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L	 -band microwave radiometers on both the Soil  
	 Moisture Ocean Salinity (SMOS; Mecklenburg  
	 et al. 2012) and Aquarius/Satélite de Aplicacio-

nes Científicas-D (SAC-D) (Lagerloef 2012) satellites 
have now demonstrated that they are capable of 
measuring sea surface salinity (SSS). They provide 
near-global coverage, a spatial resolution ranging 
from 43 to 150 km, and a precision useful for detailed 
oceanographic studies, that is, ±0.2 practical salinity 
scale (pss) [salinity is a dimensionless quantity and 

will be reported on the Practical Salinity Scale of 
1978 (PSS-78; IOC et al. 2010, and references therein) 
in the rest of the text] on monthly time scales and 
100 × 100 km2 spatial scales (Drucker and Riser 2014; 
Hernandez et al. 2014; Hasson et al. 2013). This new 
capability provides an unprecedented global view of 
surface salinity, a key state variable that determines 
ocean circulation and is tied to the global water cycle 
(Reul et al. 2014c). These satellite-derived salinity data 
provide new insight into the spatial and temporal 
variability of SSS (Alory et al. 2012; Busecke et al. 
2014; Hasson et al. 2014; Kolodziejczyk et al. 2015; 
Lee et al. 2014; Menezes et al. 2014; Qu et al. 2014; 
Reul et al. 2014a).

A synthesis of present knowledge about 

the formation and evolution of vertical and 

horizontal variability in near-surface salinity at 

scales relevant to satellite salinity is presented.

SATELLITE AND 
IN SITU SALINITY
Understanding Near-Surface 
Stratification and Subfootprint 
Variability
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R. Drucker, K. Drushka, N. Kolodziejczyk, T. Lee, N. Reul, 
G. Reverdin, J. Schanze, A. Soloviev, L. Yu, J. Anderson, 
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The success of satellite salinity measurements sug-
gests new possibilities of using global maps of salinity 
to monitor and understand ocean dynamics and the 
global hydrological cycle. However, calibration and 

validation of satellite-retrieved salinity is an ongoing 
process that requires comparison of satellite SSS 
values with spatially and temporally collocated in 
situ values. There are two key differences between 
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Fig. 1. Scale portraying the typical depth at which near-
surface salinity is measured by various sensors/platforms. 
The small squares show the average measurement depth 
and the capped lines show the range for that average. For 
profiling platforms (ASIP, Bow Bridle, STS–Argo, and 
Argo) the range represents the variability of the topmost 
point in the profile. For platforms with standardized con-
figurations that measure at fixed depths (Salinity Snake, 
Surface Salinity Profiler (SSP), and Wave Glider) the 
mean and range of each sensor at a particular depth are 
shown. For platforms where there are multiple sensor 
configurations (drifters, mooring, and shipborne TSG) or 
that sample at different depths depending on the specifics 
of the platform, the range of measurement depths across 
all platforms is shown. Radiometric penetration depths 
were calculated as in Anguelova and Gaiser (2011) and 
show penetration depths at 1.43 GHz over the salinity 
range of 20–38 pss and temperature range of –2° to 
35°C (where the “mean” value shown in the figure is for 
20°C and 35 pss). Details for each platform can be found 
as follows: Salinity Snake, Schanze et al. (2014); ASIP, 
Ward et al. (2014); SSP, Asher et al. (2014a); Bow Bridle, 
Soloviev and Lukas (1996); Drifters, Reverdin et al. (2012, 
2013) and Centurioni et al. (2015); Wave Glider, Hodges 
and Fratantoni (2014); STS–Argo/Argo, Anderson and 
Riser (2014); Mooring, McPhaden et al. (1998, 2010), 
Bourlès et al. (2008), and Farrar et al. (2015); and the 
ship’s TSG, W. E. Asher (2015, personal communication, 
online survey of TSG intake depths).
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satellite and in situ salinity. First, because of the short 
penetration depth of microwave radiation into the 
ocean (Swift 1980), microwave radiometers measure 
salinity in the top few centimeters of the ocean. In 
contrast, in situ measurements commonly used for 
calibration and validation (e.g., Argo floats, moor-
ings, and ship observations) are made at depths of a 
few meters (Fig. 1). Second, a satellite measures salin-
ity as a spatial average over the satellite’s footprint, 
whereas in situ sensors provide data at a single point 
[SMOS synthetic antennas have variable elliptical 
footprints over the field of view of 43-km resolution 
on average (Kerr et al. 2010), while the three beams 
for Aquarius are approximately elliptical and have 
footprints of 76 × 94, 84 × 120, and 96 × 156 km2 
(Lagerloef 2012)]. Therefore, if the ocean salinity 
field contains vertical gradients in the upper few 
meters, or if the ocean surface salinity has significant 
horizontal or temporal variability, there could be a 
physical difference between the satellite and in situ 
salinity values that would complicate calibration and 
validation of the satellite’s performance. The target 
defined for these satellite missions is to achieve a 
precision of 0.1–0.2 pss. This precision is sufficient to 
detect typical interannual SSS variability, such as that 
linked to El Niño–Southern 
Oscillation or to the Indian 
Ocean dipole, seasonal SSS 
variability in areas that 
have significant seasonal 
cycles [shown by Bingham 
et al. (2012) to cover 37% of 
the ocean surface between 
60°N and 60°S and have a 
median seasonal SSS am-
plitude of 0.19 pss], meso-
scale transport of salt by 
large eddies across strong 
fronts (Reul et al. 2014a; 
Kolodziejczyk et al. 2015), 
or intraseasonal SSS vari-
ability (Li et al. 2015, and 
references therein).

