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Abstract

Embodied evolutionary robotics is a sub-field of evolutionary robotics that employs evolutionary algorithms on the robotic
hardware itself, during the operational period, i.e., in an on-line fashion. This enables robotic systems that continuously
adapt, and are therefore capable of (re-)adjusting themselves to previously unknown or dynamically changing conditions
autonomously, without human oversight. This paper addresses one of the major challenges that such systems face, viz. that
the robots must satisfy two sets of requirements. Firstly, they must continue to operate reliably in their environment
(viability), and secondly they must competently perform user-specified tasks (usefulness). The solution we propose exploits
the fact that evolutionary methods have two basic selection mechanisms–survivor selection and parent selection. This
allows evolution to tackle the two sets of requirements separately: survivor selection is driven by the environment and
parent selection is based on task-performance. This idea is elaborated in the Multi-Objective aNd open-Ended Evolution
(MONEE) framework, which we experimentally validate. Experiments with robotic swarms of 100 simulated e-pucks show that
MONEE does indeed promote task-driven behaviour without compromising environmental adaptation. We also investigate an
extension of the parent selection process with a ‘market mechanism’ that can ensure equitable distribution of effort over
multiple tasks, a particularly pressing issue if the environment promotes specialisation in single tasks.
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Introduction

The field of evolutionary robotics concerns itself with the use of

evolutionary algorithms to design and optimise components of

robotic systems, typically the robots’ controllers [1]. In most

evolutionary robotics applications the evolutionary algorithm runs

in a software simulator that captures the main features of the

robot(s) and the environment and only the final solution as found

by the evolutionary algorithm is transferred to real robotic

hardware. Thus, the mainstream of evolutionary robotics uses

evolution in an off-line fashion, before deployment, prior to the

operational period of the robot(s); there is typically no further

adaptation during the operational period.

Embodied evolutionary robotics is a sub-field of evolutionary

robotics that implements evolutionary algorithms on the robotic

hardware itself, during the operational period, i.e., in an on-line

fashion. Running the evolutionary algorithm on the robots has

substantial implications for the implementation of the evolutionary

algorithm. Because evolutionary algorithms are population-based

heuristics, embodied evolutionary robotics is often implemented in

a group or swarm of robots: the evolving individuals (that

represent robot controllers) are distributed over the swarm.

Certain evolutionary operators imply exchange of information

between robots (e.g., selection or crossover), while others could be

executed internally by individual robots (e.g., fitness evaluation,

mutation). Over the last 15 years, several embodied evolutionary

robotics algorithms have been proposed to solve tasks of varying

complexity, from goal finding and harvesting tasks to coordination

behaviours [2–7]. An important benefit of embodied evolutionary

robotics is that it offers the opportunity to acquire adequate

behaviour on the fly, without the human in the loop. It enables

robotic systems that are inherently adaptive, and therefore capable

of (re-)adjusting themselves to previously unknown or dynamically

changing conditions.

This paper addresses one of the major challenges such an

adaptive robotic system has to overcome: the robots must satisfy

two sets of requirements, one grounded in the environment they

operate in (viability), the other defined by the tasks specified by the

user (usefulness). In principle, evolution is a force capable of

satisfying both of these requirements. Natural evolution has

proven very successful at achieving viability: it generated life on

earth through environmental selection [8]. Evolutionary algo-

rithms, on the other hand, are very good optimisers driven by

artificial fitness functions that define technical user objectives [9].

A similar dichotomy can be discerned between the areas of

Artificial Life, where environmental adaptation is the dominating

approach and traditional evolutionary robotics, where task-driven

evolution is prevalent.

The field of evolutionary robotics is inherently task-minded, but

to successfully learn how to tackle a task, the robots must survive

(maintain battery level and structural integrity, avoid collisions,

etc.) for long enough to do so. It is this challenge that this paper
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considers: how to combine environment-driven adaptation

towards viability with task-driven optimisation towards usefulness.

Realising such a combination is not necessarily hard. Depend-

ing on the application scenario, there can be situations where

viability and usefulness are aligned, that is, intrinsic environmental

requirements are naturally met if the task is addressed. For

example, the setup considered in Watson’s original work considers

a target that everyone must find, thus ensuring successful genome

exchange between robots, which is required for the algorithm to

work, as a by-product of solving the task [2].

However, such an alignment between task-driven optimisation

and environmental adaptation cannot be always assumed. In

principle, these two priorities can be in conflict and pursuing

increased taskperformance may lead to ‘self-destructive’ behav-

iour. In such situations special care is needed to formulate the task-

related requirements. Using an implicit fitness function, rather

than an explicit one, offers a way to relax (but not suppress) the

selection pressure towards purely task-driven behaviour. An

implicit fitness function evaluates the objective in terms of

expected result rather than in the way that result was achieved

[1]. Implicit fitness functions offer a less constrained setup to

address a task: it can be very difficult a priori to define appropriate

behaviour for a particular task while it is relatively easy to specify

what the result of the evolving behaviour should be. Implicit fitness

can be implemented in very different ways, such as favouring

individuals which perform particular steering behaviours [4], or

rewarding individuals with more energy when doing a particular

task, such as during a harvesting task [10] or self-assembling [11].

Fitness functions, be they implicit or explicit, are the driving

force in evolutionary robotics. This is a direct consequence of the

fundamentally task-minded attitude where the main goal is to

obtain useful robot behaviour and evolution is considered as an

optimiser that helps to achieve this goal. This mindset is reflected

in the generic algorithm setup that follows the logic of usual

evolutionary algorithms [12]. In particular, parent selection and/

or survivor selection (a.k.a. replacement) use fitness information.

