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Abstract. This paper deals with biobjective combinatorial optimization
problems where both objectives are required to be well-balanced. Lorenz
dominance is a refinement of the Pareto dominance that has been pro-
posed in economics to measure the inequalities in income distributions.
We consider in this work the problem of computing the Lorenz optimal
solutions to combinatorial optimization problems where solutions are
evaluated by a two-component vector. This setting can encompass fair
optimization or robust optimization. The computation of Lorenz optimal
solutions in biobjective combinatorial optimization is however challeng-
ing (it has been shown intractable and NP-hard on certain problems).
Nevertheless, to our knowledge, very few works address this problem.
We propose thus in this work new methods to generate Lorenz optimal
solutions. More precisely, we consider the adaptation of the well-known
two-phase method proposed in biobjective optimization for computing
Pareto optimal solutions to the direct computing of Lorenz optimal solu-
tions. We show that some properties of the Lorenz dominance can provide
a more efficient variant of the two-phase method. The results of the new
method are compared to state-of-the-art methods on various biobjective
combinatorial optimization problems and we show that the new method
is more efficient in a majority of cases.

Keywords: Multiobjective Combinatorial Optimization, Fairness, Lorenz
dominance, Two-phase method

1 Introduction

In many decision problems, a decision (or a solution) has to be evaluated with
respect to several dimensions. In multicriteria decision making the dimensions
reflect several aspects to take into account (one aspect per criterion). In multia-
gent decision making they reflect the point of view of several agents, and they can
reflect several scenarios that can occur in robust decision making. We consider
in this paper a general framework where a solution is evaluated with respect to
a component vector, which could be a vector of criteria, a vector of scenarios
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or a vector of agents’ utilities. Since there is generally not a solution that op-
timizes all the components, one has to determine compromise solutions. In this
setting, the concept of Pareto dominance enables to focus on the subset of solu-
tions to a decision problem for which one cannot make a component better off
without worsening another component. However the number of Pareto-optimal
(P-optimal) solutions to a decision problem can be very large, which could make
a final choice of one (or a few) solution(s) among the P-optimal ones difficult
for a decision maker. The notion of Lorenz dominance has been proposed in eco-
nomics to measure the inequalities in income distributions. It refines the Pareto
dominance by selecting only the better distributed solutions. Furthermore, it
has been used for characterizing equitable solutions in multicriteria optimiza-
tion [1, 2] and robust solutions in decision under uncertainty [3]. It has also
been studied within the framework of convex-cone theory [4] in multiobjective
programming [5]. The Lorenz-optimal (L-optimal) solutions can be determined
with a two-stage procedure that first generates all the P-optimal solutions and
second selects only the L-optimal ones among them. But the efficiency of the
two-stage procedure depends on the efficiency of the procedure that generates
the P-optimal solutions. Besides the number of L-optimal solutions can be very
small compared to the number of P-optimal solutions, which would make the
two-stage procedure quite inadequate. In the last decade, some procedures have
been proposed to deal with the direct determination of the L-optimal solutions
in combinatorial optimization (see e.g. the works of Perny et al. [3], Baatar and
Wiecek [5], Moghaddam et al. [6], and Endriss [7]), which is generally a difficult
problem (NP-complete and intractable [3, 7]). Nevertheless, the amount of works
related to Lorenz optimization is quite small compared to the amount of works
related to Pareto optimization in combinatorial optimization. The aim of this
work is therefore to study the direct determination of L-optimal solutions in
combinatorial optimization. More precisely, we propose in this paper to adapt
one of the most famous method proposed in biobjective optimization, namely the
two-phase method [8], to Lorenz optimization. The two-phase method is a generic
approach that enables to determine the P-optimal solutions by computing first
the subset of P-optimal solutions that optimize a weighted sum, and second
the other P-optimal solutions. It has been widely applied on various problems
of biobjective combinatorial optimization (see e.g. the works of Visée et al. [9],
Ehrgott and Skriver [10], Przybylski et al. [11], and Raith and Ehrgott [12]). In
this paper, we propose two variants of the adaptation of the two-phase method
to Lorenz optimization and we study the efficiency of these procedures on two
biobjective combinatorial optimization problems: the biobjective shortest path
problem and the biobjective set covering problem.

In Section 2, we formally define the Lorenz dominance and we present the
problem of Lorenz optimization in multi-objective combinatorial optimization.
Section 3 is devoted to some characterizations of L-optimal solutions. In Sec-
tion 4, we present a straight adaptation of the two-phase method to Lorenz
optimization, and a variant that uses the characterization results of Section 3
to improve its efficiency. We present in Section 5 some numerical experiments,
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and discuss the efficiency of the adapted two-phase method compared to some
state-of-the-art methods. We conclude in Section 6.

2 Multi-objective Combinatorial Optimization

2.1 Notations and Definitions

A multi-objective combinatorial optimization (MOCO) problem can be formu-
lated as follows:

“min
x

” f(x) = Cx = (f1(x), f2(x), . . . , fp(x))T

s.t. Ax ≤ b
x ∈ {0, 1}n

where A ∈ Rm×n, b ∈ Rm, C ∈ Rp×n and the quotation marks means that we
want to minimize a vector and not a single scalar value. A feasible solution x
is a binary vector of n variables that satisfies the m constraints of the problem.
Each solution x is evaluated by p objective functions fk, k = 1, . . . , p such that
fk(x) is the value of solution x for objective k. The feasible set in decision
space is given by X = {x ∈ {0, 1}n : Ax ≤ b}. One compares the solutions
according to their evaluation in Rp, called the objective space. The feasible set
in the objective space, that is the evaluation of the feasible set, is given by
Y = f(X ) = {f(x) : x ∈ X} ⊂ Rp. An element of the set Y is called a cost-
vector or a point. W.l.o.g. we consider through the paper that the p objective
functions have to be minimized.

