S. Jeong, Effects of double cropping on summer climate of the North China Plain and neighbouring regions, Nature Climate Change, vol.115, issue.7, pp.615-619, 2014.
DOI : 10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2

X. Huang, Y. Song, M. Li, J. Li, and T. Zhu, Harvest season, high polluted season in East China, Environmental Research Letters, vol.7, issue.4, p.44033, 2012.
DOI : 10.1088/1748-9326/7/4/044033

K. Yamaji, Impact of open crop residual burning on air quality over Central Eastern China during the Mount Tai Experiment 2006 (MTX2006), Atmospheric Chemistry and Physics, vol.10, issue.15, pp.7353-7368, 2006.
DOI : 10.5194/acp-10-7353-2010-supplement

G. R. Van-der-werf, Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997???2009), Atmospheric Chemistry and Physics, vol.10, issue.23, pp.11707-11735, 1997.
DOI : 10.5194/acp-10-11707-2010-supplement

X. Huang, M. Li, J. Li, and Y. Song, A high-resolution emission inventory of crop burning in fields in China based on MODIS Thermal Anomalies/Fire products, Atmospheric Environment, vol.50, pp.9-15, 2012.
DOI : 10.1016/j.atmosenv.2012.01.017

T. Fu, Space-based formaldehyde measurements as constraints on volatile organic compound emissions in east and south Asia and implications for ozone, Journal of Geophysical Research, vol.109, issue.4, pp.10-1029, 2007.
DOI : 10.1029/2006JD007853

P. F. Levelt, The ozone monitoring instrument, IEEE Transactions on Geoscience and Remote Sensing, vol.44, issue.5, pp.1093-1101, 2006.
DOI : 10.1109/TGRS.2006.872333

D. Smedt and I. , Improved retrieval of global tropospheric formaldehyde columns from GOME-2/MetOp-A addressing noise reduction and instrumental degradation issues, Atmospheric Measurement Techniques, vol.5, issue.11, pp.2933-2949, 2012.
DOI : 10.5194/amt-5-2933-2012

D. Smedt and I. , Diurnal, seasonal and long-term variations of global formaldehyde columns inferred from combined OMI and GOME-2 observations, Atmospheric Chemistry and Physics, vol.15, issue.21, pp.12519-12545, 2015.
DOI : 10.5194/acp-15-12519-2015

K. F. Boersma, An improved tropospheric NO<sub>2</sub> column retrieval algorithm for the Ozone Monitoring Instrument, Atmospheric Measurement Techniques, vol.4, issue.9, pp.1905-1928, 2011.
DOI : 10.5194/amt-4-1905-2011

C. Lerot, Glyoxal vertical columns from GOME-2 backscattered light measurements and comparisons with a global model, Atmospheric Chemistry and Physics, vol.10, issue.24, pp.12059-12072, 2010.
DOI : 10.5194/acp-10-12059-2010

J. Müller and T. Stavrakou, Inversion of CO and NO<sub>x</sub> emissions using the adjoint of the IMAGES model, Atmospheric Chemistry and Physics, vol.5, issue.5, pp.1157-1186, 2005.
DOI : 10.5194/acp-5-1157-2005-supplement

T. Stavrakou, J. Müller, I. De-smedt, M. Van-roozendael, G. Van-der-werf et al., Global emissions of non-methane hydrocarbons deduced from SCIAMACHY formaldehyde columns through 2003???2006, Atmospheric Chemistry and Physics, vol.9, issue.11, pp.3663-3679, 2003.
DOI : 10.5194/acp-9-3663-2009

T. Stavrakou, How consistent are top-down hydrocarbon emissions based on formaldehyde observations from GOME-2 and OMI?, Atmospheric Chemistry and Physics Discussions, vol.15, issue.8, pp.12007-12067, 2015.
DOI : 10.5194/acpd-15-12007-2015

URL : https://hal.archives-ouvertes.fr/insu-01145238

A. Guenther, T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer et al., Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmospheric Chemistry and Physics, vol.6, issue.11, pp.3181-3210, 2006.
DOI : 10.5194/acp-6-3181-2006

URL : https://hal.archives-ouvertes.fr/hal-00295995

M. Li, Mapping Asian anthropogenic emissions of non-methane volatile organic compounds to multiple chemical mechanisms, Atmospheric Chemistry and Physics, vol.14, issue.11, pp.5617-5638, 2014.
DOI : 10.5194/acp-14-5617-2014-supplement

