority interrupt can be triggered at most once before each
program statement of the task or a lower-priority interrupt. We use this assumption
in this subsection to make the sequentialization method in [Kidd et al. 2010] easy to
understand and we will show how to remove this assumption in Sect.3.2.

Fig. 3 shows the sequentialized program of the motivating example by adding ex-
plicit Schedule() function before each program statement of the task and ISRs. In
Fig. 3, N represents the number of interrupts (and N = 1 in this example), Seq ISRs[N ]
(whose indices range from 1 to N ) represents the corresponding sequentialized ver-
sion of a fixed set of ISRs. E.g., Seq ISRs[1 ].entry() represents ISR1 seq(). The function
nondet() non-deterministically returns true or false. The function task seq() is the en-
try of the sequentialized program. Besides, in this example, since we have only one
interrupt, the Schedule() functions added in ISR1 seq() can be all omitted and those
Schedule() functions added in task seq() can be all replaced as

if(nondet()) ISR1 seq();
Note that more generally, the call to Schedule() can be omitted in the interrupt of the
highest priority, since it can not be preempted by other interrupts as well as itself.

3.2. Sequentializing IDPs by considering data flow dependency
In Sect. 3.1, we have described an approach to sequentialize IDPs by adding explicit
calls to a Schedule() function before each program statement. However, the scale of
the resulting sequentialized program may become very large, especially when an IDP
contains many interrupts. In this subsection, we will show how to avoid adding unnec-

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0, Publication date: 2016.



0:6 X. WU et al.

1: int x, y, z;
2: //current priority
3: int Prio = 0;
4: //ISR entry
5: ISR Seq ISRs[N ];
6: void task seq(){
7: int tx, ty;
8: Schedule();
9: tx = x;
10: Schedule();
11: ty = y;
12: Schedule();
13: if(tx < ty){
14: Schedule();
15: tx = x;
16: Schedule();
17: ty = y;
18: Schedule();
19: z = 1/(tx− ty);
20: }
21: Schedule();
22: return;
23: }

1: void ISR1 seq(){
2: int tx, ty;
3: Schedule(); tx = x;
4: Schedule(); tx = tx+ 1;
5: Schedule(); x = tx;
6: Schedule(); ty = y;
7: Schedule(); ty = ty − 1;
8: Schedule(); y = ty;
9: Schedule(); return;
10: }
11: void Schedule(){
12: //save current priority
13: int prevPrio = Prio;
14: for(int i = 1; i ≤ N ; i++){
15: if(i ≤ Prio) continue;
16: if(nondet()){
17: Prio = i;
18: //call function ISRi seq
19: Seq ISRs[i].entry();
20: } }
21: //restore priority
22: Prio = prevPrio;
23: }

Fig. 3. Sequentialization of the motivating example by simulating priority preemptive scheduling

essary calls to the Schedule() function but still guarantee the soundness of sequential-
ization.

Essentially, in IDPs, the task and interrupts communicate with each other through
shared variables. If a program statement does not access any shared variables, it
makes no difference whether an interrupt is triggered before or after this state-
ment. For example, suppose that the task consists of St1; . . . ;Stn. Adding a call to
Schedule() before each program statement will give: {Schedule();St1;Schedule(); . . . ;
Schedule();Stn; }. However, if for each i ∈ [1, n−1] the statement Sti does not access any
shared variable, transforming to the following sequentialized program is still sound:

St1;St2; . . . ;Stn−1;
for(int i = 1 ; i ≤ n; i++)

Schedule();
Stn;

Using a loop to wrap a number of calls to the Schedule() function has a key benefit that
the resulted sequentialized program will be of much smaller size in code lines. Note
that loops can be analyzed efficiently by using extrapolation techniques. Moreover, we
could delay widening and even unroll the loop to achieve trade-off between efficiency
and precision.

In fact, in practical IDPs, only a very small percentage of program statements will
read from/write to shared variables. Moreover, the sets of shared variables between
the task and different interrupts are usually different. Before a program statement
l = g that reads a shared variable g, we only need to consider those interrupts that,
when triggered, will affect the value of g. Similarly, after a program statement g = l
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that writes to a shared variable g, we only need to consider those ISRs that, when
triggered, will be affected by the value of g.

Based on this insight, we could make use of the data flow dependency information
over shared variables between the task and interrupts, to avoid certain unnecessary
inserted Schedule() function calls during sequentializing IDPs. To this end, we first
introduce some notations.
Data flow dependency among interrupts. Let RSVars(ISRi) (WSVars(ISRi)) be the
set of shared variables read (written, respectively) by ISRi . Interrupt ISRi is directly
dependent on ISRj , denoted as ISRi → ISRj , if RSVars(ISRi) ∩ WSVars(ISRj ) 6= ∅.
Interrupt ISRi is transitively dependent on ISRj , denoted as ISRi � ISRj , if ISRi →
ISRj or there exists ISRk such that ISRi � ISRk ∧ ISRk � ISRj .

The dependent interrupt group for interrupt ISRi is defined as follows, where ISRs
represents the set of interrupts {ISRj | j ∈ [1, N ]}.

dGroup[ISRi ]
def
= {I ∈ ISRs | ISRi � I }.

The influenced interrupt group for interrupt ISRi is defined as follows.

iGroup[ISRi ]
def
= {I ∈ ISRs | I � ISRi}.

Example 1. Suppose that in an IDP, there are two shared variables x, y, three inter-
rupts ISR1 , ISR2 , ISR3 , and

RSVars(ISR1 ) = WSVars(ISR2 ) = {x}
RSVars(ISR2 ) = WSVars(ISR3 ) = {y}

Then, dGroup[ISR2 ] = {ISR3} and iGroup[ISR2 ] = {ISR1}.
The data flow dependency relationships among ISRs can be described by a directed

graph, which we call dependency graph. Each vertex of the graph denotes an interrupt
and there exists a directed edge from ISRi to ISRj if ISRi → ISRj . Then the problem
of computing the dependent/influenced interrupt group for ISRi can be reduced to a
reachability problem in a directed graph. We use a matrix DG ∈ {0, 1}N×N to encode
the graph where N is the number of interrupts, and

DGij
def
=

{
1 if ISRi → ISRj

0 otherwise

We use two procedures CompDepGroup() and CompInfGroup() to compute respec-
tively the dependent and influenced interrupt groups for an interrupt, which can be
essentially computed by the transitive closure of direct dependency relations among
ISRs (encoded by the matrix DG).
Considering only statements that access a shared variable. As we have men-
tioned, if a program statement does not access any shared variable, it makes no differ-
ence whether an interrupt is triggered before or after this statement. For a program
statement that reads a shared variable, we need to consider the influence from those
ISRs that affect the value of this shared variable. For a program statement that writes
into a shared variable, we need to consider the influence of this statement on those
interrupts that may be affected by the value change of this shared variable.

Based on this insight, we propose the following strategy for sequentializing IDPs:
We only add Schedule() functions before statements that read shared variables and after
statements that write to shared variables. We give the detail as follows:

— Before a statement (in the form of l = g) that reads a shared variable g, we consider
invoking ISRs in S1 ∪ S2 where
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— S1
def
= {I ∈ ISRs | g ∈WSVars(I)}

— S2
def
= {I ∈ dGroup[I ′] | I ′ ∈ S1}

where S1 represents the set of ISRs that directly write to shared variable g and S2

represents the set of ISRs that are in the dependent interrupt groups of any ISR in
S1. We use procedure ReadDepISRs() to compute S1 ∪ S2.

— After a statement (in the form of g = l) that writes to a shared variable g, we consider
invoking ISRs in S3 ∪ S4 where
— S3

def
= {I ∈ ISRs | g ∈ RSVars(I)}

— S4
def
= {I ∈ iGroup[I ′] | I ′ ∈ S3}

where S3 represents the set of ISRs that directly read shared variable g and S4

represents the set of ISRs that are in the influenced interrupt groups of any ISR in
S3. We use procedure WriteInfISRs() to compute S3 ∪ S4.