Definition 1 The Pareto dominance relation (P-dominance for short) is defined
for all y1, y2 ∈ Rp by: y1 �P y2 ⇐⇒ [∀k ∈ {1, . . . , p}, y1k ≤ y2k and y1 6= y2]

Within a feasible set X , any element x1 is said to be P-dominated when
f(x2) �P f(x1) for some x2 in X , and P-efficient (or P-optimal) when there is
no x2 in X such that f(x2) �P f(x1). The P-efficient set denoted by XP contains
all the P-efficient solutions. The image f(x) in the objective space of a P-efficient
solution x is called a Pareto-non-dominated point. The image YP = f(XP ) of
the P-efficient set XP in Y, is called the Pareto front.

The Lorenz dominance is based on the construction of particular vectors,
called generalized Lorenz vectors, that are obtained as follows:

Definition 2 For all y ∈ Rp, the generalized Lorenz vector of y is the vector
L(y) defined by: L(y) = (y(1), y(1) + y(2), . . . , y(1) + y(2) + . . . + y(p)), where
y(1) ≥ y(2) ≥ . . . ≥ y(p) represent the components of y sorted in non-increasing

order. The kth component of L(y) is Lk(y) =
∑k

i=1 y(i).

Definition 3 The Lorenz dominance relation (L-dominance for short) is de-
fined for all y1, y2 ∈ Rp by: y1 �L y

2 ⇐⇒ [L(y1) �P L(y2)]
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The space in which the generalized Lorenz vectors of a solution x are represented
is called the Lorenz space. Within a feasible set X , any element x1 is said to be L-
dominated when f(x2) �L f(x1) for some x2 in X , and L-efficient (or L-optimal)
when there is no x2 in X such that f(x2) �L f(x1). The L-efficient set denoted
by XL contains all the L-efficient solutions. The image f(x) in the objective
space or the image L(f(x)) in the Lorenz space of a L-efficient solution x is
called a L-non-dominated point. The image YL = f(XL) of the L-efficient set in
Y is called the Lorenz front. The generalized Lorenz vectors of the Lorenz front
are given by L(YL). The Lorenz dominance is closely related to the Transfer
Principle [13], which means that for some cost-vector y ∈ Rp with yi > yj ,
slightly improving yj to the detriment of yi while preserving the mean of the
costs would produce a better distribution of the costs, and consequently a more
balanced solution. This principle enables to compare vectors with the same mean.
The generalized Lorenz extension considered here enables to compare vectors
with different means thanks to the P-monotonicity axiom [14], which means
that if a cost-vector y1 P-dominates another cost-vector y2 then y1 L-dominates
y2. Consequently L-optimal solutions are a subset of P-optimal solutions.

Following Definition 3, finding the L-efficient solutions to a MOCO problem
boils down to finding the P-efficient solutions to the same MOCO problem where
the costs are given by the generalized Lorenz vectors:

“min
x∈X

” L(f(x))

where L(f(x)) = (f(1)(x), f(1)(x) + f(2)(x), . . . , f(1)(x) + f(2)(x) + . . .+ f(p)(x))
with f(1)(x) ≥ f(2)(x) ≥ . . . ≥ f(p)(x) represent the components of f(x) sorted in
non-increasing order. In the special case where p = 2, the two objective functions
to be minimized are: L1(f(x)) = max(f1(x), f2(x)) and L2(f(x)) = f1(x)+f2(x).
We thus look for solutions that establish a good compromise between the value
of the worst performance and the sum of the costs.

Example 1 Let us consider the point y = (6, 3). All the points L-dominated by y
are in the hatched area called “Lorenz worse” in the biobjective space of Figure 1
(left part). The points that L-dominate y are in the hatched area called “Lorenz
better” in the same figure. To illustrate the L-dominance, the symmetric point
of y, the point (3,6), is also represented in the figure by a circle. The points in
the not hatched area are incomparable to y with L-dominance. The generalized
Lorenz vector of the point (6, 3), that is the point (6, 9), is represented in the
Lorenz space (right part of the figure).

2.2 Algorithmic Issues

Intractability As there is not generally a unique optimal solution when mul-
tiple objectives are involved, the number of optimal solutions turns out to be a
crucial point to evaluate the hardness of the problem. It leads us to the notion
of intractability [15]. In our setting, a Lorenz optimization problem is intractable
if the number of L-efficient solutions is exponential in the size of the instance.
The biobjective shortest path problem, the biobjective spanning tree problem
and the biagent Markov decision process problem have been proved intractable
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Fig. 1: Representation of the Lorenz dominance.

when looking for L-efficient solutions [3, 16]. As Ehrgott did in a Pareto op-
timization setting [15], one can show that even the unconstrained problem is
intractable in a Lorenz optimization setting. The multi-objective unconstrained
(MOUC) problem is defined as follows:

“ min
xi∈{0,1}n

”

n∑
i=1

cikxi k = 1 . . . p

Proposition 1 Problem MOUC is intractable for Lorenz optimization.

