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Abstract
Various types of genome and gene similarity networks along with their characteristics have

been increasingly used for retracing different kinds of evolutionary and ecological relation-

ships. Here, we present a new polynomial time algorithm and the corresponding software

(BRIDES) to provide characterization of different types of paths existing in evolving (or aug-

mented) similarity networks under the constraint that such paths contain at least one node

that was not present in the original network. These different paths are denoted as Break-

throughs, Roadblocks, Impasses, Detours, Equal paths, and Shortcuts. The analysis of

their distribution can allow discriminating among different evolutionary hypotheses concern-

ing genomes or genes at hand. Our approach is based on an original application of the pop-

ular shortest path Dijkstra’s and Yen’s algorithms. The C++ and R versions of the BRIDES

program are freely available at: https://github.com/etiennelord/BRIDES.

Introduction
Network structures provide useful representations of interactions between the elements of
complex systems [1, 2]. They can, for example, represent relationships between microbial com-
munities in different environments [3] or between proteins in different bacteria and eukaryotes
[4]. The abundance of the network elements (i.e. represented by nodes) as well as their interac-
tions (i.e. represented by edges) often vary over time. Comparing evolving networks containing
sets of attributes (or annotations) at their nodes is currently becoming central to different fields
of biology, including ecology, evolution, cell biology and medicine [1, 5–7]. For example,
genome similarity networks, where each node represents a genome and the edge weights corre-
spond to the number of shared gene families between genomes, have been used to identify hor-
izontal gene transfer events [8] and other reticulate phylogenetic relationships [3]. Genome
similarity networks are typically constructed at different stringency thresholds (e.g. 50, 60, 70,
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90, 99%) [6], or by using constantly increasing datasets, thus producing a range of inclusive
networks. Such a strategy allows the detection of ancient evolutionary connections [1] or the
verification of ecological distribution of taxa [9]. Furthermore, network analysis can be used
with heterogeneous types of biological data, e.g. for linking protein structures to their functions
[10,11].

Previous works in this field have focused on the use of conventional graph-theoretic mea-
sures describing the evolution of networks, such as the numbers of nearest neighbors or certain
network motifs [12,13], or the distribution of shortest paths [9]. In this study, we present a
number of novel features, which characterize evolving networks. All of them are based on the
presence of additional nodes and edges in the augmented network. These added nodes and
edges can be used to connect the original network nodes through different types of simple
paths (i.e. loopless paths or paths that do not visit the same nodes twice) [14,15]. Precisely, we
will describe a new polynomial time algorithm for estimating the number of Breakthroughs,
Roadblocks, Impasses, Detours, Equal paths and Shortcuts (BRIDES) in evolving networks.
Moreover, we have developed C++ and R functions implementing the new algorithm. We will
also present the results of our simulation study comparing the performances of four different
versions of our algorithm as well as the application of the most successful version of BRIDES to
real genome similarity networks. It is worth noting that, contrary to previous work, we were
neither interested in counting the number of colored motifs in networks [16], nor in determin-
ing their types [12, 13].

Materials and Methods

Description of the BRIDES algorithm
This section describes the problem we address here from a mathematical point of view and
presents the most important computational details of our algorithm. The main questions that
we try to answer in this paper are the following:

1. Is there a simple path between two given nodes i and j (i.e. original network nodes in our
study) that contains at least one node from a specific set of nodes (i.e. set of added nodes in
our study)?

2. If such a simple path exists, is it the shortest path between i and j?

Since the number of simple paths between two given nodes in a graph can be exponential in
the size of the graph, visiting and counting all of them is a problem belonging to #P [14, 17].
On the other hand, the number of simple shortest paths between two nodes of an undirected
graph can also be exponential in the number of the graph nodes. Furthermore, the problem of
finding a simple shortest path including a set ofmust-include nodes is NP-hard [18, 19]. There-
fore, effective heuristic algorithms should be applied to answer questions (a) and (b), especially
when large genetic or genomic similarity networks are considered. Vardhan and colleagues
[19] proposed a fast heuristic algorithm to compute a simple path that contains a given ordered
set of must-include nodes. However, this problem is slightly different from our problem, since
our main objective is to find a shortest simple path including at least one node from a set of
specified nodes. Li and colleagues [20] tried to address the latter problem, presenting a fast heu-
ristic approach based on the principle of optimality of dynamic programming. However, their
elegant algorithm can be applied only to graphs with a specific–series/parallel–topology [20].