This paper synthesizes 
present knowledge of the 
processes that contribute 
to the formation and evolu-
tion of near-surface verti-
cal salinity gradients and 
subfootprint-scale vari-
ability. The magnitude of 
these gradients is quanti-
fied whenever possible as a 

function of environmental conditions. The potential 
impact of both vertical salinity gradients and 
subfootprint-scale variability on satellite and in situ 
salinity data comparisons will be discussed.

V E RTIC A L STR ATI F IC ATIO N A N D 
SUBFOOTPRINT VARIATIONS. Vertical 
stratification in the density of the upper ocean is 
controlled by the vertical profiles of temperature 
and salinity. Vertical stratification in temperature 
has been extensively studied over the past several 
decades, as it is responsible for observed differences 
in sea surface temperatures derived from infrared 
radiometers, microwave radiometers, and in situ 
measurements (Minnett and Kaiser-Weiss 2012, and 
references therein). In contrast, relatively few studies 
of upper-ocean salinity stratification [see the recent 
climatology discussed by Maes and O’Kane (2014)] 
have been performed. The addition of freshwater to 
the ocean surface (from precipitation, river runoff, 
or melting of sea ice) and the removal of freshwater 
(through evaporation) can generate vertical salin-
ity gradients in the upper few meters of the ocean. 
Vertical stratification can be strong under low wind 
speed conditions when there is little mixing in the 

Fig. 2. Schematic diagrams of salinity profiles in the near-surface ocean that 
are relevant to interpreting satellite and in situ salinity observations. (a) The 
well-mixed or normal case, where the salinity is uniform as a function of depth. 
(b) The rain-stratified case, where the freshwater flux causes a stable density 
stratification to form at the surface and a decrease in salinity with decreasing 
depth. (c) The evaporation case, where evaporation at the water surface 
causes an increase in salinity with decreasing depth. Details concerning the 
formation of the rain and evaporation cases are provided in sections titled 
“Rain freshening” and “Subfootprint variability.”
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upper few meters of the ocean. When the wind speed 
at the ocean surface is greater than ~6 m s–1, wind 
stress–induced momentum tends to homogenize 
the upper few meters of the ocean’s surface layer 
(Matthews et al. 2014). When cooling at the surface 
leads to unstable density stratification, as typically 
happens at nighttime, convective overturning can 
also generate a well-mixed surface layer. Regardless 
of the source of the mixing, salinity is homogeneous 
throughout the well-mixed layer; this homogeneous 
condition is considered to be the “normal” case, char-
acterized by a salinity profile that is constant with 
depth, as shown in Fig. 2a. For the normal condition, 
radiometrically measured salinity is expected to be 
comparable to in situ salinity anywhere in the near-
surface layer. The sections titled “Rain freshening,” 
“Freshwater plumes,” and “Evaporation” discuss the 
processes that lead to surface freshening (i.e., nega-
tive surface salinity anomalies; Fig. 2b) and surface 
salinification (i.e., positive surface salinity anoma-
lies; Fig. 2c). Based on observational salinity data, 
the magnitudes of vertical salinity gradients during 
these conditions will be estimated. These processes, 
in particular rain freshening and freshwater plumes, 
are also associated with strong horizontal variability. 
In the section titled “Subfootprint variability,” we 
discuss subfootprint variability in a wider context.

Rain freshening. Salinity in the upper ocean, especially 
in the ocean surface boundary layer (OSBL), is subject 
to large spatial and temporal variability due to 
various contributing processes, including freshwater 
inf lux from precipitation. The scales of this vari-
ability, though not well understood or quantified, 
are assumed to be related to the modification of the 
freshwater input by the air–sea f luxes of heat and 
momentum, upper-ocean mixing, and advection. 
Low-latitude ocean regions characterized by strong 
rainfall, low to moderate surface winds, and high 
advection are therefore expected to display relatively 
strong spatial and temporal variability in SSS.

Under normal conditions when no rainfall is 
present, the OSBL is characterized by a nearly uni-
form density, active vertical mixing, and a high rate of 
turbulence dissipation (Stevens et al. 2011; Sutherland 
et al. 2014a). As a result, vertical salinity gradients 
in the upper 10 m are expected to be small (Henocq 
et al. 2010; Anderson and Riser 2014). In regions 
where normal conditions dominate, it is appropri-
ate to neglect vertical salinity gradients when using 
Argo for large-scale validation of SMOS and Aquarius 
SSS. However, in cases where rainfall induces a near-
surface vertical salinity gradient, it is possible that 

salinity measurements at depths of a few meters might 
not accurately reflect SSS measured by the satellite 
in the upper few centimeters. Therefore, Argo mea-
surements made at a few meters depth might not be 
suitable for validating satellite measurements of SSS.

When averaged globally, rain-induced salin-
ity stratification of the upper mixed layer creates 
a bias of about –0.02 pss between the salinity 
measured at a few centimeters and at a few meters. 
Regional averaging shows that this bias increases to 
–0.03 pss in the tropics (Drucker and Riser 2014). 
Rain-induced salinity anomalies and near-surface 
haloclines resulting from individual rain events 
were extensively observed in the western Pacific 
warm pool during the Tropical Ocean and Global 
Atmosphere (TOGA) Coupled Ocean–Atmosphere 
Response Experiment (COARE; Soloviev and Lukas 
1996, 1997) and in the Bay of Bengal during the 
Joint Air–Sea Monsoon Interaction Experiment 
(JASMINE; Webster et al. 2002). More recently, 
vertical salinity gradients between the upper centi-
meters and a few meters depth have been observed 
by Argo surface temperature salinity (STS) profilers 
(Anderson and Riser 2014), the Air–Sea Interaction 
Profiler (ASIP; Ward et al. 2014; Walesby et al. 2015a; 
Sutherland et al. 2014b), the towed Surface Salinity 
Profiler (SSP; Asher et al. 2014a), shipboard ther-
mosalinographs (TSGs) at two depths (Asher et al. 
2014a), and surface drifters (Reverdin et al. 2012).