On this basis, we introduce a new schedule function namely ScheduleG(group) to
non-deterministically call those ISRs in group, as shown in Fig. 4. According to the
above strategy, we consider adding the schedule functions only before and after a
statement St that accesses shared variables, but we do not know how many times
an interrupt may be triggered before the statement St. In fact, in practical IDPs, an
interrupt is never triggered too frequently in each task period, otherwise the program
may disobey the real-time restriction. Especially, the system designers of real-time
embedded systems often know an upper bound on the number of firing times of each
interrupt during one task period. Based on this insight, to guarantee the soundness of
the sequentialization following the above strategy, we add the following assumption:

— We assume that the upper bound on the number of firing times of each interrupt
during one task period is given by K where K is a positive integer that can be +∞.

The bound K is given by the user, but he can always say +∞ if he does not know.
We guarantee that the semantics of the sequentialized program is sound with respect
to K. In certain applications, K can be automatically inferred. For example, for nx-
tOSEK [Chikamasa et al. 2010] programs, some interrupts are periodically triggered
and their periods are explicitly specified in an OIL (OSEK Implementation Language)
file. In such case, the upper bounds K for these interrupts can be automatically in-
ferred according to their periods.

In Fig. 4, we introduce a function namely ScheduleG Ks(group,K) to call the
ScheduleG() function K times. In case where K can not be specified, we can put K
to +∞ (and then the loop in ScheduleG Ks() becomes an unbounded loop that can stop
at any time or loop forever), which can still guarantee the soundness of the sequential-
ization following the above strategy.

Now, we introduce two functions InvokeBefore(St, group) and InvokeAfter(St, group)
to insert the ScheduleG Ks(group,K) function respectively before and after a given
statement St. During the process of sequentialization, for a statement StR that reads a
shared variable, we use InvokeBefore(StR, group) to obtain the following sequentialized
result:

St′R
def
= ScheduleG Ks(group,K);StR;

For a statement StW writing to a shared variable, we use InvokeAfter(StW , group) to
obtain the following sequentialized result:

St′W
def
= StW ;ScheduleG Ks(group,K);

Simplifying the sequentialized programs. We may notice that the sequential-
ization method based on the above strategy may still introduce unnecessary invoca-
tions of the function ScheduleG Ks(). For example, suppose that the task consists of
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1: void ScheduleG(group: int set){
2: //save current priority
3: int prevPrio = Prio;
4: for(int i = 1; i ≤ N ; i++){
5: if( i ≤ Prio ‖ i /∈ group ) continue;
6: if(nondet()){
7: Prio = i;
8: Seq ISRs[i].entry(group);
9: } }
10: //restore priority
11: Prio = prevPrio;
12: }
13: //schedule K times
14: void ScheduleG Ks(group: int set, K:int){
15: for(int i = 1; i ≤ K; i++)
16: ScheduleG(group);
17: }

Fig. 4. Scheduling functions calling only those ISRs in a given interrupt group

StW1 ; . . . ;StRn , where StW1 represents a statement that writes to a shared variable g1
and StR1 represents a statement that reads a shared variable g2, while all statements
in between do not access any shared variables. Then the sequentialized task will be:

St1;ScheduleG Ks(grp1,K1);
St2;St3; . . . ;Stn−2;Stn−1;
ScheduleG Ks(grp2,K2);Stn

When the interrupt groups grp1 and grp2 are the same, the invoking of
ScheduleG Ks(grp2,K2) is unnecessary.

Based on this insight, we design a simplification procedure Simplify() to remove un-
necessary invocations of ScheduleG Ks(). The Simplify() procedure removes the second
invocation of ScheduleG Ks(grp1,K1) in the following two patterns:

— StW1 ;ScheduleG Ks(grp1,K1); . . . ;ScheduleG Ks(grp1,K1);St
R
n ;

— ScheduleG Ks(grp1,K1);St
R
1 ; . . . ;ScheduleG Ks(grp1,K1);St

R
n ;

where for all i ∈ [2, n− 1] the statement Sti does not write to any shared variable.

3.3. Sequentializing IDPs by considering IMR
IDPs usually use an interrupt mask register (IMR) to control the interference be-
tween tasks and interrupts. Each bit of IMR corresponds to an interrupt and rep-
resents whether that interrupt is enabled or disabled. In our IDPs, programmers use
disableISR(i) and enableISR(i) to change the value of IMR to disable and enable the i-th
interrupt respectively. Hence, the value of IMR may be different at different program
points.
Computing data flow dependency considering IMR. The value of IMR may
affect the data flow dependency among interrupts. For example, suppose there are
two shared variables x, y and three interrupts ISRi , ISRj , ISRk where RSVars(ISRi) =
WSVars(ISRj ) = {x} and RSVars(ISRj ) = WSVars(ISRk ) = {y}. Without considering the
value of IMR, we have the following data flow dependency: ISRi → ISRj ∧ ISRj →
ISRk ∧ ISRi � ISRk . However, if ISRj is disabled, there is no data flow dependency
among ISRi , ISRj , ISRk .
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To obtain a precise analysis of data flow dependency, we need to consider only en-
abled interrupts when computing the data flow dependency among interrupts. In order
to get the set of enabled interrupts, we need to compute the IMR value at each program
point.
Pre-analysis for analyzing the value of IMR. In order to obtain the value of IMR
at each program point, we use a simple pre-analysis (for each entry function of the
task and interrupts separately) prior to the actual sequentialization. As explained in
Sect. 2, all function calls are inlined. We do not need to consider function calls during
the computation of IMR value. We recall the assumption related to IMR (described in
Sect. 2), that is, at the exit-point of an ISR, the IMR is reset to the initial value of
IMR at the entry-point of this ISR. Based on this assumption, we omit the effects of
interruptions during the computation of IMR value.

ALGORITHM 1: Algorithm computing IMR for each statement
procedure ComputeIMR(st : stmt, pimr : int)

imr, imr1, imr2 : int;
match st with begin
| disableISR(i)→
imr ← pimr&!(1 << i);
| enableISR(i)→
imr ← pimr|(1 << i);
| S1;S2

imr ← ComputeIMR(S1, pimr);
imr ← ComputeIMR(S2, imr);
| if e then S1 else S2 →
imr1 ← ComputeIMR(S1, pimr);
imr2 ← ComputeIMR(S2, pimr);
imr ← imr1|imr2;
| while e do S →
imr1 ← ComputeIMR(S, pimr);
imr ← pimr|imr1;
| →
imr ← pimr;

end;
IMRValTbl .add(st, imr);
return imr;

end procedure

We design a procedure namely ComputeIMR() to compute the value of IMR at each
program point for each entry function of the task and interrupts separately. The value
of IMR is modeled as a bit vector. For the i-th bit, we use 0 to represent that the i-th
interrupt is disabled, 1 to represent that the i-th interrupt is enabled or inconclusive
(i.e., either enabled or disabled). Note that when we can not conclude whether the i-
th interrupt is enabled or disabled, we assign 1 to the i-th bit of IMR, which means
that the interrupt is enabled in this case. As shown in Algorithm. 1, the procedure
ComputeIMR() performs a flow-sensitive data flow analysis using a bitwise abstract
domain. For disableISR(i) and enableISR(i) statements, we set the i-th bit of the IMR
bit-vector to 0 and 1 respectively. For the branch statement, at the control-flow join,
we perform the bit-wise OR operation over the two resulting bit-vectors from different
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branches. In other words, for each bit, the join operation returns 0 if and only if the
two corresponding input bits are 0, and otherwise returns 1.
Invoking ISRs for enableISR(i) and disableISR(i). Until now, we have considered
adding calls to the Schedule() function only before statements that read shared vari-
ables and after statements that write into shared variables. However, when an IDP
includes statements enableISR(i) and disableISR(i), the above strategy may miss some
invocations of certain ISRs. For example, Fig. 5 shows an IDP involving statements
enableISR(i) and disableISR(i), wherein y is the shared variable. If we add invocations
of ISRs only before statements that read shared variables and after statements that
write to shared variables, we will not invoke ISR1 because ISR1 is disabled when the
shared variable y is read (i.e., in line 7). However, this program may cause a division-
by-zero error when ISR1 is triggered between line 5 and line 6 in the task().