Proof For p = 2, by setting ci1 = 2(i−1) and ci2 = −2i, we obtain Y =
{(0, 0), (1,−2), (2,−4), . . . , (2n − 1,−2n+1 + 2)}. If we represent the generalized
Lorenz vectors of all y ∈ Y, we obtain: L(Y) = {(0, 0), (1,−1), (2,−2), . . . , (2n−
1,−2n+1)}. All the generalized Lorenz vectors have the same sum L1+L2 and a
distinct value on the first dimension L1 (and consequently on the second dimen-
sion L2 as well). Thus all the generalized Lorenz vectors are P-non-dominated in
the Lorenz space and then we have Y = YL. Furthermore, by construction, each
feasible solution has a distinct image in the objective space, i.e. |Y| = |X |. As
the number of feasible solution is |X | = 2n, we have thus |XL| = |YL| = 2n. �

NP-completeness The complexity of a Lorenz optimization problem is defined
by the complexity of its decision version: given a vector v = (v1, . . . , vp), does
there exist a solution to the Lorenz optimization problem that L-dominates v?
The decision version of the biobjective shortest path problem and the biobjective
spanning tree problem has been proved NP-complete [3], and the decision version
of the multi-agent allocation problem has been proved NP-complete for many
languages [7]. Besides, one can easily show that the decision version of problem
MOUC, which is obviously in NP, is also NP-complete.

Proposition 2 Given a vector v = (v1, . . . , vp), deciding whether there exists a
solution to problem MOUC that L-dominates v is NP-complete.

Proof We use a reduction from the partition problem. Consider an instance
of this problem with a finite set A = {a1, . . . , an} and a size s(ai) ∈ N for each
element ai in A. We construct a biobjective MOUC instance by setting ci1 = s(ai)
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and ci2 = −2s(ai), and we ask if there exists a solution that L-dominates the
vector (

∑
i s(a

i)/2 + ε,−
∑

i s(a
i) + ε) for some small ε > 0. Answering this

question amounts to solving the partition problem. �

Other difficulties In addition to the previous complexity results, the deter-
mination of Lorenz optimal solutions can encounter another algorithmic issue.
It has indeed been shown for some Lorenz optimization problems that one can-
not resort directly to an approach based on the Lorenz optimality of partial
solutions, like dynamic programming or greedy procedures [16, 17].

2.3 State-of-the-Art

To our knowledge, only a few works address the problem of Lorenz optimization
for MOCO problems. We now briefly list the methods proposed in the literature.

Ranking method. The ranking method has been proposed by Perny et al. [3] in
a robust optimization setting. This method works simply by computing the so-
lutions in nondecreasing order of their sum using a k-best algorithm (that is an
algorithm that generates the k best solutions to an optimization problem). This
enumeration can be stopped when all the L-efficient solutions have been gener-
ated. Note that the sum of the costs of a L-dominated solution can be lower than
the sum of the costs of a L-efficient solution, thus the ranking method actually
computes a superset of the set XL. As one cannot know in advance the number
k of solutions to be enumerated, one has to define a valid stopping criterion
that ensures that all L-efficient solutions have been generated. This method can
be used with any number of objectives, but its efficiency strongly relies on the
efficiency of the k-best algorithm.

ε-Constraint based method. This method, proposed by Baatar and Wiecek [5], is
based on the classic ε-constraint procedure for Pareto optimization [18]. It gen-
erates L-efficient solutions in the nondecreasing order of their sum. In addition,
it uses Euclidean norm optimization to ensure to determine an L-efficient solu-
tion for a given sum of the costs (and not a L-dominated one). Each solution is
computed by solving two mathematical programs with appropriate constraints
and objective functions. This method works with any number of objectives, but
solving such mathematical programs can be inefficient in practice. Besides it
generates only one L-efficient solution per Lorenz vector which implies that it
computes the set L(YL) but not the Lorenz front YL.

Dynamic Programming based method. One cannot use directly a dynamic pro-
gramming procedure to generate the L-non-dominated points to a MOCO prob-
lem (see Section 2.2). However, since dynamic programming can be used with
P-dominance, and since L-optimal solutions are also P-optimal, Perny et al. have
proposed to adapt a multi-objective dynamic programming based procedure to
Lorenz optimization by using a valid additional dominance rule [3].
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3 Supported Solutions

3.1 Definitions

In multi-objective optimization, there exists an important classification of the
P-efficient solutions: supported P-efficient solutions (SP solutions) and non-
supported P-efficient solutions (NSP solutions). The images of the SP solutions
in the objective space are located on the convex hull of the Pareto front and
the images of the NSP solutions are located inside the convex hull of the Pareto
front. More precisely, we can characterize these solutions as follows [15]:

Supported P-efficient solutions: a solution x is supported P-efficient iff there ex-
ists a vector λ (λk > 0,∀ k ∈ {1, . . . , p}) such that x is an optimal solution to
the weighted sum single-objective problem: minx∈X

∑p
k=1 λk fk(x). The set of SP

solutions is denoted by XSP and the set of supported P-non-dominated points,
called SP points, by YSP (= f(XSP )). Note that in biobjective optimization, the
set XSP can be easily computed with a dichotomic search [19, 20] which gives
the different weighting vectors that allow to generate all the SP points.

Non-supported P-efficient solutions: P-efficient solutions that are not supported.
The set of NSP solutions is denoted by XNSP and the set of non-supported
P-non-dominated points, called NSP points, by YNSP (= f(XNSP )).