M. O. Andreae and P. Merlet, Emission of trace gases and aerosols from biomass burning, Global Biogeochemical Cycles, vol.34, issue.4, pp.955-966, 2001.
DOI : 10.1029/2000GB001382

S. Akagi, Emission factors for open and domestic biomass burning for use in atmospheric models, Atmospheric Chemistry and Physics, vol.11, issue.9, pp.4039-4072, 2011.
DOI : 10.5194/acp-11-4039-2011-supplement

J. Kurokawa, Emissions of air pollutants and greenhouse gases over Asian regions during 2000???2008: Regional Emission inventory in ASia (REAS) version 2, Atmospheric Chemistry and Physics, vol.13, issue.21, pp.11019-11058, 2000.
DOI : 10.5194/acp-13-11019-2013-supplement

L. Sun, Significant increase of summertime ozone at Mt. Tai in Central Eastern China, Atmos. Chem. Phys. Discuss, vol.16, pp.2003-2015, 2016.

X. Jin and T. Holloway, Spatial and temporal variability of ozone sensitivity over China observed from the Ozone Monitoring Instrument, Journal of Geophysical Research: Atmospheres, vol.37, issue.27, pp.10-10022015, 2015.
DOI : 10.1016/S1352-2310(03)00462-X

S. Safieddine, Tropospheric Ozone Variability during the East Asian Summer Monsoon as Observed by Satellite (IASI), Aircraft (MOZAIC) and Ground Stations, Atmospheric Chemistry and Physics Discussions, vol.15, issue.21, pp.31925-31950, 2015.
DOI : 10.5194/acpd-15-31925-2015-supplement

URL : https://hal.archives-ouvertes.fr/insu-01305341

Z. Chaudhry, 32307 | DOI: 10.1038/srep32307 24 In situ measurements of aerosol mass concetration and radiative properties in Xianghe, southeast of Beijing, Scientific RepoRts | J. Geophys. Res, vol.6, issue.112, pp.10-1029, 2007.

Z. Shi, Characterization of airborne individual particles collected in an urban area, a satellite city and a clean air area in Beijing, 2001, Atmospheric Environment, vol.37, issue.29, pp.4097-4108, 2001.
DOI : 10.1016/S1352-2310(03)00531-4

J. Z. Tao, Z. Wang, D. Han, S. Li, L. Su et al., Analysis of crop residue burning and tropospheric NO 2 vertical column density retrieved from satellite remote sensing in North China, China Environmental Science, vol.29, pp.1016-1020, 2009.

X. Deng, Modeling the Dynamics and Consequences of Land System Change, 2011.
DOI : 10.1007/978-3-642-15447-8

D. P. Dee, The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Quarterly Journal of the Royal Meteorological Society, vol.91, issue.656, pp.553-597, 2011.
DOI : 10.1002/qj.828

J. Randerson, Y. Chen, G. Werf, B. Rogers, and D. Morton, Global burned area and biomass burning emissions from small fires, Journal of Geophysical Research: Biogeosciences, vol.112, issue.6, pp.10-1029, 2012.
DOI : 10.1016/j.rse.2008.02.006

J. Kaiser, Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power, Biogeosciences, vol.9, issue.1, pp.527-554, 2012.
DOI : 10.5194/bg-9-527-2012

C. Wiedinmyer, The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning, Geoscientific Model Development, vol.4, issue.3, pp.625-641, 2011.
DOI : 10.5194/gmd-4-625-2011

S. Kudo, Emissions of nonmethane volatile organic compounds from open crop residue burning in the Yangtze River Delta region, China, Journal of Geophysical Research: Atmospheres, vol.43, issue.251, pp.7684-7698, 2014.
DOI : 10.5194/acp-11-6787-2011

S. Inomata, Laboratory measurements of emission factors of nonmethane volatile organic compounds from burning of Chinese crop residues, Journal of Geophysical Research: Atmospheres, vol.89, issue.D23, pp.5237-5252, 2015.
DOI : 10.1029/2012JD08236

C. Warneke, VOC identification and inter-comparison from laboratory biomass burning using PTR-MS and PIT-MS, International Journal of Mass Spectrometry, vol.303, issue.1, pp.6-14, 2011.
DOI : 10.1016/j.ijms.2010.12.002

R. J. Yokelson, Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires, Atmospheric Chemistry and Physics, vol.13, issue.1, pp.89-116, 2013.
DOI : 10.5194/acp-13-89-2013-supplement

S. Korontzi, J. Mccarty, T. Loboda, S. Kumar, and C. Justice, Global distribution of agricultural fires in croplands from 3 years of Moderate Resolution Imaging Spectroradiometer (MODIS) data. Global Biogeochem, pp.10-1029, 2006.