While near-surface vertical salinity gradients 
from individual rain-induced freshening events can 
be large (>1 pss between a few centimeters and a few 
meters), the distribution of rain events in both space 
and time is relatively sparse, even in regions charac-
terized by high rainfall. For example, several recent 
studies have estimated that on average rain-induced 
surface freshening occurs ~12% of the time when con-
sidering the global ocean and ~16% of the time when 
considering the tropics (Boutin et al. 2013; Anderson 
and Riser 2014; Drucker and Riser 2014; Meissner 
et al. 2014). Similarly, Anderson and Riser (2014), 
using Argo STS float measurements, found that salin-
ity in the upper 4 m is, in most cases, well mixed (i.e., 
the difference between salinity at a few centimeters 
and 4 m is less than 0.1 pss for 97% of the observa-
tions). Observational studies have consistently shown 
that, in most cases, near-surface fresh anomalies 
produced by rainfall are eliminated quickly (typically 
within a few hours) by mixing, advection, and vertical 
convection. For example, the deepening of fresh cells 
to 40-m depth has been observed in the five hours 
after rainfall with a surface freshening signature of 
0.12 pss (Wijesekera et al. 1999; Soloviev et al. 2002). 
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On the other hand, Walesby et al. (2015a) observed a 
fresh lens that persisted for more than 15 hours, with 
little background mixing. The processes governing 
the vertical and horizontal evolution of fresh lenses 
are not well understood.

Several studies have attempted to quantify the 
difference between satellite and in situ salinity to 
determine the value of the rain freshening effect ΔS 
(pss) as a function of rainfall rate R (mm h–1) and 
time since rainfall. Unfortunately, both rain- and 
wind-generated roughness increase the micro-
wave emissivity of the sea surface, mimicking a 
decrease in satellite-derived salinity measurements. 
Consequently, the effect of increased roughness must 
be addressed before determining the freshening 
due to rain. Although the effect of wind on rough-
ness (and microwave emissivity) is relatively well 
known, rain-induced roughness is less understood. 
The Aquarius instrument is useful for studying this 
problem because the collocated L-band radiometer 

and L-band scatterometer are both sensitive to 
changes in surface roughness, whereas the scatterom-
eter is insensitive to changes in salinity, thereby 
providing the means for isolating the effects due to 
surface roughness. Comparison of the signals from 
the two instruments suggests that the increase in 
emissivity due to rain-generated roughness is signifi-
cant at low wind speeds (Tang et al. 2013). At moder-
ate and higher wind speeds, however, rain-generated 
roughness does not appear to be a major component 
of the total roughness (Tang et al. 2013; Boutin et al. 
2014; Meissner et al. 2014).

Once roughness and atmospheric effects are 
removed, comparing SSS measured by SMOS (Boutin 
et al. 2014) or Aquarius (Drucker and Riser 2014; 
Meissner et al. 2014; Santos-Garcia et al. 2014) to col-
located in situ salinities not under the direct influence 
of instantaneous rainfall shows that ΔS/R induced by 
rainfall is estimated to be around –0.15 pss (mm h–1)−1 
(Table 1). However, this bias is an average obtained 

Table 1. The range in the rain freshening effect as a function of rain rate ∆S [pss (mm h–1)–1] as determined 
by various studies using SMOS and Aquarius data. The rain freshening effect is defined as SSS minus salinity 
measured at a reference depth of 5 m, and ∆S is calculated as the salinity difference as a function of rain rate.

Satellitea

Source for 
SREF

b Data sources
∆S/R  

[pss (mm h–1)−1]
Range for  
Uc (m s−1) Reference

SMOS Argo

SMOSd

Tropical Rainfall Measuring 
Mission (TRMM) Microwave 
Imager (TMI)

AMSR-E

Special Sensor Microwave 
Imager (SSM/I)

WindSat

–0.19e 3–12 Boutin et al. (2014)

Aquarius HYCOM

Argo

WindSat

Special Sensor Microwave 
Imager/Sounder (SSMIS) F17

–0.17

–0.13

–0.07

0

7

12

Meissner et al. (2014)

Aquarius Argo TRMM 3B42 –0.14 — Drucker and Riser (2014)

Aquarius HYCOM Climate Prediction Center 
(CPC) morphing technique 
(CMORPH)

–0.20f

–0.36g

— Santos-Garcia et al. (2014)

a Note that neither the SMOS nor the Aquarius salinity retrieval algorithms account for atmospheric attenuation due to 
liquid cloud water (LCW). It has been estimated that neglecting attenuation by LCW causes an overestimation of ∆S by 
approximately 10% (Wentz 2005).

b SREF is the reference salinity to which satellite measurements are compared.
c Term U is wind speed (m s−1); note that not all studies resolved the dependence of ∆S on wind speed.
d Boutin et al. (2014) use as SREF either SMOS salinities in rain-free pixels or Argo in rain-free conditions.
e Considering various periods and various tropical regions, Boutin et al. (2014) found slopes ranging between –0.16 and 
–0.22, with an average of –0.19.

f Slope obtained in the meridional range 15°N–15°S (Santos-Garcia et al. 2014).
g Slope obtained in the meridional range 35°S–35°N (Santos-Garcia et al. 2014).
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under a range of environmental conditions (wind, rain 
history, stratification, net heat flux, etc.). Available 
direct measurements of ΔS under different conditions 
suggest that it is unlikely that DS for a particular rain 
event can be accurately predicted solely by R.