One can easily transpose these notions to Lorenz dominance by applying
the definitions of SP and NSP solutions in the Lorenz space. In that respect, we
define supported L-efficient solutions (SL solutions) as follows: a solution x is sup-
ported L-efficient iff there exists a vector λ (λk > 0,∀ k ∈ {1, . . . , p}) such that x
is an optimal solution to the weighted sum single-objective problem defined on
the generalized Lorenz vector of f(x): min

x∈X

∑p
k=1 λk Lk(f(x)), where f(1)(x) ≥

f(2)(x) ≥ . . . ≥ f(p)(x). Note that
∑p

k=1 λk Lk(f(x)) = (
∑p

k=1 λk)f(1)(x)+(λ2 +
. . . λp)f(2)(x)+. . .+λpf(p)(x). Let w be a weight vector defined by wk =

∑p
i=k λi,

then
∑p

k=1 λk Lk(f(x)) = w1f(1)(x)+w2f(2)(x)+ . . .+wpf(p)(x). Such an aggre-
gation function is well-known in fair optimization, it corresponds to a particular
family of Ordered Weighted Averages (OWA), where the weights are strictly
decreasing. The OWA function has been introduced by Yager [21]:

Definition 4 Given a vector y ∈ Rp and a weighting vector w ∈ [0, 1]p, the or-
dered weighted average (OWA) of y with respect to w is defined by: fowa(y, w) =∑p

k=1 wky(k) where y(1) ≥ . . . ≥ y(p).

It has been shown that any solution minimizing an OWA function endowed with
strictly decreasing and strictly positive weights is L-efficient [22]. One can then
define the SL solutions as follows:

Definition 5 The SL solutions are the solutions that minimize an OWA func-
tion for some strictly decreasing and strictly positive weighting vector.

However, in general there exist L-efficient solutions that do not optimize any
OWA functions. We call these solutions non-supported L-efficient solutions (NSL
solutions). The set of SL (resp. NSL) solutions is denoted by XSL (resp. XNSL)
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and the set of supported (resp. non-supported) L-non-dominated points, called
SL (resp. NSL) points, by YSL (resp. YNSL). Unfortunately, there are no trivial
relations between the sets XSP and XSL, or between the sets YSP and YSL, as
illustrated in the following example.

Example 2 Let us consider the following 4 solutions: x1 with f(x1) = (6, 18),
x2 with f(x2) = (9, 16), x3 with f(x3) = (12, 14) and x4 with f(x4) = (20, 2).
The generalized Lorenz vectors of the 4 solutions are all P-non-dominated: L(f(x1)) =
(18, 24), L(f(x2)) = (16, 25), L(f(x3)) = (14, 26) and L(f(x4)) = (20, 22). It
means that the 4 solutions are L-efficient. In this simple example, we have a SP
solution that is not SL (x1), a solution that is neither SP nor SL (x2), a SL
solution that is not SP (x3) and a solution that is both SP and SL (x4).

3.2 Biobjective case

Even though there is no trivial relation between the supported Pareto and Lorenz
efficient sets, we show in this section that, in the case of two objectives, there
are interesting properties on the location of the SL solutions with respect to
the location of some SP solutions in the objective space. Before presenting the
properties, let us introduce some notation for the biobjective case.We denote by
Oi ⊂ R2

≥ the space in the positive orthant of the objective space where all the
points y are such that yi ≤ yj for j 6= i. The bisector is the line y1 = y2 in the
objective space. Any point in O1 (resp. O2) is said to be above (resp. below) the
bisector. Let us also denote by x∗ a L-efficient solution that minimizes the sum of
the costs (it is an optimal solution to leximin

(
f1(x) +f2(x),max(f1(x), f2(x))

)
,

where an optimal solution to leximin (y1, y2) is an optimal solution w.r.t. y1
that minimizes y2 among all the optimal solutions w.r.t. y1), and y∗ its image
in the objective space. In this section, we suppose, w.l.o.g., that y∗2 > y∗1 , i.e.
y∗ ∈ O1. We will also use the notion of “betweenness” in the sequel: we say that
a point y is between two points yi and yj (i 6= j) in the objective space when
yi1 ≤ yj1 ⇒ yi1 ≤ y1 ≤ yj1. Furthermore, two SP points y1 and y2 are said to be
adjacent when there is no other solution x3 in XSP such that f(x3) is between
y1 and y2.

Property 1 All SP solutions x such that f(x) ∈ O1 and f2(x) < y∗2 are SL.

Proof Let x1 be a solution in XSP such that x1 ∈ O1 and f2(x1) < y∗2 . As x1

is in XSP , ∃λ s.t. λ1f1(x1) + λ2f2(x1) ≤ λ1f1(x) + λ2f2(x),∀x ∈ X . Moreover,
as f2(x1) < y∗2 , λ2 > λ1 (otherwise x∗ would be better than x1 for the weighted
sum). This implies that for any y in O1, λ1y1 +λ2y2 = fowa(y, λ), and therefore
for any solution x ∈ X s.t. f(x) ∈ O1, fowa(f(x1), λ) ≤ fowa(f(x), λ) (1).
Let us now consider the case where the image of a solution x ∈ X is not in
O1, which means that f1(x) > f2(x). As λ2 > λ1, we have λ2(f1(x) − f2(x)) >
λ1(f1(x)−f2(x)), that is fowa(f(x), λ) = λ2f1(x)+λ1f2(x) > λ1f1(x)+λ2f2(x).
As x1 is in XSP and in O1, we have thus fowa(f(x1), λ) = λ2f2(x1)+λ1f1(x1) <
fowa(f(x), λ) (2). From (1) and (2), we have that solution x1 is in XLS . �
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Note that all solutions x such that f(x) is in O1 and f2(x) > y∗2 are L-
dominated by y∗ since L(y∗) = (y∗2 , y

∗
1 +y∗2) �P (f2(x), f1(x)+f2(x)) = L(f(x)).