1: int y;
2: void task(){
3: int x, tmpy, z, c;
4: c = 1; x = c;
5: c = 2; y = c;
6: disableISR(1);
7: tmpy = y;
8: z = 1/(x− tmpy);
9: enableISR(1);
10: }

1: void ISR1(){
2: y = 1;
3: }

Fig. 5. An example with disableISR and enableISR

Hence, when handling statements enableISR(i) and disableISR(i), we may also need
to add an invocation of certain related ISRs. We use the following strategy: when han-
dling disableISR(i), we presume that all shared variables in WSVars(ISRi) will be read
during the execution of the interrupt masking segment starting at disableISR(i). In
this situation, we need to add the Schedule() function to invoke ISRi and all those in-
terrupts in dGroup[ISRi ] before disableISR(i). Similarly, when handling enableISR(i),
we presume that all shared variables in RSVars(ISRi) have been written to during
the execution of the interrupt masking segment ending at enableISR(i). In this situa-
tion, we need to add the Schedule() function to invoke ISRi and all those interrupts in
iGroup[ISRi ] after enableISR(i).

Algorithm 2 shows how to insert calls to related ISRs before each statement.
IMRValTbl represents a map from each program statement to its IMR value,
which is computed by computeIMR(). InvokeBefore() and InvokeAfter() represent a
call to the corresponding sequentialized interrupts before or after a statement.
CompDepGroup(i , p, imr) (CompInfGroup) computes the dependent (influenced) inter-
rupt group of ISRi for the considered statement which lies in a task or an interrupt
with priority p under the IMR value imr. ReadDepISRs(g , p, imr) (WriteInfISRs) com-
putes the dependent (influenced) interrupt group for the considered statement which
reads from (writes to) the shared variable g in a task or an interrupt with priority p
under the IMR value imr.

3.4. Sequentializing IDPs by considering ISRs having no data flow dependency with tasks
The resulting sequentialized IDPs given by the above method consist of entry func-
tions of the sequentialized task and the sequentialized ISRs. The entry function of the
task is the main entry function of the whole IDP. In most cases, the sequentialized
task will invoke all the sequentialized ISRs. However, there may exist special cases
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ALGORITHM 2: Algorithm adding invocations of ISRs for each statement
procedure StmtInvokeISRs(st : stmt, p : int)

imr : int;
group : int set;
match st with
| l = g →
imr ← IMRValTbl .find(st);
group← ReadDepISRs(g, p, imr);
InvokeBefore(st, group);
| g = l →
imr ← IMRValTbl .find(st);
group←WriteInfISRs(g, p, imr);
InvokeAfter(st, group);
| disableISR(i)→
imr ← IMRValTbl .find(st);
group← CompDepGroup(i , p, imr);
InvokeBefore(st, group);
| enableISR(i)→
imr ← IMRValTbl .find(st);
group← CompInfGroup(i , p, imr);
InvokeAfter(st, group);
| S1;S2

| if e then S1 else S2 →
StmtInvokeISRs(S1, p);StmtInvokeISRs(S2, p);
| while e do S →
StmtInvokeISRs(S, p);
| return when p = 0→

//for the exit statement of the task
group← CompNonInvokedISR();
InvokeBefore(st, group);
| → ();

end procedure

where an interrupt ISRi may never be invoked in the sequentialized result of the task
function when using data flow dependency to optimize the sequentialization process.
This is exemplified by Example 2. This situation may happen when there is no (direct
or transitive) data flow dependency relations between ISRi and task. Hence, when se-
quentializing IDPs, we need to specially consider those ISRs that have no data flow
dependency relations with task.

Example 2. Suppose that an IDP consists of one task and two interrupts:

— task : {tmp = x; }
— ISR1 : {tmp1 = x; tmp1 = 1/tmp1; }
— ISR2 : {tmp2 = 0;x = tmp2; }

where ISR2 is of higher priority than ISR1, x is a shared variable and tmp, tmp1, tmp2
are non-shared variables. Following the strategy that we only consider invoking rel-
evant ISRs before statements reading shared variables and after statements writing
shared variables, ISR1 will never be invoked in the sequentialization result of the task .
In other words, whether ISR1 happens or not will not affect the running of the task,
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and the running of the task will not affect the running of ISR1 , when fired. However, in
this IDP, there will be a division-by-zero in ISR1 when ISR2 is triggered before ISR1 .

To enclose the firing situation of this kind of interrupts, after sequentializing the
IDPs, we invoke the interrupts which are not invoked in the sequentialized task before
the return statement of task. We use a procedure CompNonInvokedISR() to compute the
set of interrupts which are not invoked in the sequentialized task. The simplest way to
implement CompNonInvokedISR() is to remember the set of interrupts that are invoked
during sequentialization, and then the set of the rest interrupts are not invoked.

3.5. The overall sequentialization algorithm considering data flow dependency and IMR
Algorithm 3 shows the overall sequentialization algorithm considering both the data
flow dependency and IMR. In Algorithm 3, the procedure SeqIDP() is the main entry
function of the overall sequentialization algorithm. N is the number of interrupts.
task and ISRs[N ] respectively represent the entry function of the task and interrupts.
IMRValTbl is a hash table that maps each program statement to the value of IMR
at that statement. IMRValTbl is computed by the procedure computeIMR() discussed
in Sect. 3.3. We use the function SeqEach(entry, p) to sequentialize the task and an
interrupt with function entry and priority p separately. Without loss of generality, we
set the priority of the task to 0.

For an IDP consisting of one task and N interrupts, the overall sequentialization
algorithm shown in Algorithm 3 works as follows: First, we compute the value of IMR
at each program point and build the data flow dependency graph among ISRs. Then,
we sequentialize the task and each interrupt separately. For each program statement
in the task and ISRs, we use StmtInvokeISRs() showed in Algorithm. 2 to add the
Schedule() function to invoke relevant ISRs before or after that statement. Finally,
we use the procedure Simplify() to remove certain unnecessary calls to ISRs in the
sequentialized IDPs.

ALGORITHM 3: A sequentialization algorithm considering data flow dependency
Require: task, ISRs[N ] : stmt list;//task and ISR entry

//IMR value for each program point
IMRValTbl : (stmt, int) Hashtbl;
procedure SeqIDP ( )

IMRValTbl ← ComputeIMR();
BuildDepGraph();
SeqEach(task, 0);
for (i = 1 to N ) do
SeqEach(ISRs[i ], i);

Simplify();
end procedure
//sequentialize task and each ISR
procedure SeqEach(fn : stmt list, p : int)

for( each sti ∈ fn) do
StmtInvokeISRs(sti, p);

end procedure

3.6. Soundness of sequentialization
Our sequentialization algorithm considering data flow dependency will give a sound
sequentialized program for an IDP, which means that the set of the program behaviors
of the sequentialized program is an over-approximation of that of the original IDP.
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In other words, all the program behaviors of the original IDP are included in that of
the sequentialized program. The soundness of the sequentialization can be justified as
follows:

(1) As described in Sect. 2, after transformation, an IDP only contains two kinds
of statements accessing shared variables: reading from a shared variable (i.e., l = g)
and writing to a shared variable (i.e., g = l). Moreover, we assume that all accesses to
shared variables (i.e., l = g or g = l) are atomic. Then before each program statement
St, we add the following code:

Schedule Ks
def
= for(int i = 0 ; i < K ; i++){ Schedule(); }

where K is the upper bound of the number of firing times of any interrupt during one
task period (we could conservatively set K to +∞ for soundness). If the considered
statement St does not access any shared variables, although it may be compiled into
several instructions in binary code, when the interrupt is triggered (between any two
instructions) during the execution of St will not affect the execution result of St. Hence,
the program behaviors caused by triggering interrupts before or during the execution
of St are included in the above sequentialized program fragment. If the statement St
accesses shared variables (i.e., either l = g or g = l), since we have assumed that it
is atomic, the program behaviors caused by triggering interrupts before St are also
included in the above sequentialized program fragment.