For the implementation of these selection operators there are

various mechanisms in the literature. Some of these require a

quantified assessment of fitness, e.g., roulette wheel selection, some

only need a sorted population, e.g., rank-based selection, and some

do not need quantitative fitness at all, only a comparison between

candidate solutions, e.g., tournament selection. Nevertheless, they

all work by assessing (relative) fitness before a choice is made and

use this information to select an individual. Therefore, evolution-

ary robotics and usual evolutionary optimisation belong to the

same type of evolutionary computing, where fitness is prime and

the chances for reproduction and/or survival are derived from it.

This focus on optimising task performance can be counter-

productive in certain situations, particularly in situations where

the task requires behaviour that is at odds with the environment.

In such situations, performing the task may carry a risk in terms of

survival (e.g., robots fail to maintain battery levels because of the

task focus) or in terms of procreation (e.g., robots stay out of

communication range and so cannot exchange genetic material).

When this is the case, purely task-focussed approaches from

embodied evolutionary robotics may well fail because of their

inability to abandon objectives while basic survival strategies are

not found and maintained.

Of course, there is a considerable body of research where task

performance plays no role whatsoever, where there is, indeed, no

task at all. Here, reproductive ability and survival are the driving

forces and fitness is a derivative of procreative success instead of

the other way around. Evolution of the population solely depends

on the ability of its individuals to spread copies of their genomes

(i.e., to generate offspring), and some individuals turn out to be

more successful than others at doing so. These individuals are

increasingly apt at surviving and procreating in their environment.

In particular, adaptation to the environment through open-ended

evolution without any task at all has long been studied in artificial

life [13] and yielded a variety of methods and algorithms such as

TIERRA [14] and followers ([15–20], etc.). Such research

investigates evolution as an adaptive process per se, driven by

selection pressure that emerges from the interaction between

individuals and their environment, just as it does in nature. In

contrast to the fitness function-based comparison in evolutionary

robotics, these methods do not actually compare individuals, but

successful individuals can only be identified a posteriori, rather

than selected a priori: the number of offspring determines whether

a particular genome was successful rather than the other way

round. Of course, this also means that beyond adaptation to the

environment, evolution will not address any user-specified task.

The mEDEA algorithm is an example of such a purely

environment-driven evolutionary adaptation mechanisms in a

collective robotics setup [21]. It considers a set of robots with

limited communication capabilities. Evolution relies on the

diffusion of genomes from peer to peer, and genomes compete

with one another to spread over the population of robots. To do

so, each robot carries a genome, which defines its behaviour

during a predefined amount of time (its ‘‘lifetime’’). Whenever two

robots are close enough, each transmits a mutated copy of its

current genome to the other, and store the incoming genome in a

list for further use. At the end of the robot’s lifetime, the list of

previously received genomes is emptied except for one arbitrarily

selected genome, which then replaces the genome used so far.

Because the new genome is arbitrarily selected, there is pressure

towards genomes that are able to drive their ‘‘vehicles’’ (i.e., the

robots) to spread themselves over the population, favouring

behavioural strategies better fitted to the environment.

In this paper, we argue that balancing evolution between

environment-driven adaptation and taskdriven optimisation rep-

resents a vital step towards implementing autonomous, functional,

responsive and self-sufficient robot collectives that operate reliably

in environments where human supervision is impossible, too

expensive, or limited. To this end, we introduce MONEE (Multi-

Objective aNd open-Ended Evolution), a paradigm that allows the

definition of an objective function without surrendering environ-

ment-driven adaptation. The main idea is to exploit the fact that

evolutionary methods have two basic selection mechanisms and to

use these in different roles: survivor selection driven by the

environment (purely environment-driven, e.g., as described above

for mEDEA) and parent selection based on task-performance.

For the sake of generality, we assume that robot collectives will

have multiple tasks, e.g. because the overall task consists of

subtasks like monitoring, collecting and transporting resources.

Jones and Matarı́c [22] already noted that collectively tackling

multiple tasks entails a division of effort: if there are multiple tasks,

the population of robots as a whole must tackle all of them, i.e., the

collective effort must be evenly distributed over all the tasks. The

tasks and/or the environment may prevent generalisation at the

individual level (e.g., it may not be possible to both collect and

transport resources effectively), enforcing specialisation at the

individual level, but the population as a whole must learn to

perform all tasks simultaneously regardless.

To ensure that the collective effort is equitably distributed over

all tasks when there are multiple tasks, we propose to introduce a

market mechanism that regulates task-based rewards during mate

selection according to the market logic that scarcity increases

worth. The MONEE framework implements such a market
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mechanism: in our multiple task context this implies that tasks that

only a few robots (can) perform yield relatively high rewards and

therefore higher selection probabilities. Market-based schemes

provide a well known solution to the task allocation problem in

multi-agent and multi-robot settings, for instance in [23,24].

Market-based parent selection in MONEE exploits this method to

achieve multiobjective task-driven adaptation of robot behaviour.

In the following, we present our MONEE implementation in detail

and experimentally evaluate it on a variation of an harvesting task.

We show that MONEE does indeed promote task-driven behaviour

without compromising environmental adaptation. In other words,

given a scenario with some task(s) for the robots –and measurable

task performance– the robots adapt their behaviour to perform the

task(s) without losing the abilities required for environmentally

defined success. We investigate the interplay of the two selection

mechanisms and the resulting selection pressure.