The next property enables us to locate in the objective space the SL points
that are NSP according to the bisector. We say that two points are located on
opposite sides of the bisector if one is above the bisector and the other one is
below.

Property 2 The image of a solution that is SL but not SP is between the two
adjacent SP points located on opposite sides of the bisector.

Proof Let x1 and x2 be two P-efficient solutions such that their images y1 =
f(x1) and y2 = f(x2) are two adjacent SP points such that y11 ≤ y21 (and thus
y12 ≥ y22), and y1 and y2 are both either in O1, either in O2. Let us assume for
example that they are in O1. Let x3 be a NSP solution whose image y3 = f(x3)
is between y1 and y2 in the objective space. As points y1, y2 and thus y3 are in
O1, we have fowa(yi, λ) = λ1y

i
2 + λ2y

i
1 for any i = 1, 2 or 3. Since x1 and x2 are

SP and x3 is NSP, there is always a weight λ such that fowa(y1, λ) or fowa(y2, λ)
is less than fowa(y3, λ). Thus solution x3 cannot be L-efficient. Obviously, we
come to the same conclusions when y1 and y2 are in O2. �

Property 3 Let y2 be an SP point (image of a solution) such that y2 is in set
O2. Then all solutions x such that f1(x) > y21 are not L-efficient.

Proof It is sufficient to show that all solutions x ∈ XP such that f1(x) > y21 are
L-dominated by a solution x2 the image of which is y2. Let us consider one of
these solutions x. As x is P-efficient, f2(x) < y22 , which implies that f(x) ∈ O2,
then L1(f(x)) = f1(x) > y21 = L1(y2). To be L-efficient x must therefore satisfy
L2(f(x)) < L2(y2), that is f1(x)+f2(x) > y21 +y22 (1). As solution x2 is SP, there
exists a weighting vector λ such that λ1y

2
1 + λ2y

2
2 ≤ λ1f1(x) + λ2f2(x) (2) and

λ1y
2
1 + λ2y

2
2 ≤ λ1f1(x∗) + λ2f2(x∗) (3). From (1) and (2) and since f1(x) > y21 ,

one obtains λ1 > λ2. And from (3) and the fact that solution x∗ minimizes the
sum of the costs, we obtain λ2 ≥ λ1, which leads to a contradiction. Therefore,
we have L2(f(x)) ≥ L2(y2). Thus, solution x2 L-dominates solution x. �

The image in the objective space of all L-efficient solutions in O2 are thus
between y∗ and any SP point in O2. Let xmax be an SP solution such that
f(xmax) = ymax is in O2 and minimizes the cost of the first criterion among
all the P-non-dominated points in O2. Then, from the previous properties, we
can deduce that all L-non-dominated points are between y∗ and ymax. We show
in the next section how we can use these properties to compute all the L-non-
dominated points of YL, without generating the entire set YP .

4 New Methods

4.1 Straight Adaptation of the Two-Phase Method

The two-phase method has been developed by Ulungu and Teghem [8] to find
the P-efficient solutions to MOCO problems with two objectives. We describe
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only at a high level how this method can be adapted in order to generate all the
L-non-dominated points of a biobjective optimization problem. The adaptation
closely follows the original method. As the name of the method suggests it, the
method works in two distinct phases:

Phase 1: generation of all the SL solutions (XSL). This consists in applying
the first phase of the original two-phase method for Pareto optimization in the
Lorenz space instead of the objective space. This amounts to optimizing OWA
functions with different weights until all the SL solutions have been detected. The
weight sets w used in the different OWA functions are defined by wk =

∑p
i=k λi

(k ∈ {1, . . . , p}) from the weight sets λ defined in the Lorenz space and computed
by the dichotomic search (see Section 3.1).

Phase 2: generation of XNSL. The SL points generated at Phase 1 are used
to reduce the search space, since for biobjective problems, NSL solutions are
always located, in the Lorenz space, in the interior of the right triangle defined
by two adjacent SL points L(y1) and L(y2) and the point (L1(y2), L2(y1)) (when
L1(y1) < L1(y2)). The exploration of the triangles can be performed with a
branch and bound algorithm or with a k-best algorithm.

Even if this straight adaptation of the two-phase method is theoretically
interesting, the main drawback is in the first phase: the OWA function that
has to be optimized is non-linear and therefore even generating only the SL
solutions could be computationally expensive. We propose in the next section a
new method where the optimization of OWA functions is avoided.

4.2 Supported Pareto-Efficient Solutions based Method

From Properties 1 and 3, we have that all L-non-dominated points are between
the points y∗ and ymax (see Section 3.2). We use this property to define a new
two-phase method based on the computation of some SP solutions. This new
method is called method SP in the sequel.

Phase 1. The first phase of method SP consists in generating all the SP points
located between y∗ and ymax. From Property 1, we know indeed that all these
solutions, except perhaps solution xmax, are SL. In order to do so, one first finds
a solution x1 that optimizes L2. Three cases can then occur:

1. f1(x1) = f2(x1): in this case, f(x1) is the only L-non-dominated point of
the problem since it optimizes both L2 and L1: the method SP stops and
returns solution x1.