Figure 3 shows the dependence of ΔS on R for the 
range of ΔS/R (Table 1) found from satellite SSS. Also 
shown is ΔS as a function of R calculated by Schlüssel 
et al. (1997) as part of TOGA COARE. Schlüssel 
et al. (1997) determined this relationship for the 
salinity difference between the molecular diffusion 
sublayer (about 50 µm) and the bulk salinity, taking 
into account the effects of the near-surface mixing 
induced by raindrops. Despite the variability found 
in the experimental data, the trends derived from the 
model and the trends derived from satellite measure-
ments agree well. This convergence of results and 
theory suggests the value of –0.15 pss (mm h–1)−1 is 
relatively robust. However, at present there are no 
concurrent collocated in situ measurements of R 
and near-surface salinity profiles that include the 
radiometric sampling depth that can be compared 
with satellite-derived estimates of ΔS.

Although the molecular skin layer modeled by 
Schlüssel et al. (1997) is much thinner than the 
radiometric measurement depth used to define ΔS, 
it is reasonable to equate salinity across the two 
depths and expect the model to provide an estimate 

of ΔS. First, Schlüssel et al. (1997) compared their 
model results to salinity measured between depths 
of 2 and 3 cm during several rain events. They found 
that the magnitude of the measured salinity decrease 
in the upper few centimeters was consistent with 
their model predictions for the molecular skin layer. 
Second, Schlüssel et al. (1997) hypothesized that the 
very near surface is rapidly homogenized when near-
surface mixing caused by the impact of raindrops is 
taken into account. This idea is consistent with the 
bubble population measurements made by Ho et al. 
(2000) that show that during rain events the upper 
few centimeters of the water surface are well mixed.

Further work is needed to resolve the minimum in 
situ sampling depth that is required to fully resolve 
the near-surface salinity profile. Ideally, the profile 
would sample up to the radiometric penetration depth 
(i.e., 0.01 m). As noted above, however, the kinetic 
energy imparted to the water surface by raindrops 
homogenizes the top few centimeters (Ho et al. 2000), 
implying that the surface is well mixed at least to 
the radiometric depth. Therefore, techniques that 
resolve the top few centimeters should be sufficient. 
Nevertheless, in highly resolved vertical salinity 
profiles measured with ASIP during two rain events, 
gradients larger than 0.1 pss between the sea surface at 
a few centimeters depth and 30-cm depth have been 
observed (Ward et al. 2014). ASIP profiles also show 
that rainfall quickly stratifies the OSBL, inhibiting 
turbulence. This stratification may lead to strong 
gradients after the rain has ceased.

Rain-induced surface freshening and the resulting 
stratification appear to depend nonlinearly on the 
freshwater input volume, the strength and direction 
of the surface heat fluxes, and wind-induced mixing. 
Asher et al. (2014a) developed a one-dimensional 
diffusion model that fit observed vertical salinity 
profiles for the top 2 m and direct measurements 
of R to modeled salinity profiles by tuning the 
turbulent diffusivity coefficient and a scale depth 
for mixing. This model provided the basis for 
developing a macroscale Rain Impact Model (RIM) 
by Santos-Garcia et al. (2014). RIM was developed 
using Aquarius data and Hybrid Coordinate Ocean 
Model (HYCOM) output (at ~10-m depth) from the 
Pacific intertropical convergence zone. It estimates 
the impact on Aquarius SSS based on rain accumula-
tion over the previous 24 h and time since rainfall. 
The authors show that the difference between 10-m 
salinity and salinity measured by Aquarius is not 
only sensitive to R when the satellite is overhead but 
also to the rain history over the past 25 h, especially 
when wind speed is low.

Fig. 3. The rain freshening effect ∆S plotted as a func-
tion of rain rate R. The solid line shows ∆S derived from 
the surface renewal model of Schlüssel et al. (1997). 
The shaded area shows the range of ∆S/R relationships 
derived from satellite SSS studies listed in Table 1. The 
variability in ∆S/R relationships is related to wind speed 
variability as well as to the various satellite salinity, 
reference salinity, and rain-rate products used in the 
studies listed in Table 1.
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Freshwater plumes. In addition to rain, other sources 
of freshwater to the surface ocean are river discharge 
and melting ice. Freshwater plumes from rivers can 
contribute to the formation and evolution of barrier 
layers (Sprintall and Tomczak 1992; Pailler et al. 1999; 
Mignot et al. 2007; Reul et al. 2014b). In situ measure-
ments (e.g., hydrographic ship surveys, Argo floats, 
voluntary observations from buckets, or TSGs on 
commercial ships) are too sparse in both space and 
time to allow full characterization of the generation 
and evolution of freshwater plumes. Studies have 
attempted to use ocean color data from the Coastal 
Zone Color Scanner (CZCS) (Longhurst 1993; Muller-
Karger et al. 1995) or the Sea-viewing Wide Field-
of-view Sensor (SeaWiFS; Fratantoni and Glickson 
2002) to monitor the Amazon River freshwater plume. 
Reul et al. (2009) demonstrated the first satellite SSS 
retrieval by using the Advanced Microwave Scanning 
Radiometer for Earth Observing System (AMSR-E) 
C-band and X-band channels at 6.9 and 10.7 GHz, 
respectively, to measure SSS in the Amazon plume. 
More recently, SMOS and Aquarius data have been 
used to detect and characterize freshwater plumes for 
the outflows of the Congo (Hopkins et al. 2013; Reul 
et al. 2014c; Chao et al. 2015), the Mississippi (Gierach 
et al. 2013), the La Plata (Guerrero et al. 2014), and 
the Amazon (Grodsky et al. 2012; Reul et al. 2014b; 
Fournier et al. 2015; Korosov et al. 2015).