The BRIDES algorithm takes as input two networks: (1) network X with an original set of
nodes NX and edges EX (Fig 1A) and (2) network Y with an augmented set of nodes NY and
edges EY (Fig 1B). All nodes of network X should also be present in network Y (i.e. NX � NY).
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However, it is not required that EX � EY.. We first compute the shortest paths between the
pairs of nodes in X, and then reassess their length in Y, by forcing these paths to include at least
one added node (i.e. a node present in Y, but not in X). Our heuristic relies on a repeated appli-
cation of Dijkstra's algorithm [21] to evaluate the impact of added nodes to the length of the
shortest paths between the original nodes (see Algorithm 1).

Now we can define six distinct types of paths, related to the existence of added nodes in Y,
which can be used to characterize complex relationships in evolving networks (Fig 1):

Breakthrough: a path that is impossible in network X but is possible in network Y (e.g. path
between nodes 2 and 12, passing by added node 15 in Fig 1B);

Roadblock: a path that is possible in network X but is impossible in network Y (e.g. a simple
path between nodes 4 and 7 that passes by an added node in Y is impossible, see Fig 1B);

Impasse: a path that is impossible in both networks, X and Y (e.g. there are no possible
paths between nodes 9 and 11 in Fig 1A and 1B);

Detour: a path that is shorter in network X than in network Y (e.g. path between nodes 1
and 3 in Fig 1A and 1B);

Equal: a path that has the same length in networks X and Y (e.g. path between nodes 1 and
6, assuming that all edge lengths in X and Y are equal, Fig 1A and 1B);

Shortcut: a path that is longer in network X than in network Y (e.g. path between nodes 2
and 8 in Fig 1A and 1B).

Fig 1. Examples of the BRIDES (Breakthrough, Roadblock, Impasse, Detour, Equal and Shortcut) paths in evolving networks. Panel (A) presents an
original network X with 12 nodes. Panel (B) presents an augmented network Y with 15 nodes (including 12 original and 3 added nodes, which are colored in
grey). Six different types of paths are shown in the augmented network Y.

doi:10.1371/journal.pone.0161474.g001
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Fig 2 provides an example of computation of the BRIDES statistics in evolving networks.
We can see that the addition of new nodes and edges to an evolving network can substantially
change the distribution of the six types of paths defined in our study. The four heuristic strate-
gies tested in our simulations, called BRIDES (the original strategy), BRIDES_Y, BRIDES_YC
and BRIDES_EC, are presented in details in Algorithm 1 below:

Algorithm 1
Given an original undirected network X = (EX, NX) and its augmented undi-
rected network Y = (EY, NY), i.e. network such that NX � NY, this algo-
rithm calculates the number of Breakthroughs, Roadblocks, Impasses,
Detours, Equal paths and Shortcuts (BRIDES) to characterize the evolu-
tion of X into Y.
BRIDES
Step 1. Compute the length of the shortest path between all pairs of
nodes in network X. Find at most MaxPathNumber of simple shortest paths
between pairs of original nodes (i,j), (i.e. nodes such that i 2 NX and j
2 NX) in network Y, using Dijkstra's algorithm. Store in the list Pij the
set of simple shortest paths corresponding to a pair of original nodes
(i,j) in network Y.
Step 2. For all pairs of original nodes (i,j), create a list Lij of added
nodes k (k 2 NY, k =2 NX) ordered with respect to the closeness of i and j to
k. Calculate the distances d(i,k) and d(j,k) in Y using Dijkstra and
store at most MaxPathNumber of simple shortest paths in Pik and Pjk,
respectively. Order the list of added nodes Lij according to either the
minimum of Max(d(i,k), d(j,k)) (Strategy 1 that provided better over-
all results in our simulations; the results of this strategy will be
presented in the next section) or the minimum of (d(i,k) + d(j,k))
(Strategy 2). In order to speed up the algorithm, we can reduce the size
of Lij by using the input parameters: MaxDistance (the maximum allowed
distance from i or from j to k) and/or MaxNode (the maximum number of
added nodes, k, in this list).
Set the first pair of original nodes (i,j) as the current pair of nodes.
Step 3. Do, for the current pair of original nodes (i,j):
If there exists a simple path in Pij that includes at least one added
node, update the BRIDES statistics (see Table 1) with the results
obtained for the current pair of nodes (i,j), set the next pair (i,j) as
the current pair of original nodes and go to the beginning of Step 3; oth-
erwise, go to Step 4.
Step 4. At this point, we have determined that the current pair of origi-
nal nodes (i,j) is not associated with a Breakthrough, Impasse or Short-
cut, and we can now determine whether it should be associated with a
Detour, Equal path or Roadblock.
Do, for each node k of the ordered list Lij, starting from the first ele-
ment of Lij:
Step 4.1. If the concatenation of paths [i,k] from Pik and [j,k] from Pjk
is a simple path, set d(i,j) = d(i,k) + d(j,k) and update the BRIDES sta-
tistics (see Table 1) with the results obtained for the pair of nodes (i,
j), set the next pair (i,j) as the current pair of original nodes and go
to Step 3; otherwise, go to Step 4.2.
Step 4.2. Since there are repeating nodes, except k, on the paths [i,k]
and [j,k], temporarily remove them from network Y and recalculate: (1)
the shortest path from j to k in the reduced network Y using Dijkstra,
storing the result in Pjk', and (2) the shortest path from i to k in the
reduced network Y using Dijkstra, storing the result in Pik'. Repeat
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The default values of the parametersMaxPathNumber,MaxDistance andMaxNode in our
program are all equal to 100. These default values were also used in our simulation study (see
the next section). It is worth noting that in unweighted graphs,MaxDistance represents the
upper bound of the number of edges on the path between an original and an added node. Obvi-
ously, in weighted graphs, this parameter should be specified by the user. The time complexity
of Steps 1 and 2 of our original BRIDES algorithm is O(|NX| ×MaxPathNumber × (|EY| + |NY|

Step 4.1 with the shortest of concatenations of two paths stored: (1) in
Pik and Pjk' and (2) in Pjk and Pik'; if for both Pjk' and Pik' does not return
a simple shortest path because no such path exists in the reduced net-
work Y, consider the next node k of Lij in Step 4.1 or go to Step 5 if all
element of Lij have been already examined.
Step 5. Classify the path associated with the current pair of nodes (i,
j) as a Roadblock.
Step 6. If all the pairs (i,j) have been already examined, print the
BRIDES statistics; otherwise, set the next pair (i,j) as the current
pair of original nodes and go to Step 3.
Heuristic BRIDES_Y (BRIDES using Yen's algorithm)
Replace Steps 3 and 4 above by the following steps:
Step 3'. Do, for the current pair of original nodes (i,j):
Compute the ordered list PYij of MaxPathNumber shortest paths between i
and j using Yen's k-shortest path algorithm [22].
Step 4'. Do, for each path p of the ordered list PYij,:
If p contains at least one added node, update the BRIDES statistics (see
Table 1) with the results obtained for the current pair of original
nodes (i,j), set the next pair (i,j) as the current pair of original
nodes and go to Step 3.
Heuristic BRIDES_YC (BRIDES using Yen's algorithm and Concatenation of
paths)
Replace Steps 2 and 4 above by the following steps:
Step 2'. For all pairs of original nodes (i,j), create a list Lij of added
nodes k (k 2 NY, k =2 NX) ordered with respect to the closeness of i and j to
k. Calculate the distances d(i,k) and d(j,k) in Y using Dijkstra. Order
the list of added nodes Lij according to the minimum of Max(d(i,k), d(j,
k)) (Strategy 1) or the minimum of (d(i,k) + d(j,k)) (Strategy 2). Using
Yen's algorithm compute and store at most MaxPathNumber of paths in Pik
and Pjk, respectively. In order to speed up the algorithm, we can reduce
the size of Lij by using the input parameters: MaxDistance and/or
MaxNode.
Set the first pair of original nodes (i,j) as the current pair of nodes.
Step 4'. Do, for each node k of the ordered list Lij, starting from the
first element of Lij:
Step 4.1. If the concatenation of paths [i,k] from Pik and [j,k] from Pjk
is a simple path, set d(i,j) = d(i,k) + d(j,k) and update the BRIDES sta-
tistics (see Table 1) with the results obtained for the pair of nodes (i,
j), set the next pair (i,j) as the current pair of original nodes and go
to Step 3.
Go to Step 5 if all element of Lij have been already examined.
BRIDES_EC (BRIDES algorithm based on an Exhaustive Concatenation
approach)
The difference with the original BRIDES algorithm is in Step 4, where we
examine all the nodes k of the ordered list Lij, even though a simple path
has been found in Step 4.1.