2. f1(x1) < f2(x1) (i.e. f(x1) ∈ O1): in this case, we perform a dichotomic
search between the points f(x1) and f(x2) where x2 optimizes min

x∈X
(f2(x)).

Note that we only need to compute the point ymax in O2, and consequently
the search is mainly performed in O1.

3. f1(x1) > f2(x1) (i.e. f(x1) ∈ O2): analogous to case 2.

For the cases 2 and 3, the SP point ymax is also stored. Note that at the
end of the first phase, we have generated a subset of YSL, that is the set of
points that are also in YSP . However, from Properties 2 and 3, we know that
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the remaining SL points are between the two adjacent SP points of Property 2
(in fact one is ymax), which are now known.

Phase 2. Let Y be the set of the points generated at Phase 1. To each point y of
Y is associated an area in the objective space containing all the points that are
not L-dominated by y (called the L-non-dominance zone of y). The intersection
of all the non-dominance zones of the points in Y defines the search zone to be
explored at Phase 2. Two illustrations of search zone are given in Figure 2 in the
objective space. The black squares represent the SP points generated in Phase

Fig. 2: Search zonee: in the objective space (left) and in the Lorenz space (right).

1. The search zone is represented by the triangles and polygon drawn between
two adjacent SP points in the figures. Suppose that the set Y = {y1, y2, . . . , yt}
is ordered w.r.t. L2, that is for any i = 1, . . . , t−1 we have L2(yi) ≤ L2(yi+1). By
Property 1, the t−1 points y1, . . . , yt−1 are all either above the bisector, or below.
Suppose, w.l.o.g that they are below the bisector (as in left part of Figure 2). The
point yt is thus the only point in Y that could be above the bisector. Besides, note
that yt is also the only point in Y that may be L-dominated. Since two points
yi and yi+1 (i < t − 2) in Y are adjacent, any L-non-dominated point between
these two points in the objective space relies inside the triangle defined by the
three points yi, yi+1 and pi = (L1(yi), L2(yi+1)−L1(yi)). Let Zi denote such a
triangle. When the points yt−1 and yt are on opposite sides of the bisector, any
L-non-dominated point between these two points in the objective space relies
inside a zone that could be a triangle or a particular polygon, as the polygon
in Figure 2 (right part). Let Zt−1 denote this zone (triangle or polygon). When
the points yt−1 and yt are on the same side of the bisector, the zone Zt−1 is
simply a triangle defined as the other triangles Zi (i < t − 2). The search zone
in the objective space to be explored is therefore defined by the t − 2 triangles
Zi (i < t− 2) and the polygon Zt−1.

The exploration of each of the zones Zi (i < t) consists in enumerating
solutions with respect to the weighted sum of their costs with the weighting
vector wi defined such that points yi and yi+1 have the same weighted sum. The
enumeration is performed with a k-best algorithm (for an unknown k) and can
be stopped as soon as the value of the weighted sum of a point is greater than the
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following upper bound: U i = maxyj ,yj+1∈Y i wi
1p

j
1 + wi

2p
j
2 = maxyj ,yj+1∈Y i(wi

2 −
wi

1)L1(yj) + wi
1L2(yj+1), where yj and yj+1 are consecutive in the ordered set

Y i of the already detected points in Zi ordered w.r.t. L2. In the case where the
bisector crosses the zone Zt−1 to be explored, one can easily show that a valid
upper bound for Zt−1 is: U t−1 = max

{
maxyj ,yj+1∈Y1

(wt−1
2 − wt−1

1 )L1(yj) +

wt−1
1 L2(yj+1), L1(yk)

}
, where yk is the point that minimizes L1 in Y t−1. Once

all the L-non-dominance zones Zi have been explored, the method SP can stop,
all the L-non-dominated points have been detected.

5 Experimental Results

We have applied the method SP to the biobjective shortest path problem (BOSPP)
and to the biobjective set covering problem (BOSCP). The experiments have
been run on an Intel Xeon CPU E5-2430 at 2.20GHz for BOSPP, and on an
Intel Core i7-3820 CPU at 3.60GHz for BOSCP.

Biobjective Shortest Path Problem. Given a digraph G = (V,E), where V
is a set of vertices and E ⊆ V × V is a set of arcs, and two nodes s and t in
V , one looks for the L-non-dominated points, images of feasible shortest paths
from s to t in G. The value of each arc e in E is given by a vector of two costs:
(ce1, c