Significant spatial and temporal variability of SSS 
associated with river plumes can be detected using 
satellite SSS in regions with large river outf lows 
(Fig. 4). As discussed for rain, near-surface vertical 
salinity gradients created by freshwater plumes can 

complicate the comparison of satellite and in situ 
salinity measurements, as seen with the 2–5 pss m−1 
difference across the halocline shown by Lentz and 
Limeburner (1995). Plumes can also cause horizontal 
salinity gradients with spatial scales smaller than the 
footprint of the radiometers. Typical horizontal SSS 
gradients for the plumes from the Amazon (Lentz 
and Limeburner 1995) or Congo (Chao et al. 2015) 
exceed 0.2 pss km–1 and extend more than 250 km 
from the river mouth. Therefore, in the vicinity of a 
river plume, a spatially sparse array of in situ sensors 
can indicate very different SSS variability than a satel-
lite sensor. High-frequency SSS variations (e.g., tidal 
effects) can be undersampled by satellite-derived SSS 
products due to the relatively long revisit time of the 
satellite (2–3 days for SMOS and 7 days for Aquarius).

At high latitudes, freshwater plumes can be caused 
by melting sea ice or by meltwater runoff from ice 
sheets, as has been observed in the seas around 
Greenland (Straneo and Heimbach 2013). Some of 
the freshest ocean waters are found in narrow high-
latitude coastal currents such as the East Greenland 
Current. Meltwater from the Antarctic Ice Sheet is 
the main source of freshwater plumes in the South-
ern Ocean (Nicholls et al. 2009). While the direct 
impact of runoff on the coastal currents may be dif-
ficult to observe with satellite instruments, model 
simulations have shown that large meltwater runoff 
from the Greenland Ice Sheet changes the salinity 
of the seas surrounding Greenland (Marsh et al. 
2010). Although these regions are poorly sampled 
by in situ observations, SSS retrievals for these areas 
from satellite L-band radiometers are now routinely 

Fig. 4. Standard deviation of SSS as derived from (left) 7-day rolling averages of Aquarius SSS [Combined 
Active–Passive (CAP) algorithm] and (right) from weekly SMOS data [Centre Aval de Traitement des Don-
nées SMOS (CATDS) Expertise Center (CEC) of L'Institut Français de Recherche pour l'Exploitation de la Mer 
(IFREMER) level 4 product]. Slightly different periods are used to compute these maps: Aug 2011–Dec 2014 for 
Aquarius and May 2010–Dec 2014 for Aquarius and May 2010–December 2014 for SMOS.
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available (Brucker et al. 2014a). Unfortunately, the 
study of freshwater at high latitudes is hindered by 
the presence of sea ice and icebergs (Brucker et al. 
2014b), low water temperature (which reduces the 
L-band salinity signal-to-noise ratio, thus degrading 
SSS retrievals), and the prevalence of very rough sea 
surfaces. Despite these challenges, satellites provide 
regular monitoring capabilities for SSS that are criti-
cally lacking with in situ measurements.

Evaporation. Evaporation can also create vertical 
salinity gradients in the surface layer and, thereby, 
potential differences between satellite and in situ 
salinity measurements (Saunders 1967; Katsaros and 
Buettner 1969; Soloviev and Lukas 1997; Henocq et al. 
2010; Anderson and Riser 2014; Drucker and Riser 
2014; Asher et al. 2014b). The nature of the evapora-
tion process and its impact, however, differs from that 
of precipitation in two major ways. First, evaporation 
increases salinity and cools the surface waters, both 
of which serve to increase density. This weakens or 
destabilizes the density gradient, thereby potentially 
initiating convective mixing (Yu 2010; Asher et al. 
2014b; Soloviev and Lukas 2014). Conversely, pre-
cipitation freshens surface waters, reducing density, 
thereby strengthening the surface stratification and 
sustaining the freshwater lenses formed by rain 
(Schlüssel et al. 1997; Henocq et al. 2010; Boutin et al. 
2013). Second, evaporation is almost always present, 
whereas precipitation occurs mostly as episodic 
events, although the surface freshwater volume flux 
during rain episodes greatly exceeds the flux due to 
evaporation over a time period equal to the rain event. 
During the TOGA COARE field experiments, Lin 
and Johnson (1996) observed that precipitation rates 
are highly variable, with peaks of 20 mm day–1, while 
evaporation rates are more stable, consistently around 
3–5 mm day–1. The small volume flux, together with 
the destabilizing effect on the vertical density profile, 
implies that evaporation-induced surface salt enrich-
ment (positive salinity anomalies) is relatively weak 
and short-lived (Yu 2010).

The magnitude of evaporation-induced positive 
salinity anomalies depends on both evaporation 
intensity and surface turbulence. Two processes can 
produce salt increase under evaporation: the salinity 
skin effect due to near-surface diffusive processes 
and the daily diurnal cycle in sea surface tempera-
ture. Saunders (1967) derived a parameterization for 
the change of salinity ΔSskin across the salinity skin 
layer by scaling the layer thickness as the one-third 
power of the diffusivity. The mutual enhancement 
between evaporation and wind led him to conclude 

that the ΔSskin is at most 2%, or around 0.07 pss for 
a surface salinity of 35 pss, in the extreme condition 
of low wind speed and large difference in air–sea 
specific humidity. In support of this result, Fedorov 
et al. (1979) obtained an estimate of DSskin = 0.12 pss 
from a laboratory experiment. Yu (2010) produced a 
global estimate of ΔSskin and suggested a magnitude 
of 0.05–0.15 pss. Given that the salinity skin layer is 
typically less than 0.1 mm thick (Zhang and Zhang 
2012) and in situ instruments typically measure 
salinity and temperature deeper than 2 mm below the 
sea surface (Soloviev and Lukas 2014; Reverdin et al. 
2013; Anderson and Riser 2014; Fig. 1), the salinity 
variations in the skin layer cannot be observed at sea. 
Nevertheless, Yu (2010) suggested that the salt incre-
ment in the skin layer is not a major source of error, 
because the salty skin layer is usually accompanied 
by a cooling of 0.2°–0.5°C, which is statically unstable 
and subject to convective overturn.