BRIDES: A New Fast Algorithm and Software for Characterizing Evolving Similarity Networks
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log(|NY|)), using asymptotically the fastest known single-source shortest-path version of Dijk-
stra's algorithm, where |NX| and |NY| are the numbers of nodes in networks X and Y, respec-
tively, and |EY| is the number of edges in network Y. The time complexity of Step 4 is O(|NX|

2 ×
MaxNodes × (|EY| + |NY|log(|NY|)), in the worst case. However, in practice, the runtime of this
step is much lower because we rarely execute the internal loop of Step 4 all theMaxNodes
times. This leads to the total time complexity of BRIDES equal toO(|NX| × (MaxPathNumber +
|NX| ×MaxNodes) × (|EY| + |NY|log(|NY|)). The presented BRIDES algorithm can be applied to
analyze undirected graphs with non-negative edge lengths. When negative edge lengths exist in
either network X or network Y, the improved version of Bellman–Ford’s algorithm [23] could be
applied instead of Dijkstra.

We created an R function implementing the BRIDES algorithm using the graph manipulation
tools available in the igraph package [24]. The R version of BRIDES can be applied for the analysis
of small networks (<1,000 nodes). For larger networks (>1,000 nodes), we recommend using the

Fig 2. Computation of the BRIDES statistics in evolving networks. Addition of the new nodes (colored in grey) and edges to an evolving network
changes the distribution of different types of network pathways as time (T) progresses. The letters B, R, I, D, E and S at the bottom of the chart stand
respectively for Breakthroughs, Roadblocks, Impasses, Detours, Equal paths and Shortcuts.

doi:10.1371/journal.pone.0161474.g002

Table 1. Possible BRIDES outcomes depending on the path type identified by the algorithm.

Simple path between i to j in X Simple path between i to j in Y BRIDES statistic

Impossible Possible Breakthrough

Possible Impossible Roadblock

Impossible Impossible Impasse

Shorter distance Longer distance Detour

Equal distance Equal distance Equal

Longer distance Shorter distance Shortcut

doi:10.1371/journal.pone.0161474.t001

BRIDES: A New Fast Algorithm and Software for Characterizing Evolving Similarity Networks

PLOS ONE | DOI:10.1371/journal.pone.0161474 August 31, 2016 6 / 13



C++ version of our program, which includes all the four heuristic algorithms, BRIDES, BRIDES_Y,
BRIDES_YC and BRIDES_EC, discussed in this paper. Moreover, a parallel OpenMP [25] version
of the C++ program is also available (see: https://github.com/etiennelord/BRIDES).

Results

Simulation study
To test the BRIDES algorithm, we carried out a simulation study using three popular network
models implemented in the igraph package (version 1.0.0) [24]. Precisely, the Erdős–Rényi [26],
Barabási–Albert [27] andWatts–Strogatz [28] random graph generation models were consid-
ered. The Barabási–Albert model is a well-known approach for generating scale-free (or power-
law) networks, while the Erdős–Rényi andWatts–Strogatz models are among the most popular
generation models for random graphs that do not exhibit a scale-free degree distribution.