e
2). It is assumed that all the costs cei are non-negative. In our experiments,

we solve BOSPP on layered digraphs with randomly generated costs. A layered
digraph is a graph in which the set V is partitioned into l subsets, called layers,
L1, L2, . . . , Ll, such that all arcs of E are between consecutive layers. To this
layered digraph we add a vertex s and |L1| arcs from s to every vertex of L1,
and a vertex t and |Lk| arcs from every vertex of Ll to t. Therefore, any path from
s to t in such a graph is made of l+1 arcs exactly. In our instances, all the layers
have the same size and there is an arc (v, v′) from any vertex v of a layer Li to any
vertex v′ of the layer Li+1. For each instance size, 4 different kinds of objectives,
A, B, C and UN, are defined. The costs of the instances of type A, B and C are
drawn uniformly at random from [1, 100], and the costs of type B are positively
correlated and those of type C are negatively correlated (see the instances of
type A, B and C proposed by Bazgan et al. [23]). In addition, we consider a new
type UN where the first cost is randomly generated, and the second cost is also
randomly generated, but with a normal distribution. We use the following normal
distribution: the mean is 50 and the variance is 20. We compare the running times
of the method SP to the running times of two other methods proposed by Perny
et al. [3] for Lorenz optimization for the multi-objective shortest path problem:
the ranking method, called Rkg, and an extension of dynamic programming to
Lorenz optimization, called DP (see Section 2.3). For method Rkg and for the
Phase 2 of method SP, a k-best algorithm is needed. We have used a modified
version of Eppstein’s algorithm [24] proposed by Jiménez and Marzal [25]. The
results obtained are summarized in Tables 1, 2, 3 and 4. At each row of the tables
is given the size of the graph l×v where l is the number of layers and v the number
of vertices per layer, the average number of P-non-dominated points (#P) and
L-non-dominated points (#L), and the average CPU running times in seconds of
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the three tested methods on 20 instances of the same type and the same size. Note
that the number of P-non-dominated points is computed by applying a multi-
objective dynamic programming algorithm (see e.g. the algorithms of Stewart
and White [26], and Mandow and Pérez-de-la-Cruz [27]). The running time of
this algorithm is not indicated in the tables, but it is always greater than the
running time of method DP. The symbol ’/’ in the tables means that the average
running time is more than 15 minutes. The results show that the efficiency of

Size CPU(s)

l × v #P #L Rkg SP DP

20 × 20 90.8 2.9 0 0.01 0.08
20 × 50 101.1 2.6 0.01 0.06 0.46
20 × 100 91.4 2.5 0.05 0.46 1.17
30 × 20 171.4 3.2 0 0.02 0.29
30 × 50 161.4 3.1 0.01 0.14 1.23
30 × 100 147.7 2.3 0.09 0.73 5.12
50 × 20 349.8 4.7 0 0.04 1.19
50 × 50 307.5 2.6 0.04 0.44 6.75
50 × 100 276.7 3.1 0.18 1.45 22.6

Table 1: Type A

Size CPU(s)

l × v #P #L Rkg SP DP

20 × 20 11.4 4.9 1.28 0.01 0
20 × 50 17.1 9.7 / 0.1 0.04
20 × 100 20 13.2 / 0.73 0.15
30 × 20 20.9 11.7 / 0.02 0.01
30 × 50 28.7 17.5 / 0.29 0.13
30 × 100 30.3 20.7 / 1.63 0.38
50 × 20 42.1 21.5 / 0.14 0.06
50 × 50 60.4 36.55 / 1.23 0.34
50 × 100 55.7 35.7 / 4.65 1.21

Table 2: Type B

method SP compared to the two other methods depends on the number of P-
non-dominated points (#P ) and on the proportion of L-non-dominated points.
For instances A, the costs are rather balanced and #L is small compared to #P .
Method SP is quite efficient on these instances but method Rkg is a bit faster. It
means that the ranking method has to enumerate only a small number of feasible
solutions. This comes from the fact that the costs are well-balanced. Method
DP is clearly less efficient on these instances. The instances B are also balanced,
but #P is significantly smaller than for instances A. This means that a lot of
feasible solutions are P-dominated, and as the costs of all the feasible solutions
are quite close, the method Rkg is particularly inefficient on these instances, it
can only solve very small instances, whereas the method SP is quite efficient.
The exploration of several zones instead of one is thus much more appropriate
on these instances. Note that the method DP is very efficient when #P and #L
are small (even if the proportion of L-non-dominated points is high). Instances C

Size CPU(s)

l × v #P #L Rkg SP DP

20 × 10 1053.8 3.5 0.01 0.02 2.23
20 × 20 1806.5 3.75 0.03 0.01 23
20 × 50 / 3114 120.84 18.65 /
30 × 10 2005.1 4.6 0.05 0.01 11.52
30 × 20 3930.5 5 0.2 0.05 165.75
30 × 30 / 42.6 6.64 0.26 /
50 × 10 5140.9 3.6 0.24 0.02 215.5
50 × 20 / 7.15 1.46 0.1 /
50 × 30 / 5119.7 / 137.16 /

Table 3: Type C

Size CPU(s)

l × v #P #L Rkg SP DP

20 × 20 99.8 8.6 0.47 0.02 0.1
20 × 50 109.3 6.1 0.08 0.09 0.59
20 × 100 106.8 6.2 0.1 0.53 1.91
30 × 20 171.1 15.2 110.7 0.04 0.18
30 × 50 184.9 10.4 8.27 0.19 1.41
30 × 100 172.1 8.7 2.24 0.94 6.18
50 × 20 376.4 28 / 0.09 1.43
50 × 50 362.2 20.2 / 0.83 8.92
50 × 100 346.2 13.2 108.1 2.23 28.6

Table 4: Type UN

and UN are unbalanced, and we can observe in Tables 3 and 4 that the method
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SP is clearly the most efficient on these instances. It comes from the fact that
this method explores the objective space by taking into account the form of the
convex hull of the images of the solutions, contrary to method Rkg. When the
convex hull of the images of the solutions is not symmetric with respect to the
bisector, the method SP reveals thus to be much more suitable. Besides, one
can observe that the method DP is penalized by an important number of P-
non-dominated points. It is particularly inefficient on instances C for which the
number of P-non-dominated points is large.