We also show that the market mechanism is essential to ensure

equitable distribution of effort over multiple tasks. That is, in a

setting with multiple tasks, the population will learn and perform

all tasks rather than focussing unduly on a subset. We investigate

how this capability responds to environments that force robots to

specialise in single tasks at the individual level and settings with

disparate reward levels for the tasks.

Methods

Algorithm
We investigate a MONEE implementation that adds task-driven

selection to the environment-driven evolution in the mEDEA

system. Bredeche et al. describe mEDEA [25] as an open-ended

evolutionary algorithm where autonomous robots move around an

arena while continually broadcasting their genome over a short

distance. Meanwhile, the robots also receive genomes from other

robots that come within communication range. When a robot’s

lifetime (which is fixed) expires, it randomly selects one of the

received genomes, modifies that using mutation and starts a new

life of broadcasting this new genome. This defines an environment

where procreation relates to movement: genomes that cause the

robot to move around a lot are spread at a much higher rate than

genomes that cause their host to stand still. This selection pressure

derives only from the way the environment defines the mechanics

of transmitting genetic material: there is no objective function or

explicit evaluation of individual controllers. In our experiments,

we made a slight change to the basic mEDEA set-up by adding an

‘egg’ phase. Now, the robots do not listen for genomes as they

move about, but instead, when a genome expires, the host robots

stops moving for a fixed amount of time while it listens for

genomes from passing live robots that come within the limited

communication range.

MONEE extends this open-ended approach as follows. To add

task-driven parent selection to this environment-driven evolution-

ary process, the robots can amass credits by performing tasks

during their lifetime. For instance, a robot could get one credit for

every piece of ore it collects, one for successfully transporting it to a

cart, and so on. When multiple tasks are defined, the robots

maintain separate counts for the credits awarded for each task, for

instance one counter for the pieces of ore collected and another

one for the number pieces transported. When a robot transmits its

genome to an egg, it passes the current credit counts along with

the genome and the egg uses that information to select a genome

when it revives.

This scheme is reminiscent of parental investment, which has

been investigated in artificial life settings, including experiments

with robots [26–28]. In artificial life parental investment is often

used to give the offspring a starting value of (virtual) energy [29–

32] and a parent’s energy level is often linked to task performance

(e.g., agents tasked with eating grass to gather energy [31]). The

MONEE scheme, however, differs subtly but crucially from such

parental investment schemes: a parent does not actually invest

when impregnating an egg because the credits aren’t transferred

but copied; there is no cost to the parent.

When the egg phase finishes, the robot compares the credits for

each genome it has received. To enable this comparison across

tasks, the egg calculates an exchange rate between tasks. This

ensures that genomes that invest in tasks for which few credits are

found overall (presumably hard tasks) are not eclipsed by genomes

that favour easier tasks. The exchange rate is a linear weighting

scheme that equalises credits based on the scarcity of credits for the

different tasks. It is calculated as follows: let G be the set of all

genomes received by the egg and T the set of all defined tasks.

Ct(g) denotes the credits for task t amassed with genome g. Then,

the exchange rate for a task t is: Rt~
C
Ct

, where Ct~
P

Vg[G Ct(g)

and C~
P

Vt[T Ct. Genomes are then ranked according to the

sum of credits multiplied by the exchange rates,
P

Vt[T RtCt(g),

and a parent is selected using rank-based selection. Note that this

scheme uses only local information: the calculations take only the

credits earned by genomes received by this particular egg into

account, as they were when the genome was transmitted. The

exchange rate for the earnings per task implies that the more

common credits are for a particular task, the less their worth and

vice versa. Thus, parent selection becomes a marketplace for skills

and features that the user requires.

The exchange rate’s reappraisal of task performance is similar to

fitness sharing, a well-known technique that was introduced to

promote genetic diversity and so prevent premature convergence

in evolutionary algorithms. With fitness sharing, an individual’s

fitness is reduced if there are many similar (in terms of their genetic

makeup) individuals in the population. MONEE’s market mecha-

nism is similar in the sense that it also reappraises fitness,

disfavouring tasks that are more commonly tackled by robots in

the population. A crucial difference with traditional fitness sharing

is that MONEE considers an individual’s behaviour, not its genetic

make-up (although syntactic fitness sharing in genetic program-

ming shares this distinction [33]). Maybe more importantly,

MONEE modifies fitness not to prevent premature convergence, but

to ensure that the robot population tackles multiple tasks.

Traditionally, fitness sharing is not necessarily associated with

multiple objectives, but with maintaining diversity in general–

typically, but not exclusively, in single-objective settings.

Experiments
We implemented the MONEE algorithm in a simple 2D simulator

called RoboRobo [34], simulating 100 e-puck robots in an

environment that contains obstacles and pucks. The sides of the

square arena are roughly 330 robot body lengths long (1024 pixels

in the simulator), and it contains a number of obstacles (see Fig. 1).

We run 64 repetitions of the experiment and of all variations that

we describe later.

There are two types of puck: green and red, defining a

concurrent foraging scenario. Concurrent foraging is a variation of

regular foraging where the arena is populated by multiple types of

objects to be collected [22], rather than just a single resource. In

our case, these objects are green and red pucks and the collection

of each different colour is a different task. The pucks are spread

throughout the arena, and they are immediately replaced in a

random location when picked up. The robots move around the

arena, spreading their genome as they encounter eggs and dying
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when their allotted time has passed. They collect pucks simply by

driving over them; the more pucks they gather, the more likely

their genome is to be selected once an egg they impregnated

revives.