Using each of these three models, we generated 1000 random original networks X with 100
nodes, and then added to them 5, 25, 50 or 100 additional nodes to create augmented networks
Y. The simulations were performed using the C++ version of our program executed on a PC
computer equipped with an Intel i7-3770 CPU (3.40GHz) and 8Gb of RAM. The four compet-
ing heuristic strategies, BRIDES, BRIDES_Y, BRIDES_YC and BRIDES_EC, presented in
Algorithm 1 were tested in our simulation study. The accuracy of the competing approaches
(see Fig 3A) was calculated as the percentage of correctly labeled path types (i.e. the percentage
of true positive Breakthroughs, Roadblocks, Impasses, Detours, Equal paths and Shortcuts)
provided by each heuristic. The identification of the correct (i.e. reference) path types was car-
ried out using a brute force procedure based on a depth-first search (DSF) algorithm. Along
with the average accuracy, calculated over all generated graphs, we also measured the average
runtime (in seconds; see Fig 3B and S1 Table) of each of the four heuristics under comparison.

The results of our simulations suggest that the original BRIDES strategy along with the
exhaustive concatenation procedure, BRIDES_EC, were able to provide the correct classifica-
tion of paths, regardless of the number (i.e. also percentage, in this case) of added nodes (Fig
3A). The two heuristics based on Yen’s k-shortest path algorithm (i.e. BRIDES_Y and BRIDE-
S_YC), returned the correct classification of paths in 67% and 90% of cases, respectively, when
the number of added nodes was 5. However, the results obtained with BRIDES_Y and BRIDE-
S_YC improved with an increase of the number of added nodes, reaching the accuracy level of
100% for 100 added nodes.

The original BRIDES algorithm was the fastest among the four compared heuristics regard-
less the number of added nodes (Fig 3B). The worst performance, in terms of running time,
was shown by BRIDES_Y, for small numbers of added nodes. This can be explained as follows.
On one hand, we restrict our search in Yen’s algorithm to only 100 shortest paths. On the
other hand, when the proportion of added nodes in Y is very small, all of them can be located
far away from both source and destination nodes given as input to Yen’s algorithm. Thus, these
rare added nodes can never be included in the set of 100 shortest paths returned by BRIDES_Y.
This leads to an important decrease in accuracy (Fig 3A) and increase in computational time
(Fig 3B). The heuristic BRIDES_YC, which uses both Yen's algorithm and concatenation of
paths, performs better in this case since the concatenated paths are guaranteed to contain at
least one added node.

It is worth noting that the length of a Detour path identified by the BRIDES algorithm can
be longer than the length of the shortest possible Detour existing in the network, but in this
work, we are only interested in estimating the distribution of path types, and not in assessing
the exact path lengths.

BRIDES: A New Fast Algorithm and Software for Characterizing Evolving Similarity Networks
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Fig 3. The average accuracy (A) and computational time (B) obtained for the four heuristic strategies,
BRIDES, BRIDES_Y, BRIDES_YC and BRIDES_EC, presented in our study. The simulations were
carried out with original networks X containing 100 nodes and generated using the Erdős–Rényi, Barabási–
Albert andWatts–Strogatz random graph generation models. The augmented networks Y contained 5, 25, 50
or 100 added nodes and all original nodes of X. 1000 graphs were generated for each parameter
configuration.

doi:10.1371/journal.pone.0161474.g003
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Fig 4. BRIDES statistics for real genome similarity networks at 90% similarity threshold. The BRIDES statistics
(A) computed for the original network X comprising archaea (in red) and bacteria (in green), 326 species in total, and the
four augmented similarity networks Y (the added nodes are in blue), including: (B) photosynthetic eukaryotes, (C)
nonphotosynthetic eukaryotes, (D) plasmids and (E) viruses.

doi:10.1371/journal.pone.0161474.g004
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Application of BRIDES to real biological data
To evaluate the performance of the BRIDES algorithm and calculate the related statistics (Fig
4A) for real networks, we generated four genome similarity networks using a set of 2,094,593
nucleotide sequences of archaea, bacteria, photosynthetic and nonphotosynthetic eukaryotes,
plasmids and viruses. Similarity between the nucleotide sequences was determined using
BLAST [29] with a minimum e-value of 10e-5. Individual genomes were connected in both
original and augmented networks if at least one of their genes shared a homologous sequence
(>70% cover, with the 90% similarity threshold). A total of 326 prokaryotes were selected to
form the original network X, and then complemented with either photosynthetic eukaryotes
(Fig 4B), or nonphotosynthetic eukaryotes (Fig 4C), or plasmids (Fig 4D), or viruses (Fig 4E)
in the augmented network Y.