Biobjective Set Covering Problem. We have a set of m rows (or items),
and each row can be covered by a subset of n columns (or sets), each column
j has two costs cjl (l = 1, 2). A feasible solution to the BOSCP is a subset of
columns, among the n columns (j = 1, . . . , n) such that all the rows are covered
by at least one column. Our aim is to find the L-non-dominated points. We
have used all the instances generated by Gandibleux et al. [28], from the size
100×10 (100 columns, 10 rows) to the size 1000×200 (1000 columns, 200 rows).
For each size instance, two different kinds of objectives A, B are defined. In the
case of instances of type A, the costs of each objective are randomly generated
with a uniform distribution. For the type B, the costs of the first objective is
also randomly generated with a uniform distribution and the ones of the second
objective are made dependent in the following way: cj2 = cn−j+1

1 ,∀j = 1, . . . , n.
As done with BOSPP, we also consider the new type UN with the following
normal distribution: the mean is equal to the mean value of the first cost and
the variance is equal to half the mean. Two types of instance are considered: type
UN-A (first cost corresponds to the first cost of type A instance) and type UN-B
(first cost corresponds to the first cost of type B instance). We compare the
running times of the method SP with the running times of the ranking method
Rkg. We also give, for the type A and type B instances, the number of P-non-
dominated points (#P ) and the CPU time needed for generating these points.
The results are from the method of Florios and Mavrotas [29], based on the ε-
constraint method (on an Intel core 2 quad CPU at 3.00 GHz). In both methods,
a k-best algorithm is necessary to enumerate the k-best solutions. Contrary to
the shortest path problem, to our knowledge, no k-best algorithm has been
previously developed. We have thus used the commercial CPLEX solver and
implemented a procedure based on incumbent callback with solution injection
(we inject in the search tree the current best solutions generated to get the next
best solution), in order to enumerate the k-best solutions. The results are given
in Tables 5, 6, 7 and 8. For each type of instance, we report the name of the
instance (same name as used by Gandibleux et al.), #P (when available), #L,
and the CPU times in seconds of the tested methods. From Tables 5 and 6, we
see that the #L represent only a small part of #P : there are only between 1
and 6 L-non-dominated points. The running time of both methods are small and
quite lower than the running time of the Pareto generation. For these instances,
it is thus particularly interesting to apply a method dedicated to the generation
of L-non-dominated points. However, the running time of the method Rkg is
almost always slightly lower than the new method SP.
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CPU(s)

# #P #L Rkg SP Pareto

11 39 1 0.019 0.15 8.64
41 107 1 0.026 0.074 18.01
42 208 4 0.072 0.085 35.83
43 46 3 0.15 0.30 12.80
61 257 6 0.76 0.81 83.66
62 98 2 0.27 0.99 58.10
81 424 4 0.20 0.57 148.66
82 132 3 0.33 0.83 116.51
101 157 1 0.59 1.25 375.84
102 83 1 0.37 1.04 104.76
201 274 2 9.20 27.15 6850

Table 5: Type A

CPU(s)

# #P #L Rkg SP Pareto

11 43 3 0.017 0.047 6.26
41 108 2 0.049 0.051 16.63
42 276 2 0.24 0.15 52.04
43 28 1 0.023 0.18 7.51
61 338 2 0.17 0.38 114.01
62 99 1 0.082 0.58 60.20
81 354 4 0.25 2.09 130.26
82 88 2 0.06 0.26 38.16
101 141 5 1.52 2.20 225.50
102 86 1 0.29 1.62 211.48
201 282 6 19.61 22.07 4278

Table 6: Type B

CPU(s)

# #L Rkg SP

11 2 0.016 0.15
41 3 0.062 0.13
42 5 0.26 0.23
43 3 0.17 0.71
61 5 2.39 0.40
62 3 1.24 0.83
81 1 0.067 0.27
82 3 3.95 1.30
101 3 7.70 6.35
102 4 2.06 3.53
201 5 209.07 9.40
Table 7: Type UN-A

CPU(s)

# #L Rkg SP

11 1 0.014 0.036
41 3 0.067 0.18
42 3 0.059 0.11
43 6 1.20 0.63
61 4 0.34 0.70
62 3 0.73 0.84
81 4 20.71 0.41
82 3 1.40 2.41
101 2 0.61 1.79
102 2 0.87 2.59
201 10 1085.22 87.7
Table 8: Type UN-B

From Tables 7 and 8, the running times of both methods Rkg and SP are
comparable for most of the instances, except for the last instance 201 (with 1000
columns and 200 rows). For the type UN-A (resp. UN-B), Rkg needs 209.07s
(resp. 1085.22s) while SP only needs 9.40s (resp. 87.7s). We see thus that, as
soon as the two objectives are unbalanced, the CPU time needed by method
Rkg can be very high compared to method SP.

6 Conclusion

We have proposed new properties and new generic methods to generate Lorenz-
optimal solutions to biobjective combinatorial optimization problems. The method
has been evaluated experimentally on the biobjective shortest path problem and
the biobjective set covering problem and showed good results compared to state-
of-the-art methods, especially for “unbalanced instances”. This work is dedicated
to the efficient adaptation of the classic two-phase method to Lorenz optimiza-
tion. Future work could be to efficiently adapt other classic methods proposed
for Pareto optimization to Lorenz optimization. Besides, studying the location of
the optimal points in the objective space is also a good starting point for devel-
oping efficient methods to generate the L-efficient solutions to MOCO problems,
where the number of objectives is not limited to 2.
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