To detect pucks, the robots have 16 sensors that detect either

red or green pucks (i.e., 8 sensors per puck-type). Each set of 8

sensors is laid out in the same manner as the standard e-puck

infrared sensors: 6 face forward, 2 face to the rear. Because

individual puck sensors only detect a single type of puck, collecting

one type of puck is a task distinct from (but very similar to)

collecting another type of puck. Thus, behaviour to collect either

type of puck has to evolve separately. Each robot is controlled by a

single-layer feed forward neural network which controls its left and

right wheels. The inputs for the neural network are the robot’s

puck and obstacle sensors. The robot’s genome directly encodes

the neural network’s weights (3 types of sensor|8 sensors|2

outputs plus 2 bias connections plus 4 feedback (current speed and

current rotation to either output) = 54 weights) as an array of

reals.

As mentioned, the robots alternate between periods of active

puck gathering (life phase) and motionless genome reception (egg

phase). To prevent synchronised cycles among the robots, we add

a small random number to each robot’s fixed lifetime. This

desynchronises switching between life and rebirth even though our

runs start with all robots perfectly in sync at the first time-step of

their lifetime.

At the end of the egg phase, offspring is created by selecting a

parent from the received genomes on the basis of their earnings

and mutating the weights in that genome using gaussian

perturbation with a single, fixed mutation step size s~1. This

single-parent, mutation-only scheme is common in evolution

strategies that are known to perform well on problems with

continuous-valued genomes [35]. Fig. 2.

Note that MONEE does not prescribe any particular controller

implementation nor any choice of variation operator. The

implementation we chose here of an artificial neural network

with the weights encoded as real-valued genes provide a

convenient, flexible and well-established representation. Quanti-

tative analysis of initial trials with other controller formalisms

showed very similar results. Therefore we will focus on the

dynamics of the evolutionary dynamics rather than providing in-

depth analysis of the particular internal properties of the evolved

neural networks.

Fig. 2 depicts the flow of robot control in our experiments,

Table 1 details the experimental set-up.

Simulation Software
The Roborobo code was written in C++. The code used for the

experiments described here, together with settings files and scripts

for the analysis of the results is available at http://www.few.vu.nl/

,ehaasdi/papers/MONEE-PLOS/. We ran our experiments on

the Lisa cluster at the Surf Sara facility, which consists mainly of

2.26 GHz nodes with Intel L5520 processors. Running on a single

core, a typical single run would complete in just under 8 minutes.

Statistical Tests
To quantify selection pressure from environment as well as task

in various settings, we propose a measure that calculates the

likelihood of random associations between behaviour and number

of offspring in a population. We consider the distance covered,

pucks collected and offspring count over the lifetime of the robots

in the population. We split these individuals into classes with and

without offspring and we split them along the median distance

travelled or the median number of pucks collected during their

lifetime. This results in two 2|2 contingency tables: one relating

offspring and distance travelled and one relating offspring to

number of pucks collected. The cells of the contingency tables

contain the count of individuals for that cell (e.g., the number of

individuals with offspring and below median distance travelled).

Fisher’s exact test is an appropriate test to determine the certainty

of nonramdom associations between the categories in such

contingency tables [36]. The test estimates the likelihood that

the two classes in each contingency table (having offspring and

above/below median distance travelled or pucks collected,

respectively) are associated. The p-values resulting from these

tests indicate the probability that there is no relationship between

having offspring and having above- or below-median distance

travelled or pucks collected. Thus, low p-values indicate high

selection pressure and vice versa.

As mentioned above, we calculate the level of specialisation at

population level to determine to what extent both tasks are taken

up in equal measure by the robot collective. For each experiment,

we calculate this ratio over all the pucks collected in the last 1,000

time steps of that simulation: it is the ratio of green pucks collected

to all pucks collected: a ratio of 0.5 indicates that both types of

puck were collected equally. When robots collect almost exclu-

sively green pucks, this ratio will be close to 1.0, if the robots do

not collect any green pucks, this ratio will be close to 0.0. To

compare the ratio for different settings (e.g, with and without the

market mechanism enabled), we compare the distributions of puck

ratios for all runs with each setting. To test for statistical

significance, we use a two-sample Kolmogorov-Smirnov test that

compares the distributions of green-puck ratios for two sets of runs.

Results and Discussion

Adaptation to Environment and Task
To assess the take-up of the defined tasks, we need to establish

whether the robots actually learn to gather pucks and whether they

learn to cope with the environmental requirements under the

Figure 1. Experiment screenshot. Active robots are shown as small
circles with sensor beams indicated, robots in egg state as red dots.
Pucks are shown as small blue and green squares. The shaded orange
rectangles indicate arena walls and obstacles.
doi:10.1371/journal.pone.0098466.g001
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MONEE regime. We compare the level of environmental and task-

related adaptation through a control experiment where, as in

mEDEA, only the environment determines a genome’s chances of

being selected: the number of pucks collected has no influence

whatsoever. In other words, when an egg revives in the control

experiment, it randomly selects one of the received genomes as

parent for its new controller. As an additional control, we ran

experiments with the market mechanism disabled: parents were

selected on the basis of their total number of credits (pucks

collected, in our case) without regard for their relative rarity.

Figure 3 shows clearly that populations with MONEE do learn to

tackle pucks increasingly well after a brief initial phase. Until ca.