Soloviev and Lukas (1997) suggested that con-
tinuous evaporation can cause salinity to increase 
in the diurnal mixed layer, because the positive 
buoyancy flux due to diurnal heating promotes stable 
stratification by suppressing turbulent mixing with 
the water below (see Fig. 5). Confirmation of this 
hypothesis is provided by several field studies that 
have documented the existence of a relatively small 
salt-enriched diurnal cycle that is present under light 
winds (Soloviev and Lukas 1997; Asher et al. 2014b; 
Drushka et al. 2014; Hodges and Fratantoni 2014). 
Asher et al. (2014b) reported that salt-enhanced 
diurnal surface lenses (0.01–0.05 pss) around 0.5 m 
thick are common in the subtropical North Atlantic 
when wind speeds are less than 4 m s–1 and the average 
daily insolation is greater than 300 W m–2. In most 
cases, however, the magnitude of the salinity increase 
is usually small, comparable to the uncertainty in the 
measurements (Soloviev and Lukas 2014; Anderson 
and Riser 2014). Thus, it is postulated that diurnal 
salinity anomalies are also unlikely to induce sig-
nificant biases between radiometrically measured 
salinities and salinities measured at depths of a few 
meters (Asher et al. 2014b).

Subfootprint variability. A satellite measurement of SSS 
represents a near-instantaneous spatial average of the 
surface salinity field weighted by a function related 
to the satellite antenna pattern over a characteristic 
scale that is given by the satellite footprint. If SSS is 
uniform over the spatial scales averaged by a satellite, 
then a single in situ salinity measurement anywhere 
within the satellite footprint provides an accurate 
ground truth measurement that is representative of 
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the remotely sensed value. However, model simula-
tions (Johannessen et al. 2002) have shown that the 
salinity field is in some places spatially or temporally 
inhomogeneous, so that the relationship between the 
instantaneous, spatially averaged salinity measured 
by satellite and a single in situ measurement within 
the satellite footprint is not well understood. In ocean 
regions characterized by horizontal variability with 
spatial scales less than the satellite footprint, the sub-
footprint variability could be a source of difference 
between satellite and in situ data. When comparing 
salinity data taken at a point to the spatially averaged 
value reported by satellite, the SSS variability within 

the satellite footprint (i.e., subfootprint variability) 
may need to be taken into consideration.

Commonly used data for purposes of calibrating 
and validating satellite salinity measurements are 
those provided by surface drifters, moored buoys 
in the Tropical Atmosphere Ocean/Triangle Trans-
Ocean Buoy Network (TAO/TRITON), or the 
Prediction and Research Moored Array in the Tropical 
Atlantic (PIRATA) array, and, most notably, the Argo 
array (which as of 28 July 2015 contains 3,881 profiling 
floats and produces the only near-synoptic observa-
tions of upper-ocean salinity throughout the World 
Ocean). However, the approximate 3° × 3° spacing of 

Fig. 5. Vertical profiles of temperature, salinity, and density obtained by averaging ship bow sensor data 
within 0.1-dbar pressure intervals in 10-min segments. For plotting temporal change, successive temperature, 
salinity, and density profiles are shifted by 1°C, 0.5 pss, and 0.5 kg m–3, correspondingly. Under each profile 
the corresponding local solar time is given. The thin lines represent one standard deviation from the mean 
profiles. Note the excess salinity cumulating in the diurnal mixed layer and diurnal thermocline as a result of 
evaporation [after Soloviev and Lukas (1997)].
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Argo profilers is a factor of 3 larger than the scale of 
the satellite footprints, which means that Argo does 
not resolve subfootprint-scale horizontal variability. 
Similarly, neither TAO/TRITON nor PIRATA can 
resolve subfootprint-scale variability in SSS.

In contrast to vertical gradients, subfootprint-scale 
variability in SSS can exist at all wind speeds. Both 
mesoscale and submesoscale features in the ocean 
that are responsible for the subfootprint variability 
of SSS are driven in large part by internal variability 
associated with ocean circulation. In fact, there can 
be significant horizontal variability on these larger 
scales that is not associated with vertical stratification 
in the upper few meters of the ocean.

Existing observational and modeling studies 
have provided some understanding of mesoscale 
and submesoscale SSS variability. For example, in 
a study comparing in situ data and the output of a 
high-resolution Massachusetts Institute of Technol-
ogy (MIT) model of the Atlantic Ocean, Sena Martins 
et al. (2015) have shown that the annual cycle of SSS 
explains up to 70% of the total variability observed in 
some regions of the tropical Atlantic. However, this 
implies that in most regions at least 30% of variabil-
ity is on scales other than the seasonal cycle. In fact, 
Sena Martins et al. (2015) show that SSS variability 
on time scales shorter than 30 days exceeds 0.1 pss 
in 42% of the 1° × 1° grid boxes of the model. When 
the annual cycle is subtracted, the temporal scales of 
the short-term variability in the model are 4–5 days 
throughout the Atlantic Ocean (confirmed by results 
from several mooring stations), and the spatial scales 
vary between 10 and 150 km. Delcroix et al. (2005) 
used TSG measurements from the Voluntary Observ-
ing Ship (VOS) Program that have 1–3-km resolution, 
as well as TAO-TRITON and PIRATA moorings at 
daily resolution, to estimate small-scale SSS variabil-
ity in the tropical oceans. They reported the mean SSS 
variability in 2° (longitude) × 1° (latitude) boxes over 
10-day intervals to be approximately 0.2 pss. However, 
there are ocean regions that are characterized by 
much stronger spatial variability. For example, Maes 
et al. (2013) analyzed TSG data from the Coral Sea 
and reported SSS variability as large as 0.6–1 pss over 
spatial scales of 100 km.