(2) On top of (1), we make two kinds of optimizations to remove unnecessary invoca-
tions of the Schedule() function by considering the features of IDPs. First, the program
fragment

Schedule Ks();St1;Schedule Ks();St2; . . . ;Schedule Ks();Stn;
can be soundly transformed into

St1;St2; . . . ;Schedule Ks();Stn;
when Sti, i ∈ [1, n − 1] does not access any shared variables and only Stn accesses
a shared variable. This is because the situation that an interrupt is triggered before
Sti (where i ∈ [1, n − 1]) can be simulated by triggering it just before Stn. Note that
the happening of the interrupt does not have any effects over the execution result of
the statements {St1; . . . ;Stn−1; }. Besides, the number of firing times of any interrupt
during the execution of {St1; . . . ;Stn−1;Stn; } is less than K. Second, we utilize the
data flow dependency to remove unnecessary invocations of certain interrupts in the
Schedule() function. To be more clear, in the Schedule() function, we do not invoke those
interrupts that have no effects over the execution of the considered statement that
accesses a shared variable. Before the statement {l = g; }, we consider only those in-
terrupts whose triggering will (directly or indirectly) affect the value of shared variable
g. Indeed, during the real execution of the IDP, an interrupt ISRi whose triggering will
not affect the value of g may be triggered exactly before {l = g; }. However, although
we do not consider ISRi before statement {l = g; }, following our sequentialization ap-
proach, we will consider ISRi before a later statement {l′ = g′; } if ISRi ’s triggering will
affect the value of shared variable g′. In other words, in the set of program behaviors
of the whole sequentialized program, the firing of the interrupt ISRi is still soundly
considered. Similarly, after the statement {g = l; }, we consider only those interrupts
whose triggering will be (directly or indirectly) affected by the value of shared variable
g. The soundness of this case is similar to that of the case for {l = g; }.

To sum up, the program behaviors of the original IDP are over-approximated by the
sequentialized program. In other words, our sequentialization approach is sound for
the IDP model considered in this paper (under the assumptions listed in Sect. 2).
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4. ANALYZING SEQUENTIALIZED IDPS VIA ABSTRACT INTERPRETATION
As we mentioned before, embedded software often involves lots of numerical compu-
tations and thus has the potential to contain errors related to numeric computations.
In this section, we make use of abstract interpretation [Cousot and Cousot 1977] to
analyze numerical properties of IDPs. We leverage existing numerical abstract inter-
pretation techniques for sequential programs to analyze numerical properties of se-
quentialized IDPs given by the methods described in Sect. 3.

To perform numerical static analysis, there exist a variety of numerical abstract do-
mains in the literature. For example, the interval abstract domain [Cousot and Cousot
1976] is a kind of non-relational abstract domains and can be used to infer numerical
bounds for variables, i.e., x ∈ [c, d]. The octagon abstract domain [Miné 2006] is a kind
of weakly relational abstract domain and can be used to infer numerical invariants in
the form of ±x ± y ≤ c (where c is a constant). We employ these general numerical
abstract domains for analyzing IDPs.

However, sequentialized IDPs also have their own specific features that may be un-
common in generic programs. These features may provide opportunities to get a better
balance of precision and scalability of analysis, that is to design certain specific ab-
stract domains according to the specific features of IDPs. In the following, we give two
examples of specific abstract domains for IDPs.

Boolean flag abstract domain for specific ISRs. From practical IDPs, we observe
that there is a specific family of interrupts which are fired after a fixed time interval.
For example, some interrupts are triggered by timers. We call this kind of interrupts
periodic interrupts. Furthermore, there is a kind of periodic interrupts whose periods
are larger than one task period, which means that this kind of periodic interrupts are
fired at most once during one task period. In this paper, we call this specific kind of
interrupts as at-most-once fired periodic interrupts.

During numerical static analysis of IDPs that involve an at-most-once fired peri-
odic interrupt ISRi , whether ISRi has been fired or not is an important information
for the precision of the analysis. However, numerical abstract interpretation often
performs flow-sensitive analysis rather than path-sensitive analysis. E.g., it can not
distinguish whether an at-most-once fired interrupt has been fired or not. Consider
analyzing {if(nondet()) ISRi(); }. Let A1 denote the abstract state (that is a map from
program variables to values) in an abstract domain before this statement. E.g., when
using the box abstract domain, an abstract state is a map from program variables to
their value ranges. After this statement, abstract interpretation will perform a join
operation (which computes the least upper bound of two abstract states) to compute
the post abstract state as A1 tA2 where A2

def
= [[ISRi()]]](A1) wherein [[ISRi()]]] denotes

the abstract transfer function of ISRi(). Intuitively, in A1 tA2, A1 denotes the abstract
state when ISRi has never been fired while A2 denotes the abstract state after ISRi

has been fired. However, after the join operation, most numerical abstract domains
will lose the information that the abstract states are different for the case where ISRi

has been fired and for the case where it has not been fired.
To handle this kind of imprecision, our basic idea is using a boolean flag variable f

in the abstract domain to distinguish whether an at-most-once fired periodic interrupt
has already been fired or not. In the abstract domain, the domain representation is
A

def
=A1×. . . Ai×. . . An where n represents the number of at-most-once-firing interrupts

in the program, Ai
def
= 〈Af

i , A
¬f
i 〉, i ∈ [1, n], wherein Af

i denotes the abstract state when
ISRi has already been fired and A¬fi denotes the abstract state when ISRi has not been
fired.
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Most domain operations, such as join and widening, can be applied element-wise as
follows:

A tA′ = (A1 tA′1)× . . . (Ai tA′i)× . . . (An tA′n)

A∇A′ = (A1∇A′1)× . . . (Ai∇A′i)× . . . (An∇A′n)

where A = A1× . . . Ai× . . . An, A′ = A′1× . . . A′i× . . . A′n, AitA′i = 〈A
f
i tA′

f
i , A

¬f
i tA′

¬f
i 〉,

Ai∇A′i = 〈Af
i∇A′

f
i , A

¬f
i ∇A′

¬f
i 〉 and i ∈ [1, n]. The transfer functions for the abstract

domain can be applied element-wise like the above domain operations, except the
transfer function for the branch statement which non-deterministically calls an at-
most-once fired periodic interrupt, i.e., {if(∗) ISRi(); } where we use “∗” to represent
the nondet() function for short. Let A = A1× . . . Ai× . . . An denote the abstract state in
the boolean flag abstract domain before {if(∗) ISRi(); }. For those Aj where j 6= i,
we apply the transfer function to the branch statement element-wise. For the ab-
stract state Ai (which distinguishes whether ISRi has been fired or not), we apply
the transfer function as follows: After the then branch, we get the post abstract state
〈[[ISRi()]]](A¬fi ),⊥〉; After the else branch, nothing changes and thus we get the pair
〈Af

i , A
¬f
i 〉; Then, at the end of control-flow join, we perform an element-wise join oper-

ation to compute the post abstract state. This process can be formulated as:

[[if(∗) ISRi()]]]A def
= [[if(∗) ISRi()]]]A1 × . . . [[if(∗) ISRi()]]]Ai × . . . [[if(∗) ISRi()]]]An

where

[[if(∗) ISRi()]]]Aj
def
=

{
〈Af

j t [[ISRi()]]](Af
j ), A

¬f
j t [[ISRi()]]](A¬fj )〉 if i 6= j

〈Af
j t [[ISRi()]]](A¬fj ), A¬fj 〉 if i = j

The boolean flag domain generally can be considered as a special case of partition-
ing technique (such as dynamic partitioning [Bourdoncle 1992][Jeannet et al. 1999]
and trace partitioning [Mauborgne and Rival 2005]). However, it has its own speciali-
ties, tailored to analyze IDPs. The partitioning in this domain is designed according to
the semantics of interrupts, rather than derived from the program syntax (e.g., using
conditions for partitioning).