100,000 ticks, few pucks are collected, but then the number of

pucks collected increases rapidly. The rate of increase starts to

drop off towards the end of the runs, but the number is still

increasing. There is no appreciable difference in the number of

pucks collected with and without the market mechanism. As

expected, the baseline algorithm (mEDEA, where the number of

pucks collected has no influence on parent selection) collects far

fewer pucks – there is no pressure to adapt behaviour to collect

pucks and they are only collected accidentally while moving about

to spread genomes. The number of pucks collected with MONEE is

much higher than would be expected solely due to random chance

(i.e., with mEDEA), and is therefore a driven rather than a passive

trend.

As a measure of adaptation to the environment, we count the

number of genomes received by eggs (inseminations), excluding

duplicate transmissions. Figure 4 shows the median number of

inseminations per 1,000 time-steps for MONEE and for the baseline

Figure 2. Robot flow of control in the experiments. To the left a flowchart indicates the life phases, to the right pseudo-code describing each
phase in detail.
doi:10.1371/journal.pone.0098466.g002
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mEDEA implementation. The initial peak is caused by the fact that

the robots are concentrated in a small part of the arena at the

outset of the experiments. As the robots spread out over the

available area, the number of inseminations first decreases and

then recovers as the robots adapt their behaviour. This increase is

slightly faster with MONEE than with mEDEA, but both level off at ca.

40 inseminations per 1,000 ticks. Overall, there seems to be little

Table 1. Experimental set-up.

Experiment

Number of robots 100

Simulation length 1,000,000 time-steps

Number of repeats 64

Number of pucks 150 green, 150 red, immediately replaced in a random location when picked up

Arena See Fig. 1

Controller

Controller Feed forward neural net with tanh activation function

Input nodes 8 obstacle sensors, 16 puck detectors, 2 bias and 2 recurrent nodes

Output nodes 2 (left and right motor values)

Evolution

Representation Real valued vectors

Chromosome length 54

Initial weight distribution Randomly drawn from N(0,1) distribution

Mutation Gaussian N(0,0:1) perturbation

Parent selection Rank-based

Robot lifetime 2000 time-steps

Egg-phase duration 200 time-steps

Communication range ca. 9 body lengths

Crossover none

The standard settings for experiments reported in this paper. Some experiments vary one or more of these values as indicated in the experiment description.
doi:10.1371/journal.pone.0098466.t001

Figure 3. Task performance measured as the median number of pucks collected by the population per 1,000 time-steps. Plots show
results for MONEE with and without market mechanism and with random parent selection (i.e., without any referral to the number of pucks collected–
mEDEA). The vertical bars indicate the 95% confidence interval for the medians. The robots clearly adapt behaviour to collect pucks. The number of
pucks collected barely differs whether the market mechanism is in force or not. With random parent selection, the robots gather far fewer pucks:
collection is a result of accidentally running over them during random movement.
doi:10.1371/journal.pone.0098466.g003
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difference between vanilla mEDEA and MONEE in terms of this

measure of environmental adaptation.

Investigating Selection Pressure
There are two obvious determinants of selection pressure, i.e.,

two factors that determine the likelihood of a robot producing

offspring. One is distance travelled. This is not an explicit

objective, but it is implied by the fact that robots must come within

communication range of eggs: robots that move about a lot have

higher chances of meeting eggs and therefore procreate at a higher

rate than robots that move little [25]. The second factor is the task

performance that we explicitly introduced: when reviving, an egg

selects a parent for the new controller based on the number of

pucks collected. For a qualitative view of the importance of these

two selective forces, consider Fig. 5. It plots the combined

individuals of 64 runs in four 5,000 clock-tick intervals. Each

individual is indicated by a small circle, of which the colour

indicates the number of offspring for that individual. The position

of the circle shows the number of pucks that individual collected

(horizontal axis) and the total distance covered (vertical axis, in

pixels in the simulated environment) during its lifetime.

Initially (left-most panel), there is little variation in terms of

pucks collected (the dots are concentrated between 0 and 5 pucks

collected). Individuals with high offspring counts are found across

the range of distance travelled with a slight concentration between

500–1,000. This indicates that there is little pressure towards

movement or collecting pucks at this point. As evolution

progresses, at t~150,000, having offspring becomes contingent

on travelling greater distances and collecting pucks; most robots

travel substantial distances between 3,000 and 4,000 pixels. At

t~900,000, almost no individuals with more than one child that

have travelled less than 2500 pixels. The two right-hand panels

show that the number of collected pucks becomes increasingly

important. These results indicate that robot behaviour initially

adapts to the environment, evidenced by the initial differentiation

in distance travelled. As evolution progresses and almost all robots

travel substantial distances, the number of pucks collected becomes

Figure 4. Viability measured as the median number of egg inseminations per 1,000 time-steps with monee and with random parent
selection (medea). The vertical bars indicate the 95% confidence interval for the medians. Both curves indicate successful adaptation to the
environment as robots become increasingly adept at spreading the genomes.
doi:10.1371/journal.pone.0098466.g004

Figure 5. Offspring count vs distance travelled and number of pucks collected. From left to right, plots shown for time intervals at 1,000,
150,000, 300,000 and 900,000 ticks. Initially, distance travelled and number of pucks collected have little influence on an individual’s fecundity. As
time progresses, the influence of travelling distances and collecting pucks becomes progressively pronounced.
doi:10.1371/journal.pone.0098466.g005
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Figure 6. Quantitative analysis of selection pressure over time. The topmost graph shows how selection pressure develops over time.
Selection pressure is quantified as the p-value from Fisher’s exact test: lower values indicate lower probability of random effects and so indicate
higher selection pressure. Note the logarithmic scale on the vertical axis. The two plots below that repeat the data from Figs 4 and 3 for the standard
MONEE experiments. The gray background highlights the period (between 100,000 and 300,000 ticks) where selection pressure rapidly increases at the
same time that the population becomes successful at spreading genomes and collecting pucks.
doi:10.1371/journal.pone.0098466.g006