Quality-controlled TSG data (Delcroix et al. 2010; 
Alory et al. 2015) provide a new, improved resource 
for estimating subfootprint, near-surface salinity 
variability (recognizing that TSGs typically sample 
at 3–7-m depth, depending on the ship, and so do not 
necessarily represent salinity measured by satellites). 
Figure 6 shows the analysis of salinity variability 
derived from the standard deviation within 100-km 

intervals along a TSG track s100km (data produced by 
Alory et al. 2015; www.legos.obs-mip.fr/observations 
/sss). The σ100km values were then binned into 
2° × 2° grid boxes, and the 95th percentile value σ95 
(i.e., the 95% level of the cumulative distribution of 
σ100km) was computed. Because the distribution of 
standard deviations within each grid box is not neces-
sarily Gaussian, the average of σ100km in a grid box 
does not necessarily represent the typical variability. 
Therefore, σ95 is shown as it represents an upper 
bound on the variability. Figure 6a provides a map of 
σ95, and Fig. 6b shows a histogram of σ95, along with 
the cumulative distributions of σ95 and of 2 × σ100km 
(which for a Gaussian distribution of σ100km would 
contain 95% of the points) overlaid. The σ95 histo-
gram (Fig. 6b) shows a median value of 0.12 pss for the 
ocean regions in Fig. 6a. The cumulative distribution 
of σ95 is shifted to slightly larger values compared to 
that of 2 × σ100km because s100km is skewed toward 
large values (Fig. 6b). However, both cumulative dis-
tributions show that in about 25% of the cases SSS 
spatial variability exceeds 0.15 pss over 100-km scales, 
and in about 10% of the cases it exceeds 0.25 pss.

Detailed analysis of σ95 regional differences 
(Fig. 6a) indicates that SSS spatial variability exceeds 
0.5 pss in regions affected by western boundary 
currents, major river plumes (e.g., the Amazon), and 
several coastal regions, demonstrating that, in many 
regions, subfootprint-scale SSS variability is larger 
than 0.1 pss. It should be noted that the instantaneous 
SSS variability may differ from this map as it was 
made by combining variability observed during dif-
ferent seasons and years. Finally, patterns of subfoot-
print variability derived from TSG data agree with 
the analysis of a HYCOM ocean data assimilation 
product (which excluded TSG data), conducted by 
Vinogradova and Ponte (2012). Vinogradova and 
Ponte (2013) quantified SSS variability within 1° × 1° 
bins to be as high as 0.2 pss near western boundary 
currents and in river outflow regions.

EMERGING TECHNOLOGY TO MEASURE 
NEAR-SURFACE SALINITY. L-band micro-
wave radiometers measure salinity in the top few 
centimeters of the water column. Development of in 
situ platforms and instruments that are capable of 
measuring salinity at these shallow depths is a very 
active field of research.

On global scales, most near-surface salinity data 
are from the Argo profiler network. Argo f loats 
measure salinity using a conductivity–temperature–
depth (CTD) sensor with a typical uppermost mea-
surement depth of between 3 and 5 m (Boutin and 
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Martin 2006). This depth is 
set in order to avoid ingest-
ing sea surface contami-
nants into the CTD sensor, 
since these contaminants 
would degrade sensor sta-
bility over the life span of 
the Argo float.

The STS sensor has re-
cently been developed and 
implemented on some Argo 
floats (Anderson and Riser 
2014; Riser et al. 2015). 
An STS-equipped Argo 
f loat contains a second, 
free-f lushed, conductiv-
ity sensor that is used 
in conjunction with the 
sta nda rd CTD sensor. 
The STS sensor samples 
at 1 Hz concurrently with 
the standard CTD, both 
near the f loat park ing 
depth (980–960 dbar) and 
again in the upper ocean 
(20–3 dbar) just before the 
standard CTD sensor is 
turned off. After the CTD 
sensor turns off, the STS 
sensor continues sampling 
as the f loat progresses through the ocean surface, 
continuing for approximately 500 s as the f loat 
prepares to transmit data. Because the STS sensor 
measures through the film of the ocean surface, its 
calibration is expected to drift due to fouling. To cor-
rect for drift, STS conductivity data are scaled to agree 
with the mean conductivity from the reference CTD 
for a region with a small temperature gradient. The 
resultant mean STS-derived salinity is within 0.01 
pss of the reference salinity along the entire profile 
(Anderson and Riser 2014).

During the first Salinity Processes in the Upper 
Ocean Regional Study (SPURS-1) field experiment 
(Lindstrom et al. 2015), multiple platforms were 
deployed and tested, including a mooring with 
CTD sensors installed at depths of 0.86 and 2.1 m 
(Farrar et al. 2015); drifters measuring at depths of 
0.5 (Centurioni et al. 2015) and 0.2 m (Reverdin et al. 
2015); Wave Gliders with CTDs mounted at 0.3 and 
8 m (Hodges and Fratantoni 2014); a “salinity snake” 
that measures salinity in the top few centimeters 
of the ocean (Schanze et al. 2014; Paulson and 
Lagerloef 1993); a surface-following towed profiler 

that measures salinity and temperature at four 
fixed depths in the upper 2 m of the ocean, with a 
minimum measurement depth of 0.1 m (Asher et al. 
2014a,b); and ASIP, which provides vertical profiles 
of temperature and salinity in the upper 50 m of the 
ocean with vertical resolution on the order of a few 
centimeters and an upper depth of 0.02 m (Fig. 1). 
Results from the SPURS-1 field experiment are very 
useful to contrast these different platforms in their 
abilities to measure the near-surface stratification. 
For example, in situ platforms measuring at a single 
point (e.g., ASIP, STS–Argo, and Argo) undersample 
in terms of area coverage (except in the very special 
case where two adjacent Argo profilers surface at the 
same time when a satellite is overhead) and have time 
scales much longer than the satellite revisit times. 
Moving instruments (e.g., the Salinity Snake and 
ship-mounted TSGs) have better spatial coverage, 
but the data they provide may not be coincident or 
cotemporaneous with the satellite.