There exist two approaches to include boolean flags in our abstract states, pro-
viding different cost versus precision trade-offs. One approach is to partition the
abstract state with respect to a bit vector where each bit denotes a flag: the bit
is set to one if that interrupt has been fired once, and zero if that interrupt has
never been fired, under the assumption that such interrupts cannot be fired more
than once. In other words, one bit vector represents the firing states of all inter-
rupts. E.g., a bit vector (consisting of 3 bits) 101 means that ISR1 and ISR3 have
been fired while ISR2 has not been fired yet. This partitioning is of high precision
as it tracks every possible combination of interrupts. However, it may cause an ex-
ponential number of partitions. Another approach to include boolean flags is to rep-
resent each flag as an independent boolean variable. Assume that the set of peri-
odic interrupts that are fired at-most-once is {ISR1 , ..., ISRn}. For each ISRi we as-
sociate a boolean variable fi to represent whether ISRi has already been fired (when
fi = true) or not (when fi = false). This representation ignores the relationships
between the status of ISRs, and is thus less precise. However, it will be more effi-
cient, leading to only 2n cases instead of 2n. E.g., suppose there is a program fragment:

if(∗) isr1();
if(∗) isr2();
if(∗) isr3();
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If we use techniques like trace partitioning to enumerate all the possible paths, there
exists 8 paths, which means that after the last statement we need to maintain 8 ab-
stract states. If we only use a flag to represent whether an interrupt has been fired or
not, we only need 6 (i.e., 2×3) abstract states. In this paper, we use the later manner
for the sake of efficiency.
Example 3. Suppose that an IDP consists of one task and one interrupt where x is a
shared variable, all other variables are non-shared variables and ISR is an at-most-
once fired periodic interrupt:

— task : {x = 0; tx = x; tx = tx+ 1; x = tx; z = x; }
— ISR : {tx = x; tx = tx+ 10; x = tx; }

If we use only the interval abstract domain to analyze the program, at the end of the
task, the resulting variable bounds are {x ∈ [1, 21], z ∈ [1, 21]}. However, if we use the
boolean flag abstract domain on top of intervals, at the end of the task, the results will
be {x ∈ [11, 11], z ∈ [11, 11]} when ISR has been fired and {x ∈ [1, 1], z ∈ [1, 1]} when ISR
has not been fired. Obviously, the results given by the boolean flag abstract domain are
more precise.
Syntactic equality abstract domain for sequentialized IDPs. From the sequen-
tialized IDPs, we observe that there is a frequently-appearing code pattern that is
assigning a shared variable to a temporary variable and then testing whether the tem-
porary variable satisfies some branch conditions. The existence of such a code pattern
is due to the fact that we transform all program statements involving shared variables
into the form allowing only two kinds of atomic statements that can access shared
variables (i.e., g = l and l = g), by introducing auxiliary variables as we described in
Sect. 2. All shared variables appearing in branch conditions in the original IDPs will
be transformed into this code pattern. In Fig. 6(a), the original program tests whether
a shared variable thetaE satisfies some branch conditions and updates the shared vari-
ables according to the result of the test. In Fig. 6(b), we show the resulting program
satisfying our IDP syntax after transformation by introducing a temporary variable
tmpthetaE.

When using non-relational abstract domains, this kind of code pattern may cause
loss of analysis precision. For example, during numerical static analysis of the trans-
formed program in Fig. 6(b), the interval abstract domain can not infer that the in-
variant thetaE >= 0x1FF holds at line 5. We could use some relational abstract do-
mains, such as octagons and polyhedra, which can infer more precise invariants than
the interval abstract domain. However, relational abstract domains are too costly for
large-scale IDPs. In this paper, our idea is to solve the imprecision problem caused by
this kind of code pattern by using a lightweight abstract domain.

1: unsigned int thetaE;
2: . . .
3: if (thetaE >= 0x1FF ){
4: thetaE = thetaE − 0x1FF ;
5: }
6: . . .

(a) original program fragment

1: unsigned int thetaE, tmpthetaE;
2: . . .
3: tmpthetaE = thetaE;
4: if (tmpthetaE >= 0x1FF ) {
5: tmpthetaE = thetaE;
6: tmpthetaE = tmpthetaE−0x1FF ;
7: thetaE = tmpthetaE;
8: }
9: . . .

(b) transformed program fragment

Fig. 6. A transformation example following our IDP syntax
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Our main idea is tracking the syntactic equality relations between variables besides
the value range information inferred by the interval abstract domain. Before testing
branch conditions, we leverage the syntactic equality relations between variables to re-
fine the value range in the interval abstract domain. Let AEQ denote the abstract state
of syntactic equality relations between variables, which maps each program variable to
a set of program variables that have syntactic equality relations with it. Let E[[v]](AEQ)
denote the set of variables which are equal to the program variable v (including itself)
in the abstract state AEQ. E.g., the syntactic equality relation of Fig. 6(b) at line 4 is
E[[thetaE]](AEQ) = {thetaE, tmpthetaE} . The transfer function and the join operator
for the syntactic equality abstract domain are defined as follows:

[[x = y]]](AEQ)
def
= {AEQ[x→ E[[y]](AEQ) ∪ {y}]} (1)

AEQ
1 tAEQ

2
def
= {∀x ∈ SV ∪NV ,AEQ

1 [x→ E[[x]](AEQ
1 ) ∩ E[[x]](AEQ

2 )]} (2)

where x, y represent program variables. Transfer function (1) represents adding a syn-
tactic equality relation for those assignments whose left and right operands both are
variables (rather than contants or compound expressions). For other forms of assign-
ments, such as assigning a constant (e.g., x = 1) and assigning an expression (e.g.,
x = y + z), our method clears the syntactic equality relations of the assigned variable
for the reason that these assignments destroy the previous syntactic equality relations.
Function (2) defines the join operator of the syntactic equality abstract domain. Here
we need must syntactic equality relations, and thus our method uses the set intersec-
tion to get the common syntactic equality relations existing in both abstract states.
When testing a branch condition, we enumerate all forms of conditions derived by re-
placing each of the variable in the test condition by its corresponding syntactic equality
variables. And during testing those derived branch conditions, our method propagates
the syntactic equality relations to the value range abstract domain. In other words, we
make use of syntactic equality relations to update the value ranges of variables. E.g.,
in Fig. 6, we get thetaE ≥ 0x1FF after line 4.

Our syntactic equality abstract domain is similar to the variable equality abstract
domain in [Feret 2004], where Feret used an equality abstract domain to refine the
digital filter analysis. Here, we make use of our syntactic equality domain to deal with
the special code pattern in transformed IDPs.

We use equivalence classes to implement the syntactic equality relations. Moreover,
we use a hash table to map each program variable to a equivalence class which is an
ordered set of program variables. In order to save the space, we use the Union-Find
algorithm to implement the operations of equivalence classes. So the space complexity
of the syntactic equality abstract domain is O(n) where n is the number of program
variables. The time complexity of assignment transfer function is O(log2(n)) because it
has the same time complexity as the problem of inserting an element into an ordered
set. While the time complexity for the join operator is O(n) for the reason that we need
n times comparison to put n variables into different equivalence classes during the
intersect operation on ordered sets. Both the space and time complexity of our syntax
abstract domain are O(n). Compared with other relational abstract domains, such as
the octagon abstract domain which has space complexity O(n2) and time complexity
O(n3), our syntactic equality abstract domain is more lightweight.