T. Fu, Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols, Journal of Geophysical Research, vol.56, issue.1???3, pp.10-1029, 2008.
DOI : 10.1029/2007JD009505

T. Stavrakou, The continental source of glyoxal estimated by the synergistic use of spaceborne measurements and inverse modelling, Atmospheric Chemistry and Physics, vol.9, issue.21, pp.8431-8446, 2009.
DOI : 10.5194/acp-9-8431-2009-supplement

P. Castellanos, K. F. Boersma, and G. Van-der-werf, Satellite observations indicate substantial spatiotemporal variability in biomass burning NO<sub>x</sub> emission factors for South America, Atmospheric Chemistry and Physics, vol.14, issue.8, pp.3929-3943, 2014.
DOI : 10.5194/acp-14-3929-2014-supplement

A. Razavi, Global distributions of methanol and formic acid retrieved for the first time from the IASI/MetOp thermal infrared sounder, Atmospheric Chemistry and Physics, vol.11, issue.2, pp.857-872, 2011.
DOI : 10.5194/acp-11-857-2011

URL : https://hal.archives-ouvertes.fr/hal-00516518

T. Stavrakou, First space-based derivation of the global atmospheric methanol emission fluxes, Atmospheric Chemistry and Physics, vol.11, issue.10, pp.4873-4898, 2011.
DOI : 10.5194/acp-11-4873-2011

URL : https://hal.archives-ouvertes.fr/hal-00565397

J. Lin, Retrieving tropospheric nitrogen dioxide from the Ozone Monitoring Instrument: effects of aerosols, surface reflectance anisotropy, and vertical profile of nitrogen dioxide, Atmospheric Chemistry and Physics, vol.14, issue.3, pp.1441-1461, 2014.
DOI : 10.5194/acp-14-1441-2014

P. Castellanos, K. F. Boersma, O. Torres, and J. De-haan, OMI tropospheric NO<sub>2</sub> air mass factors over South America: effects of biomass burning aerosols, Atmospheric Measurement Techniques, vol.8, issue.9, pp.3831-3849, 2015.
DOI : 10.5194/amt-8-3831-2015-supplement

M. P. Barkley, Assessing sources of uncertainty in formaldehyde air mass factors over tropical South America: Implications for top-down isoprene emission estimates, Journal of Geophysical Research: Atmospheres, vol.9, issue.11, pp.10-1029, 2012.
DOI : 10.5194/acp-9-3663-2009

G. Roberts, M. J. Wooster, and E. Lagoudakis, Annual and diurnal african biomass burning temporal dynamics, Biogeosciences, vol.6, issue.5, pp.849-866, 2009.
DOI : 10.5194/bg-6-849-2009

T. Stavrakou, Isoprene emissions over Asia 1979&ndash;2012: impact of climate and land-use changes, Atmospheric Chemistry and Physics, vol.14, issue.9, pp.4587-4605, 2014.
DOI : 10.5194/acp-14-4587-2014

C. Miller, C. Jacob, D. J. González-abad, G. Chance, and K. , Hotspot of glyoxal over the Pearl River delta seen from the OMI satellite instrument: implications for emissions of aromatic hydrocarbons, Atmospheric Chemistry and Physics, vol.16, issue.7, pp.4631-4639, 2016.
DOI : 10.5194/acp-16-4631-2016

D. K. Henze, J. H. Seinfeld, and D. T. Shindell, Inverse modeling and mapping US air quality influences of inorganic PM<sub>2.5</sub> precursor emissions using the adjoint of GEOS-Chem, Atmospheric Chemistry and Physics, vol.9, issue.16, pp.5877-5903, 2009.
DOI : 10.5194/acp-9-5877-2009

M. Kopacz, Global estimates of CO sources with high resolution by adjoint inversion of multiple satellite datasets (MOPITT, AIRS, SCIAMACHY, TES), Atmospheric Chemistry and Physics, vol.10, issue.3, pp.855-876, 2010.
DOI : 10.5194/acp-10-855-2010