In situ measurement of salinity in the top few 
centimeters of the ocean is difficult: on nonwave-
following platforms, ocean surface vertical motion 

Fig. 6. Analyses of TSG data obtained from the French quality-controlled 
TSG dataset. (a) The geographical distribution of σ95. (b) The histogram of 
s100km value and cumulative distributions of 2 × σ100km (red line) and σ95 
(black line).
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due to waves advects the water in the desired sampling 
region past the sensor faster than the response time 
of most commonly used conductivity-based salinity 
probes. Even platforms designed to follow large-
scale wave motions at the surface have integrated 
measurement depths of a few centimeters (Fig. 1). 
Furthermore, conductivity-based salinity estimates 
are sensitive to the presence of bubbles, and the probes 
are often sensitive to fouling by biofilms, both of 
which are prevalent close to the sea surface. Existing 
methods to measure the near-surface salinity will be 
improved and new technologies will be developed 
during future field experiments (e.g., SPURS-2).

SUMMARY AND RECOMMENDATIONS. 
The spatiotemporal variability of SSS within a satel-
lite footprint (50–150 km) is a major issue for satellite 
SSS validation in the vicinity of river plumes, frontal 
zones, and significant precipitation. In other regions, 
while much reduced, this variability is often nonneg-
ligible: in 65% of the grid boxes regularly observed 
by ships of opportunity (Delcroix et al. 2010), the SSS 
standard deviation along a 100-km transect reaches 
0.1 pss. Hence, in many satellite–in situ comparisons, 
it is of primary importance to account for SSS vari-
ability within a satellite footprint. Information on the 
probability distribution function of SSS in satellite 
footprints is required, as are autocorrelation statistics 
such as those determined in some regions by Delcroix 
et al. (2005). Unfortunately, this variability remains 
very poorly documented due to the vast undersampling 
of the majority of the World Ocean (Fig. 6a). Clearly, 
knowledge of mesoscale and submesoscale SSS vari-
ability needs to be improved in terms of magnitude, 
spatiotemporal distribution, and related dynamics and 
impacts. In particular, high-resolution in situ measure-
ments must be made in regions of strong variability. 
Future field campaigns such as SPURS-2 in the eastern 
tropical Pacific low-salinity region will enhance our 
understanding of small-scale SSS variability and re-
lated dynamical processes in rain-dominated regions.

Although NASA’s Soil Moisture Active Passive 
(SMAP) mission has a primary objective to measure 
soil moisture, it is possible to use SMAP data to 
retrieve salinity and improve the spatial sampling 
of SSS. The upcoming Surface Water and Ocean 
Topography (SWOT) satellite, to be launched in 
2020, will provide sea level (and therefore derived 
geostrophic current) measurements that will resolve 
features with a wavelength of 15–100 km, which may 
facilitate the study of SSS variability on small scales. 
Emerging high-resolution modeling efforts will also 
give new insight into the dynamics of mesoscale and 

submesoscale variability of SSS. Although horizontal 
salinity variations are more likely to affect compari-
sons of satellite and in situ salinity, rainfall can in some 
cases produce vertical salinity gradients exceeding 
1 pss m–1; consequently, it is recommended that satel-
lite and in situ SSS measurements less than 3–6 h after 
rain events should be considered with care when used 
in satellite calibration/validation analyses. Satellite 
SSS measurements can be expected to improve in the 
future, so a detailed understanding of the processes 
that generate and control the evolution and fate of 
rain-induced surface freshening events is necessary 
in order to optimize the use of both satellite and in 
situ salinity observations. Future studies should, 
therefore, concentrate on characterizing the vertical 
salinity profile between the ocean surface and 10-m 
depth, the penetration of raindrops within the ocean, 
the effects of splashing and mixing by raindrops, and 
the small-scale horizontal and vertical advection of 
freshwater anomalies at the ocean surface. Some Argo 
profilers enable sampling the upper 3 m of the ocean. 
Such efforts should be encouraged, including efforts 
to assess the quality of these new, near-surface mea-
surements. Furthermore, because these processes are 
coupled to the air–sea fluxes of heat and momentum, it 
would be advantageous and prudent to perform these 
assessments under a range of forcing conditions, with 
particular attention to characterizing necessary ancil-
lary information such as the droplet size spectrum 
and surface heat f luxes. Ideally, models of salinity 
stratification in response to precipitation, wind, and 
advection should reconcile surface and near-surface 
observations. Parameterizing the near-surface salinity 
stratification into a global ocean circulation model has 
been attempted and has shown encouraging results 
in comparisons with Aquarius SSS and Argo 5–10-m 
salinity (Moon and Song 2014; Song et al. 2015). 
Understanding these phenomena at the scales of both 
an individual rain event and a satellite pixel will help 
improve the parameterization of rainfall in computa-
tional fluid dynamics models.

For the upcoming SPURS-2 field experiment in 
2016/17, and looking into the future, new robust 
salinity sensors are required. For profiling platforms, 
high spatial resolution is needed. For fixed-depth 
platforms, better quantification is needed of the 
actual depth range sampled by the sensor, as well as 
minimizing platform issues such as flow perturba-
tions and vertical averaging.
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