5. IMPLEMENTATION AND EXPERIMENTAL RESULTS
We have implemented a prototype tool to sequentialize IDPs, which uses CIL [Necula
et al. 2002] as its front-end. We have also developed a numerical static analyzer for an-
alyzing sequentialized IDPs based on the front-end CIL and the Apron [Jeannet and
Miné 2009] numerical abstract domain library. We use a CIL supported inline tool to
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handle function calls. For pointers, we first use a flow-insensitive alias analysis as pre-
analysis before sequentialization, to obtain an over-approximation result of possible
aliases for shared pointer variables which will be used during sequentialization. Dur-
ing the analysis of sequentialized programs, we use a flow-sensitive pointer analysis
to capture possible aliases for both shared and non-shared pointer variables. However,
we do not allow tasks and interrupts to access the same memory cell through pointer
arithmetic over physical addresses without using an explicit variable name to repre-
sent that memory cell. For structures, we use an access path based memory model to
identify different fields of the structure. For unions, we use an offset based memory
model to analyze the potential shared variables. Although the field names of a union
type are various, the offset with respect to the starting address is canonical.

Our experiments were conducted on a selection of benchmarks and real-world
programs listed in Fig. 7. Motv Ex is the motivating example shown in Fig. 1.
DataRace Ex and Privatize come from a data race detection tool for IDPs namely
Goblint [Schwarz et al. 2011]. Nxt gs1 is a robot control program from LEGO com-
pany samples which implements a two-wheeled robot keeping balance and avoiding
obstacles. UART (Universe Asynchronous Receiver and Transmitter)2 is from an open
source website which implements a First-In First-Out (FIFO) buffer. iRobot33 coming
from [Kotker and Dorsa Sadigh 2011] is a simplified control software used in the au-
tonomous robot platform of iRobot Create. The goal of iRobot3 is to control a cleaner
robot avoiding obstacles and cliffs. HBM (Heart Beat Monitor)4 is an application for a
micro-controller at89s51(8051) which counts the heart beat number by a sensor and
displays the number on a LCD screen every minute. The last three benchmarks are
coming from aerospace industry applications. Ping pong is an implementation of ping-
pong buffer (or double buffering that is a technique to use two buffers to speed up
a computer that can overlap I/O with processing). ADC Ctl (Analog-Digital Conver-
sion Control) is an application software in aerospace embedded systems, which sam-
ples analog data, converts the analog data to digital data and sends the digital data
through a peripheral bus. Sat Ctl is a control software for an aerocraft which gets data
from sensors and controls the flying trace of the aerocraft. Some of these programs
originally do not include interrupts, such as Nxt gs, but the tasks in these programs
are scheduled using a priority-based real-time scheduler, which behaves similarly to
IDPs. Hence, we adapt them into IDPs during our experiments.

Fig. 7 shows the sequentialization results of all the benchmarks. OLT and OLI rep-
resent respectively the original code size in lines of task and interrupts. #Vars repre-
sents the number of variables in programs. #ISR represents the number of interrupts.
SEQ represents the sequentialization method described in Sect. 3.1 which is inspired
from [Kidd et al. 2010]. DF SEQ represents the sequentialization method described in
Sect. 3.5 which considers data flow dependency and IMR. From the results, we can see
that the code size of the program given by DF SEQ is much smaller than that given
by SEQ . For example, for Sat Ctl , the code size of the program given by DF SEQ is
around 5% of the code size of that given by SEQ .

Fig. 8 shows the analysis results of analyzing sequentialized IDPs by numerical ab-
stract interpretation. We use the box and octagon abstract domains in the APRON
library to analyze the sequentialized IDPs. We use “-” to represent that the numerical
analysis runs out of memory. For Motv Ex , we find the expected division-by-zero error.
For DataRace Ex and Privatize, our method can prove their assertions. For example,

1http://lejos-osek.sourceforge.net/
2http://www.mikrocontroller.net/topic/101472#882716
3http://uclid.eecs.berkeley.edu/gametime/fmcad11/
4https://github.com/pankajshanbhag/heartbeat
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Program Sequentialization

Name OLT OLI #Vars #ISR SEQ DF SEQ DF SEQ/SEQ
LOC Time (s) LOC Time (s) (%LOC)

Motv Ex 10 7 8 1 158 0.004 134 0.006 84.81
DataRace Ex 20 40 9 2 385 0.004 242 0.005 62.86

Privatize 25 37 7 2 393 0.006 168 0.004 42.75
Nxt gs 23 154 27 1 1199 0.005 552 0.006 46.04
UART 129 15 47 1 5940 0.010 1215 0.010 20.45

iRobot3 114 80 55 1 2986 0.035 793 0.034 26.56
HBM 500 85 36 2 9832 0.056 1312 0.053 13.34

Ping pong 130 53 21 1 3159 0.006 842 0.006 26.65
ADC Ctl 1950 2880 334 1 1.2M 0.541 404K 0.520 33.67
Sat Ctl 33885 1227 1352 1 10M 16.1 534K 1.6 5.34

Fig. 7. Experimental results on sequentializing IDPs

Privatize asserts that a shared variable is always equal to 1. For Nxt gs, our analy-
sis issues a number of integer overflow alarms. This is due to the fact that in Nxt gs
many variables are assigned data from sensors. For soundness, our analysis sets these
variables to the full range of the data type and then arithmetic operations over these
variables may cause integer overflow. For UART and Ping Pong , our method can prove
that there is no array-out-of-bound error. For iRobot3, our method issues two integral
overflow alarms due to the same reason as Nxt gs.

Program Analysis time of SEQ (s) Analysis time of DF SEQ (s) Found properties or errors
BOX OCT BOX OCT

Motv Ex 0.007 0.011 0.006 0.007 division-by-zero error
DataRace Ex 0.042 0.053 0.011 0.015 assertions hold

Privatize 0.029 0.036 0.005 0.007 assertions hold
Nxt gs 0.113 0.140 0.040 0.046 2 integer overflow alarms
UART 0.732 5.782 0.128 1.177 no array-out-of-bound

iRobot3 0.303 2.979 0.069 0.636 2 integer overflow alarms
HBM 0.887 5.661 0.112 1.076 4 integer overflow alarms

Ping pong 0.429 2.434 0.054 0.251 no array-out-of-bound
ADC Ctl - - 343.5 - 70 arithmetic overflow alarms
Sat Ctl - - 5325 - 538 alarms

Fig. 8. Experimental results on analyzing sequentialized IDPs

For HBM , using the box abstract domain issues 4 integer overflow alarms. Without
considering the application scenario, two of the alarms are false alarms which can be
eliminated using the octagon abstract domain. When we consider the application sce-
nario, the other two alarms are also false alarms and can be eliminated by adding some
assumptions. As we explained before, HBM is an application for heart beat monitor,
which consists of one task and two interrupts. The lower priority interrupt reads some
sensors and increments a program variable bt by 1 to store the heart beat number. The
higher priority interrupt is a timer and increments a program variable min by 1 every
60 seconds. Our method issues two integer overflow alarms for the incrementation of
variables bt and min for the reason that the upper bounds on the firing number of these
two interrupts are unknown. However, we can infer reasonable upper bounds on the
firing number of these two interrupts by considering the real world application sce-
nario. For instance, suppose that the upper bound of heart beat counting interrupt can
be set to 200 (i.e. assuming heart beat number is less than 200 times in one minute)
and the upper bound of the timer interrupt is 60 in every minute. In such a case, these
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two integer overflow alarms can be eliminated by using the octagon abstract domain
combined with these upper bound assumptions.

For ADC Ctl , our method issues 70 arithmetic overflow alarms. After analyzing
these alarms, we can divide these alarms into two classes : 20 potential overflow
alarms and 50 false positives. For those potential overflow alarms, there are two kinds
of typical alarms. One kind of such alarms are caused by the program incrementing a
global variable by 1 without resetting it. In Fig.9(a), when the state variable stateAD
is abnormal, the variable emg is incremented by 1 at line 9, but without being reset.
During the execution, there may be integer overflow over this variable because this
program fragment may be executed for an unbounded number of times. Such kind of
integer overflow may cause serious accident in critical embedded systems. E.g., an in-
teger overflow bug found in Boeing 787 control software may result in loss of control of
the airplane [Goodin 2015]. According to [Goodin 2015], the integer overflow is caused
by continuously adding a counter but without reseting it, which is quite similar to the
case of integer overflow alarms found in ADC Ctl . Another set of alarms are caused
by assigning negative values to unsigned variables as shown in Fig.9(b). At line 7,
the program variable speed with unsigned integer type will be assigned by a negative
value. In fact, for the same value (i.e., binary representation), the results are quite dif-
ferent, when considering signed and unsigned. E.g., in Fig.9(b), for unsigned integer
the value of speed after line 7 is about 4 × 109 while for signed integer the value is
−839. Although, in the program, we found that all accesses of speed only manipulate
the low 24 bits, this is still an unsafe use. The last 50 false positives are caused by the
over approximation of our static analysis method. Furthermore, we will show how to
remove part of those false positives by our syntactic equality abstract domain in the
later part.