Figure 7. Selection pressure over time for different communication ranges. Selection pressure is quantified as the p-value from Fisher’s
exact test: lower values indicate lower probability of random effects and so indicate higher selection pressure. Note the logarithmic scale on the
vertical axis.
doi:10.1371/journal.pone.0098466.g007
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the dominant factor in determining the chances of producing

offspring.

For a quantitative analysis, we divide the experiment into slices

of 5,000 ticks and then consider the robots that complete their

lifetime during each interval as a population where we quantify

selection pressure in terms of distance covered and pucks collected

as described above. Just to recap, the p-values resulting from these

tests indicate the probability that there is no relationship between

having offspring and having above- or below-median distance

travelled or pucks collected. Thus, low p-values indicate high

selection pressure and vice versa. The top graph in Fig. 6 plots

these values against time - the blue, solid line shows the p-values

calculated on the basis of offspring and distance covered and the

orange, dotted line shows the same for offspring and number of

pucks collected. The graphs below that show the number of

inseminations and number of pucks collected over the same time

axis to allow visual comparison of trends in behaviour and in

selection pressure (repeated from Figs. 4 and 3).

There is an initial, relatively low, selection pressure when

regarding distance travelled (i.e., environmental selection pressure)

and almost none in terms of pucks gathered (i.e., task-driven

pressure). Then, the selection pressure starts to rise rapidly, first

the pressure related to distance travelled, almost immediately

followed by that in terms of pucks collected. From the

insemination plot we can see that this rise coincides with a rapid

increase in the number of inseminations, indicating that the

population is getting to grips with the environmental demands for

procreation (the initial peak in inseminations is caused by the fact

that the robots are initially positioned close to each other). Just

after the number of inseminations per time unit starts to level off,

the selection pressure in terms of distance travelled as well as pucks

collected reaches a high point: selection pressure is at its peak just

as the number of inseminations starts to plateau. After that,

selection pressure slowly reduces and seems to level off,

presumably because the required behaviour is now so well

established throughout the population that the relative evolution-

ary benefit of moving a lot and collecting many pucks is reducing.

Selection pressure due to pucks collected and due to distance

travelled follow similar trends, which is to be expected because

collecting more pucks also implies travelling greater distance. The

pressure from pucks collected outstrips that from distance covered

after ca. 200,000 ticks and remains substantially higher. Because of

the correlation between distance travelled and pucks collected, it is

not possible to draw general conclusions about the relative

selection pressure from environment and task with MONEE from

these results.

While distance travelled and number of pucks collected have a

strong impact on the chances of an individual procreating, there

are three environmental parameters that affect the extent to which

these two factors influence the likelihood of offspring. These

parameters are:

Communication range How close to an egg must a robot be

to be able to transmit its genome;

Egg time How long an egg is immobile and receptive to

genomes before it revives;

Life time How much time a robot controller runs and has

opportunity to disseminate its genome.

We ran a number of experiments with different settings for these

three parameters and measured the development of selection

pressure as the experiments progress. Figures 7–9 plot selection

pressure (calculated using Fisher’s exact test as described above)

Figure 8. Selection pressure over time for different egg times. Selection pressure is quantified as the p-value from Fisher’s exact test: lower
values indicate lower probability of random effects and so indicate higher selection pressure. Note the logarithmic scale on the vertical axis.
doi:10.1371/journal.pone.0098466.g008

Figure 9. Selection pressure over time for different life times. Selection pressure is quantified as the p-value from Fisher’s exact test: lower
values indicate lower probability of random effects and so indicate higher selection pressure. Note the logarithmic scale on the vertical axis.
doi:10.1371/journal.pone.0098466.g009
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over time for different values of communication range, life time

and egg time.

Figure 7 shows a profound impact of communication range on

selection pressure. For short communication range (ca. one third

body length), the pressure builds more slowly and to a substantially

lower level than for medium communication (ca. one body length).

Longer communication ranges increase the speed of build-up as

well as the level of selection pressure, but this trend lessens for

communication ranges over 30 pixels (greater than one body

length).

Figure 8 shows that the peak selection pressure at ca. 300,000

ticks, particularly related to pucks collected, increases with egg

time. Towards the end of the runs, the selection pressure has

levelled off at similar levels for all settings, though, so the effect of

egg time on selection pressure seems to be transient. It also seems

that this increasing level of peak selection pressure no longer

applies when increasing egg time from one quarter to one half life

time (500 to 1,000). This may be because when the egg times are

long enough, so many individuals are able to transmit their

genome to the eggs that the in-egg selection procedure approx-

imates panmictic selection. If that approximation becomes

sufficiently accurate, further lengthening of egg time has no effect

as each egg considers each genome only once: if an individual

transmits its genome multiple times to an egg, the puck count for

that genome is updated, but no additional entries are stored.

Analysing Fig. 9, we see a profound decrease in pressure from

pucks collected as life time increases. The effect on pressure from

distance covered is much more limited. Shorter life times mean

that individuals that actively seek out pucks stand out more from

those that merely move around and happen to collect pucks by

doing so. This emphasised difference in task solving behaviour

would explain the very high selection pressure for short life times.