The BRIDES statistics provided by our algorithm for the four genome similarity networks
exhibited different distribution profiles (Fig 4A). Even when the genome networks displayed
similar clustering coefficients and comparable average path lengths (Table 2), the BRIDES sta-
tistics could be quite different (Fig 4A). For example, the addition of photosynthetic eukaryotes
resulted in a large number of Detours, Shortcuts and Equal paths (Fig 4B), whereas the addition
of nonphotosynthetic eukaryotes resulted in the complete disappearance of such path types
(Fig 4C). This difference can be explained by the fact that nuclear genomes of photosynthetic
eukaryotes host gene families from cyanobacterial origin, as a result of gene transfer from their
chloroplastic endosymbionts, which are typically absent in nonphotosynthetic eukaryotes.
Moreover, the addition of 3552 plasmids (Fig 4D) to the original network X led to a similar
BRIDES profile as in the case of photosynthetic eukaryotes, while favouring the emergence of
Shortcuts. On the contrary, the addition of viruses (Fig 4E) did not introduce any Shortcuts
into the augmented similarity network, but led to the increase of the numbers of Roadblocks.
The latter result is consistent with findings of Halary and colleagues [8], who identified plas-
mids as central genetic carriers across prokaryotic genomes, whereas viruses were found to
have restricted host ranges for infecting distantly related taxa.

Conclusion
In this paper, we introduced a new fast algorithm and associated software for characterizing
different types of paths existing in evolving similarity networks. In particular, our algorithm
calculates the number of Breakthroughs, Roadblocks, Impasses, Detours, Equal paths and
Shortcuts (BRIDES), which can be present in these networks. Our program, implemented in
the C++ and R programming languages, includes four heuristic algorithms for calculating the
BRIDES statistics discussed and compared in our study (see Algorithm 1). These statistics can
be viewed as a new tool for the characterization and comparison of evolving genome and gene

Table 2. General network and BRIDES statistics for the four real genome similarity networks presented in Fig 4.

General network statistics BRIDES statisticsa

Added species Total of
nodes

Total of
edges

Average
degree

Average path
length

Clustering
coefficient

B R I D E S

Eukaryotes photosynt. 345 2,014 11.68 5.97 0.867 1,652 3,329 42,418 5,550 19 7

Eukaryotes
nonphotosynt.

345 1,845 10.70 5.29 0.865 0 8,905 44,070 0 0 0

Plasmids 3,848 187,848 97.63 2.90 0.559 23,618 7,057 20,452 689 185 974

Viruses 1,984 12,054 12.15 5.23 0.801 0 8,577 44,070 328 0 0

a Computation were carried out using the following input parameters:MaxDistance = 100,MaxNode = 100 andMaxPathNumber = 100.

doi:10.1371/journal.pone.0161474.t002
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similarity networks, transcriptional networks [30] or interactome networks [31]. The analysis
and comparison of evolving networks can be carried out for different network stringency
thresholds. Dijkstra’s algorithm used in our method makes it suitable for the analysis of both
weighted and unweighted types of networks. Note that our BRIDES heuristic presented here in
the case of undirected networks can be easily adapted to the case of directed networks. In the
future, it would be interesting to see whether the Uniform Cost Search [32] or A� [33,34] algo-
rithms can be used as an alternative of Dijkstra in order to accelerate the computation of the
BRIDES statistics within our method.

Dataset and Source Files
The R and C++ source codes are available from the Github repository (https://github.com/
etiennelord/BRIDES/) with a GPL version 3 license. The sample networks (Figs 1 and 2) are
located in either the R or C++ source directories. The source code for the simulations (Fig 3) is
located in the Simulation directory of the github repository. The genome similarity networks
(Fig 4, Table 2) are available in the GenomeNetwork directory.

Supporting Information
S1 Table. Average computational time in seconds (s) obtained for the four heuristics and
for different network models. The original network X contained 100 nodes and the aug-
mented networks Y contained 5, 25, 50 or 100 added nodes. For each model, 1000 networks
were created, and 100 path were randomly selected for evaluation. The reported values are
average time (in seconds) for the evaluation of each path.
(PDF)
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