#. #p and S. Rkg, Type A CPU(s) #L Rkg SP: Type B CPU(s) # #L Rkg, CPU

M. M. Kostreva and W. Ogryczak, Linear optimization with multiple equitable criteria, RAIRO - Operations Research, vol.33, issue.3, pp.275-297, 1999.
DOI : 10.1051/ro:1999112

M. Kostreva, W. Ogryczak, and A. Wierzbicki, Equitable aggregations and multiple criteria analysis, European Journal of Operational Research, vol.158, issue.2, pp.362-377, 2004.
DOI : 10.1016/j.ejor.2003.06.010

P. Perny, O. Spanjaard, and L. X. Storme, A decision-theoretic approach to robust optimization in multivalued graphs, Annals of Operations Research, vol.25, issue.6, pp.317-341, 2006.
DOI : 10.1007/s10479-006-0073-0

URL : https://hal.archives-ouvertes.fr/hal-01170404

P. Yu, Cone convexity, cone extreme points, and nondominated solutions in decision problems with multiobjectives, Journal of Optimization Theory and Applications, vol.9, issue.3, pp.319-377, 1974.
DOI : 10.1007/BF00932614

D. Baatar and M. Wiecek, Advancing equitability in multiobjective programming, Computers & Mathematics with Applications, vol.52, issue.1-2, pp.225-234, 2006.
DOI : 10.1016/j.camwa.2006.08.014

A. Moghaddam, F. Yalaoui, and L. Amodeo, Lorenz versus Pareto Dominance in a Single Machine Scheduling Problem with Rejection, Lecture Notes in Computer Science, vol.6576, pp.520-534, 2011.
DOI : 10.1007/978-3-642-19893-9_36

U. Endriss, Reduction of economic inequality in combinatorial domains, pp.175-182, 2013.

E. Ulungu and J. Teghem, The two-phases method: An efficient procedure to solve biobjective combinatorial optimization problems, Foundation of Computing and Decision Science, vol.20, pp.149-156, 1995.

M. Visée, J. Teghem, M. Pirlot, and E. Ulungu, Two-phases method and branch and bound procedures to solve the bi-objective knapsack problem, Journal of Global Optimization, vol.12, issue.2, pp.139-155, 1998.
DOI : 10.1023/A:1008258310679

M. Ehrgott and A. Skriver, Solving biobjective combinatorial max-ordering problems by ranking methods and a two-phases approach, European Journal of Operational Research, vol.147, issue.3, pp.657-664, 2003.
DOI : 10.1016/S0377-2217(02)00353-3

A. Przybylski, X. Gandibleux, and M. Ehrgott, Two phase algorithms for the bi-objective assignment problem, European Journal of Operational Research, vol.185, issue.2, pp.509-533, 2008.
DOI : 10.1016/j.ejor.2006.12.054

URL : https://hal.archives-ouvertes.fr/hal-00461989

A. Raith and M. Ehrgott, A two-phase algorithm for the biobjective integer minimum cost flow problem, Computers & Operations Research, vol.36, issue.6, pp.1945-1954, 2009.
DOI : 10.1016/j.cor.2008.06.008

URL : https://hal.archives-ouvertes.fr/hal-00466665

G. Hardy, J. Littlewood, and G. Pólya, Inequalities. Cambridge Mathematical Library, 1952.
URL : https://hal.archives-ouvertes.fr/hal-01374624

A. F. Shorrocks, Ranking Income Distributions, Economica, vol.50, issue.197, pp.3-17, 1983.
DOI : 10.2307/2554117

M. Ehrgott, Multicriteria Optimization, 2005.
DOI : 10.1007/978-3-662-22199-0

P. Perny, P. Weng, J. Goldsmith, and J. Hanna, Approximation of Lorenz-Optimal Solutions in Multiobjective Markov Decision Processes, Conference on Uncertainty in Artificial Intelligence, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01216091

P. Perny and O. Spanjaard, An Axiomatic Approach to Robustness in Search Problems with Multiple Scenarios, Proceedings of the 19th conference on Uncertainty in Artificial Intelligence, pp.469-476, 2003.

M. Laumanns, L. Thiele, and E. Zitzler, An adaptive scheme to generate the Pareto front based on the epsilon-constraint method, Practical Approaches to Multi-Objective Optimization. Number 04461 in Dagstuhl Seminar Proceedings, 2005.

J. Cohon, Multiobjective Programming and Planning, 1978.

Y. Aneja and K. Nair, Bicriteria Transportation Problem, Management Science, vol.25, issue.1, pp.73-78, 1979.
DOI : 10.1287/mnsc.25.1.73

R. Yager, On ordered weighted averaging aggregation operators in multicriteria decisionmaking, IEEE Transactions on Systems, Man, and Cybernetics, vol.18, issue.1, pp.183-190, 1998.
DOI : 10.1109/21.87068

W. Ogryczak, Inequality measures and equitable approaches to location problems, European Journal of Operational Research, vol.122, issue.2, pp.374-391, 2000.
DOI : 10.1016/S0377-2217(99)00240-4

C. Bazgan, H. Hugot, and D. Vanderpooten, Solving efficiently the 0???1 multi-objective knapsack problem, Computers & Operations Research, vol.36, issue.1, pp.260-279, 2009.
DOI : 10.1016/j.cor.2007.09.009

D. Eppstein, Finding the k Shortest Paths, SIAM Journal on Computing, vol.28, issue.2, pp.652-673, 1998.
DOI : 10.1137/S0097539795290477

V. M. Jiménez and A. Marzal, A Lazy Version of Eppstein???s K Shortest Paths Algorithm, Proceedings of the 2Nd International Conference on Experimental and Efficient Algorithms. WEA'03, pp.179-191, 2003.
DOI : 10.1007/3-540-44867-5_14

L. Mandow and J. L. Pérez-de-la-cruz, A new approach to multiobjective A* search, Proceedings of the 19th International Joint Conference on Artificial Intelligence. IJCAI'05, pp.218-223, 2005.

X. Gandibleux, D. Vancoppenolle, and D. Tuyttens, A first making use of GRASP for solving MOCO problems, 14th International Conference in Multiple Criteria Decision-Making, 1998.

K. Florios and G. Mavrotas, Generation of the exact Pareto set in Multi-Objective Traveling Salesman and Set Covering Problems, Applied Mathematics and Computation, vol.237, pp.1-19, 2014.
DOI : 10.1016/j.amc.2014.03.110