For Sat Ctl, our method issues 538 warnings, including 473 arithmetic overflow
alarms, 19 division by zero alarms and 46 array out of bounds alarms. Most of arith-
metic overflow alarms are caused by type cast assignments, such as assigning an un-
signed integer to a char. All of the division by zero alarms are caused due to the fact
that the divider is a result of a non-linear function. E.g., when the program uses the
result of sin(x) as the divider, our analysis will return the interval [−1, 1] as the result
of sin(x), which contains zero and thus causes division by zero alarms. Some of the ar-
ray out of bound alarms are due to the fact that our analysis of array indices in nested
loops is not precise enough.

From the analysis time, we can see that analyzing the sequentialized program given
by DF SEQ is much faster than analyzing the one given by SEQ . This is due to the
fact that the code size of the resulting sequentialized IDPs given by DF SEQ is much
smaller than that given by SEQ . Although the resulting sequentialized IDPs given by
DF SEQ may contain more loops, abstract interpretation can deal with loops efficiently
using extrapolation techniques such as widening.

In order to know how many warnings are caused by interrupts, we also ana-
lyze the IDPs after disabling all interrupts (i.e., only analyzing the tasks) and en-
abling all interrupts (i.e., removing all the interrupt-disabling statements in the pro-
grams). The results are shown in Fig. 10, where OF represents arithmetic over-
flow, DivZ represents division by zero and AOB represents array out of bound.
We select ADC Ctl and Sat Ctl as the benchmarks because the other programs
do not contain enable and disable interrupt statements (Motv Ex) or there is no
interrupt-disabling statements after the initialization process of the main application
(DataRace Ex,Privatize,UART ,Ping pong). For ADC Ctl , comparing the analysis re-
sults of disabling all interrupts and enabling all interrupts, we see that most of the
warnings are caused by interrupts. Compared with the analysis results of DF SEQ ,
enabling all interrupts finds 2 more warnings including 1 true division by zero error
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1: int emg, stateAD;
2: . . .
3: if (stateAD == 0x0)
4: stateAD = 0x1;
5: else if (stateAD == 0x1)
6: stateAD = 0x2;
7: else if (stateAD == 0x2)
8: stateAD = 0x0;
9: else emg++;
10: . . .

(a) integer overflow

1: unsigned int speed;
2: float avg;
3: . . .
4: if (avg > 1.57f )
5: speed =(unsigned int)((int)(1.57 ∗ 534.72)));
6: else if (avg < −1.57f )
7: speed =(unsigned int)((int)(−1.57 ∗ 534.72)));
8: else
9: speed =(unsigned int)((int)(avg ∗ 534.72)));
10: . . .

(b) float overflow

Fig. 9. Arithmetic overflow program fragments in ADC Ctl

Program all-ISRs-enabled warnings all-ISRs-disabled warnings DF SEQ warnings
OF DivZ AOB total OF DivZ AOB total OF DivZ AOB total

ADC Ctl 71 1 0 72 8 0 0 8 70 0 0 70
Sat Ctl 477 19 46 542 302 11 14 327 473 19 46 538

Fig. 10. Experimental results on analyzing programs with enabling and disabling interrupts

and 1 arithmetic overflow false alarm. For Sat Ctl , compared with the analysis re-
sults of DF SEQ , enabling all interrupts issues only few more warnings. The reason
is that the purpose of disabling interrupts statements in Sat Ctl is to avoid functional
incorrectness, e.g., to avoid data inconsistency, whereas our method focuses on finding
run-time errors.

Experimental results on boolean flag abstract domain. Fig. 11 shows the analy-
sis results of analyzing IDPs with at-most-once fired periodic interrupts. In Fig. 11, BF
denotes the boolean flag abstract domain described in Sect. 4. #FP denotes the num-
ber of false alarms. Example 4 is an adapted version of the program in Example 4 in
Section 4 by adding an assertion x ≤ 20 at the end of the task. Division Ex is an exam-
ple that involves a division operation in the task. For Example 4 and Division Ex, the
analysis using only the octagon domain issues false alarms, while using our boolean
flag abstract domain on top of the octagon domain (denoted by BF+OCT) can elimi-
nate these false alarms. This is because our boolean flag abstract domain can make
use of the information that the interrupt is an at-most-once fired periodic interrupt.
SeekRobot5 is a nxtOSEK platform application software, which consists of priority
tasks. Moreover, tasks in SeekRobot are periodic tasks and satisfy at-most-once fired
constraints. E.g., given one task with priority 1 and period 50 ms while another task
with priority 5 and period 100 ms , we know that during one execution of the lower
priority task, the higher priority task can be triggered at-most-once. As we mentioned
before, our method supports this kind of program by considering tasks with priority
as interrupts. We adapt the lower priority task to contain a loop which increments
a shared variable of type char by 1 until 126 (which is the upper bound of type char
minus one). For the higher priority task, we add a statement which increments the
shared variable by 1. According to the at-most-once fired constraints, there will be no
overflow for this shared variable. When performing analysis using the octagon abstract
domain, there will be 1 overflow alarm for the incrementation of the shared variable.
Our boolean flag abstract domain on top of the octagon abstract domain can elimi-
nate this false alarm by considering that the highest priority task is fired at-most-once
during one execution of the lower priority task.

5https://github.com/smiler/nxt-osek-sumo
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Posix Ex6 is an application in Trampoline [Trampoline 2015] which is a static RTOS
for small embedded systems. Posix Ex consists of 2 tasks. The period of the lower
priority task is 100 ms while the period of the higher priority task is 1000 ms. So the
higher priority task of Posix Ex satisfies the at-most-once fired constraints. We adapt
the lower priority task to contain a loop which reads data from a shared buffer and
increments the index of the buffer. For the higher priority task, we add a statement
which reads the shared buffer and increments the index of the buffer. When we perform
the analysis using the octagon abstract domain, there will be 1 array out of bound false
alarm over the accessing of shared buffer. Our boolean flag abstract domain on top of
the octagon abstract domain can eliminate this false alarm by taking the at-most-once
fired constraints into consideration.

For the analysis time, we can see that analyzing the sequentialized program given
by BF+OCT is slower than OCT. This is due to the fact that our boolean flag abstract
domain needs to maintain extra information for at-most-once fired interrupts.