Distribution of Effort
The concurrent foraging scenario in our experiments implies a

need to distribute the robot collective’s effort over the tasks: it is

undesirable to have all robots collect pucks of only one colour.

MONEE’s market mechanism was designed precisely to ensure an

equitable distribution. It causes less commonly tackled tasks to

reap higher rewards by introducing an exchange-rate per task.

To investigate whether the market mechanism does indeed

provide for an equitable distribution of effort, we calculate the

ratio between the number of green and red pucks collected by the

population: this ratio should reflect the ratio in which the pucks

are distributed throughout the environment. Thus, the percentage

of green pucks collected indicates whether both tasks have been

tackled equally successfully: an equitable distribution of effort

Figure 10. Bi-histogram of green puck ratios across the population with (top) and without (bottom) market mechanism over the
final 1,000 time steps of simulation without environmental pressure towards specialisation. The environment contains equal amounts of
red and green pucks, so equitable take-up of the tasks should result in a ratio of ca. 0.5, which would indicate that equal amounts of red and green
pucks are collected. This ideal ratio is indicated by the black vertical line. The distribution with market mechanism seems tighter around the ‘natural’
ratio at 0.5. This difference is, however, not statistically significant at 5%: a two-sample Kolmogorov-Smirnov test to compare the distributions yields
p~0:0803.
doi:10.1371/journal.pone.0098466.g010

Combining Environment-Driven Adaptation and Task-Driven Optimisation

PLOS ONE | www.plosone.org 10 June 2014 | Volume 9 | Issue 6 | e98466



would lead to populations where 50% (assuming equal numbers of

green and red pucks in the environment) of the collected pucks is

green. Figure 10 shows the distribution of the ratio of green to red

pucks gathered by the populations in the final stages of the 64 runs

of the standard experiment as well as in 64 runs of a control

experiment where the market mechanism was disabled. In both

cases the percentage of green pucks collected tends to the natural

ratio of 0.5. With the market mechanism enabled, the distribution

is more closely concentrated around this natural ratio than it is

without the market, but the distributions are not significantly

different with 5% confidence.

In these experiments, the robots can collect green and red pucks

equally well without any penalty when collecting both or merely

one colour. To analyse what happens if the two tasks are (to some

extent) mutually exclusive – i.e., if the robots are forced to

specialise and focus on collecting only one colour of pucks–we

introduce an incentive to specialise in the environment as follows.

In the specialisation experiments the speed of robots depends on

their specialisation level: the robot’s speed is multiplied by the ratio

of most prevalent pucks it has collected:

v~ maxargVt[T Ct(g)P
Vt[T

Ct(g)

� �s

:vdesired , with g the currently activated genome

and T the set of all defined tasks. Ct(g) denotes the credits for task

t amassed with genome g. The specialisation level s is set to 1 for

this experiment. Thus, if a robot collects exclusively pucks of one

colour, its speed is maximal. If it collects 75% green (or red) pucks,

its speed is reduced by 25% and if it collects red and green pucks in

equal amount, the speed is halved. This speed penalty is

recalculated whenever a robot picks up a puck. Note that

specialisation is enforced by the environment, not during the

parent selection phase when an egg revives. The environment

causes specialising robots to move faster, so that they perform

better than non-specialised robots: their higher speed allows them

to collect more pucks during their lifetime, but more importantly,

it allows them to impregnate more eggs. Figure 11 shows that in

such an environment the market mechanism is essential to keep

the population from focussing on one task to the exclusion of the

other. Although the distribution with market enabled is not as

neatly focussed as it is in the multi-skilled setting, the population

still collects both puck types in more or less equal amounts.

Without the market mechanism, the majority of experiments

resulted in a population that almost exclusively collects puck of one

colour or the other. Rarely does the population gather even

roughly the same number of green and red pucks.

Figure 12 shows results for runs with varying settings of the

specialisation level s. The top row plots show individual

specialisation, the bottom row shows population level bar charts

with the green puck ratio as a measure of specialisation as

Figure 11. Bi-histogram of green puck ratios across the population with (top) and without (bottom) market mechanism over the
final 1,000 time steps of simulation with environmental pressure towards specialisation. The environment contains equal amounts of red
and green pucks, so equitable take-up of the tasks should result in a ratio of ca. 0.5, which would indicate that equal amounts of red and green pucks
are collected. This ideal ratio is indicated by the black vertical line. Without the market mechanism, the robot collective tends to specialise in one type
of puck, indicated by the two peaks near the extremes. A two-sample Kolmogorov-Smirnov test to compare the distributions yields
p~7:7438|10{07.
doi:10.1371/journal.pone.0098466.g011
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described above. We see that the market mechanism prevents

population-level specialisation by promoting generalist behaviour

at individual level. For lower specialisation levels, most individuals

collect both types of puck in more or less equal measure (indicated

by the dark dots on or close to the diagonal in the top plot). As we

increase the pressure to specialise, individuals do focus on one type

of puck: the darker dots are increasingly found at the edges. For

these populations of specialising individuals, the market mecha-

nism does not result in populations where two kinds of specialist

coexist in balance and so fails to prevent overall specialisation

when the environmental pressure to specialise is very high.

The two tasks in these experiments–collecting green and red

pucks–are very similar. In particular, the credits for the two tasks

compare trivially. More generally, however, it may be harder to

determine comparable levels of credits for different tasks: how

many credits should robots receive for monitoring resources, for

collecting a certain amount or for transporting some resources

some distance? To investigate the effect of different levels of

reward for the tasks we run a number of experiments that define a

premium for green pucks. Figure 13 shows the results of rewarding

green pucks at 1, 10, 50 and 100 times as highly as red pucks.

Again, we look at the distribution of green puck ratios towards the

end of the experiment for 64 runs for each setting. The application

of a premium to green pucks causes the population to collect more

green than red pucks, but not to the extent that the red pucks are

disregarded. Even with a premium factor as high as 100, the

market mechanism causes the population to spend considerable

effort on the red puck task. This implies that the relative value of

different tasks has a limited effect on population behaviour.

Consequently, there is no need to finely balance the rewards for

different tasks: MONEE’s market mechanism ensures that all tasks

remain in focus even if the reward levels differ substantially.

Figure 12. Effect of increasing pressure towards specialisation. The top row of graphs shows the level of specialisation of individual robots.
Each circle represents a combination of red (vertical axis) and green (horizontal axis) pucks. Circles on the diagonal represent individuals that gather
equal amounts of red and green pucks, circles on the axes represent specialised individuals. The colour intensity indicates the number of individuals
(combined over 64 repeats of the experiment) that combined that particular combination during their lifetime. The bottom row contains histograms
of green puck ratios across the population. Populations with a ratio of 0.5 are perfectly balanced, more extreme values indicate specialisation of the
whole population on either type of puck. All plots report on the final 1,000 time steps of simulation.
doi:10.1371/journal.pone.0098466.g012

Figure 13. Effect of varying reward levels. The plot shows histograms of green puck ratios across the population for different premium values
for green pucks. Populations with a ratio of 0.5 are perfectly balanced, more extreme values indicate specialisation of the whole population on either
type of puck. All plots report on the final 1,000 time steps of simulation. Adding a premium factor to green pucks causes a slight preference for
collecting green pucks, but this effect is not very large.
doi:10.1371/journal.pone.0098466.g013
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Conclusions

This paper addressed the problem of mixing task-directed

optimisation and environment-driven adaptation in the context of

perpetual learning with a robot collective where communication is

limited to local interaction. In particular, we argued that this needs

to be resolved to enable the deployment of collectives of robotic

agents in a real world situation: addressing user-defined tasks in

open environments requires self-sustainability and a trade-off

between optimal surviving strategies and addressing the tasks at

hand.

The first important contribution of this paper is that we have

shown that it is possible to combine objective-free environment-

driven with task-driven evolution of behaviour in a population of

simulated robots. The robots evolve behaviour that allows them to

procreate in the environment as they do when no task is defined.

MONEE introduces a second selection stage that takes task

performance into account. Without compromising adaptation to

the environment, this promotes behaviour that tackles tasks. In the

set-up of our experiments, the tasks and the environment pose

requirements that do not conflict with each other. Further

research should investigate how this method of combining task-

and environment-driven adaptation holds up in situations where

task and environment conflict to some degree.

We investigated how selection pressure from the environment

and the tasks develops over time. The results show that selection

pressure rises steeply as the population experiences a rapid growth

in effective behaviour from both an environment and a task

perspective. After that, selection pressure eases as appropriate

behaviour becomes prevalent and therefore less of a determinant

of fecundity. Trying different settings for communication range,

egg time and life time, we saw that these factors can substantially

influence the development of selection pressure. The most

profound difference occurred in the selection pressure for task-

related behaviour when reducing life time values. Halving the life

time increased selection pressure by orders of magnitude.

The second important contribution in this paper is the

introduction of a market mechanism to efficiently balance

collective effort over multiple tasks. When the robot collective is

confronted with multiple tasks, the market mechanism compares

rewards earned for the tasks and calculates an exchange rate to

enable straightforward comparison of task performances. Our

results show that this market mechanism promotes equitable

distribution of collective effort over the tasks: both types of puck

are collected in equal measure, even if there is some pressure for

individual robots to specialise in one or the other. In our

experiments, this distribution is achieved without detriment to

performance: the number of pucks collected with market

mechanism enabled is not statistically different to that without

market mechanism. Generalist behaviour is effected at individual

rather than at population level: individuals do not specialise as

readily when the market mechanism is in force. The market

mechanism does not maintain the distribution of effort when the

pressure for specialisation is increased so far that individual robots

must specialise. In that case, the population will most often focus on

one of the defined tasks. Further research will have to investigate

whether an amended market scheme or some additional method

of distribution can guarantee an equitable distribution of effort

under such circumstances.

In many situations, the tasks that the robots have to tackle will

be more disparate than collecting two types of puck and it may

consequently be hard to determine comparable reward levels for

the different tasks. We simulated differently valued tasks by

multiplying the rewards for collecting green pucks with a premium

factor of up to 100. The results show that the market mechanism

ensures if not an equitable at least a considerable share of

collective effort devoted to the lesser valued task. This implies that

it would not be necessary to determine exactly comparable reward

levels, but getting them within one or even two orders of

magnitude of each other could be good enough.

The MONEE paradigm that we introduced opens the door to

significant further research: we feel that the successful combination

of open-ended, survival-driven and objective-based, task-driven

evolution is a crucial step on the road towards collectives of

autonomous robots that can adapt to and operate effectively in

unforeseen and dynamic circumstances. These two aspects of

evolution combined can equip robot collectives with the adaptivity

that coping autonomously with such uncertainty requires.
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