Program Analysis of SEQ (s) Analysis of DF SEQ (s)

Name OLT OLI LOC OCT BF+OCT LOC OCT BF+OCT
time (s) #FP time (s) #FP time (s) #FP time (s) #FP

Example 4 6 11 158 0.007 1 0.012 0 122 0.005 1 0.010 0
Division Ex 8 10 189 0.007 1 0.013 0 99 0.004 1 0.007 0
SeekRobot 56 710 15921 4.852 1 6.570 0 5241 1.552 1 3.418 0
Posix Ex 15 10 255 0.028 1 0.040 0 111 0.016 1 0.022 0

Fig. 11. Experimental results on analyzing IDPs with at-most-once fired periodic interrupts

Experimental results on syntactic equality abstract domain. Fig. 12 shows the
analysis results of analyzing IDPs using syntactic equality abstract domain. In Fig. 12,
EQ denotes the syntactic equality abstract domain described in Sect. 4. #Warnings
denotes the number of warnings issued by each abstract domain. For UART and
Ping pong , our syntactic equality abstract domain combined with the interval abstract
domain (denoted by EQ+BOX) issues no warning, the same as the analysis results given
by the interval and octagon abstract domain. For iRobot, as we mentioned before, these
two warnings are caused by unknown values from sensors, which can not be eliminated
by improving the ability of abstract domain. For HBM , the syntactic equality abstract
domain can eliminate one false alarm due to the fact that in HBM , a shared vari-
able in a branch condition is replaced with temporary variables. As a non-relational
abstract domain, the interval abstract domain can not find the equality relations be-
tween these variables, while our syntactic equality abstract domain maintains these
equality relations and eliminates this false alarm. The octagon abstract domain is a
weakly relational abstract domain, which can infer equality relationship invariants
(such as x− y ≤ 0 ∧ y − x ≤ 0), so the octagon abstract domain can eliminate this false
alarm too. Moreover, when adding the upper bound on the firing number of each inter-
rupt, the octagon abstract domain infers the relations between shared variables and
the upper bounds (e.g., x ≤ y ∧ 0 ≤ y ≤ c) and eliminates the other two false alarms.
However, the interval and the syntactic equality abstract domain can not infer this
kind of invariants. For ADC Ctl , compared with only using the interval abstract do-
main, the syntactic equality abstract domain eliminates 8 false alarms for the similar
reason as HBM . For Sat Ctl , compared with using only the interval abstract domain,
the syntactic equality abstract domain eliminates 3 false alarms including 1 arithmetic

6https://github.com/TrampolineRTOS/trampoline/tree/master/examples/posix
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overflow alarms and 2 array out of bound alarms for the similar reason as HBM . How-
ever, the octagon abstract domain runs out of memory for these two programs ADC Ctl
and Sat Ctl .

For the analysis time, compared with using only the interval abstract domain, the
syntactic equality abstract domain causes some overhead. For small scale programs,
these overhead can almost be neglected. For ADC Ctl and Sat Ctl , the overhead is less
than 1.4 times to the analysis time of using the interval abstract domain. Compared
with the time consumption of the octagon abstract domain, the syntactic equality ab-
stract domain has a speed of the same order of magnitude as using only the interval
abstract domain.

Program Analysis of BOX Analysis of EQ + BOX Analysis of OCT
Name Time(s) #Warnings Time(s) #Warnings Time(s) #Warnings
UART 0.128 0 0.178 0 1.177 0

iRobot3 0.069 2 0.073 2 0.636 2
HBM 0.112 4 0.127 3 1.076 0

Ping pong 0.054 0 0.125 0 0.251 0
ADC Ctl 343.5 70 480.6 62 - -
Sat Ctl 5325 538 5664 535 - -

Fig. 12. Experimental results on analyzing IDPs with syntactic equality abstract domain

6. RELATED WORK
Sequentialization. Much work has been done on sequentializing concurrent pro-
grams. Qadeer et al. [Qadeer and Wu 2004] propose a context bounded analysis (CBA)
method for concurrent programs via sequentialization. Their sequentialization method
adds non-deterministic calling function of other threads and non-deterministic return
statements to the previous executing thread before each program statement. Their
method finds numerous bugs in device drivers with a fixed context bound 2. How-
ever, their method cannot be generalized to an arbitrary context bound. Lal et al. [Lal
et al. 2008] propose a CBA method based on sequentialization for concurrent programs
with an arbitrary given context bound. Their sequentialization method uses different
copies of the shared global memory in different context and uses assumptions to prune
infeasible runs. However, their method uses a large number of extra variables which
cause a high degree of nondeterminism. Inverso et al. [Inverso et al. 2014] propose
a CBA method based on sequentialization for concurrent programs. Their method re-
duces the nondeterminism of sequentialized programs to avoid exponentially growing
formula sizes in the model checking of sequentialized programs. Recently, Chaki et al.
[Chaki et al. 2013] present a CBA method for analyzing periodic programs based on
sequentialization.

Kidd et al. [Kidd et al. 2010] propose a sequentialization method for priority pre-
emptive scheduling systems in which each task is periodic. The key idea is to use a
single stack for all tasks and to model preemptions by function calls. Edwards [Ed-
wards 2003] surveys a variety of approaches for translating concurrent specifications
(these concurrent specifications are more abstract than concurrent programs) into se-
quential code which can be efficiently executed.

Compared with the above work, our sequentialization method is specifically de-
signed for IDPs. Moreover, our method makes use of the data flow dependency among
tasks and interrupts to reduce the size of the sequentialized program. In addition, we
consider analyzing numerical properties of the sequentialized programs using numer-
ical abstract interpretation.
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Numerical static analysis of embedded software. Most of the existing numerical
static analysis approaches consider sequential programs. Astrée [Blanchet et al. 2003]
is one of the famous numerical static analyzers for sequential programs, which has
been successfully used in analyzing flight control software.

Mine [Miné 2011] proposes a numerical static analysis method for parallel embed-
ded software. Their method iterates each thread in turn until all threads interferences
stabilize. The interference is used to abstract the effects of a thread on the shared vari-
ables. One main difference between interferences and the data flow dependency is that
interferences consider the influences of each thread to shared variables, whereas our
data flow dependency considers both the dependency and influence relations among
interrupts, linked through shared variables. Recently their work extends to support
relational numerical properties [Miné 2014]. The scalability of their method is pretty
good due to the fact that the method is thread-modular. Compared with their work,
our work targets IDPs and we take into consideration the priority and firing times of
interrupts, so we can get more precise analysis results for IDPs.

Cooprider et al. [Cooprider and Regehr 2006] propose a static analysis method for
embedded software to reduce the code size. Beckschulze et al. [Beckschulze et al. 2012]
propose a data race analysis method for lockless micro-controller programs considering
hardware architecture. Compared with their work, our method focuses on numerical
properties of IDPs and considers data flow dependency among tasks and interrupts.
Monniaux [Monniaux 2007] proposes a numerical static analysis method for a concur-
rent USB driver. Their method dynamically invokes interrupts for every access to the
shared memory in tasks. Compared with their method, our method first sequentializes
the concurrent program to sequential program, which has a key benefit that is the abil-
ity to leverage the power of the state-of-the-art analysis and verification techniques for
sequential programs to analyze IDPs.

Analysis of interrupt-driven programs. In the literature, there are a few work on
analyzing and verifying IDPs.

Brylow et al. [Brylow et al. 2001] propose a static analysis method for interrupt-
driven Z86-based software. Their method first generates the control flow graph of the
IDPs which considers the effects from interrupts. Based on the control flow graph, the
approach uses a model checking algorithm of pushdown systems to analyze the upper
bounds of stack sizes and interrupt latencies of IDPs. Most of the existing work focus
on object code and consider problems such as interrupt latency [Brylow and Palsberg
2004], stack size [Regehr et al. 2005], data race [Schwarz et al. 2011].

Compared with the above work, our method analyzes the source code of IDPs rather
than object code and focuses on numerical properties of IDPs.

7. CONCLUSION
We have presented a sound numerical static analysis approach for IDPs. The key idea
is to sequentialize IDPs into sequential programs before analysis. The idea of sequen-
tializing IDPs into sequential programs enables the use of existing analysis and veri-
fication techniques (e.g., bounded model checking, symbolic execution, etc.) for sequen-
tial programs to analyze and verify IDPs. We have proposed a sequentialization algo-
rithm specifically for IDPs, by considering the data flow dependency among ISRs and
specific hardware features of IDPs. After that, we have shown how to use numerical
abstract interpretation to analyze numerical properties of the sequentialized IDPs. By
considering specific features of the sequentialized IDPs, we design and make use of
specific abstract domains to analyze the sequentialized IDPs. The preliminary results
show that our method is promising.
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For future work, we will consider designing more specific abstract domains that fit
IDPs and conducting more experiments on large realistic IDPs. We plan to extend
our IDP model and our sequentialization method to support mixing of interrupts and
multi-threads. Besides, we also plan to extend our IDP model to support weak memory
models.
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