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Fluctuations in reactive networks subject to extrinsic noise studied in the
framework of the Chemical Langevin Equation.

H. Berthoumieux1, 2
1)CNRS, UMR 7600, LPTMC, F-75005, Paris, France
2)Sorbonne Universités, UPMC Univ Paris 06, UMR 7600, LPTMC, F-75005, Paris,
France

Theoretical and experimental studies have shown that the fluctuations of in vivo systems break the fluctuation-
dissipation theorem. One can thus ask what information is contained in the correlation functions of protein
concentrations and how they relate to the response of the reactive network to a perturbation. Answers
to these questions are of prime importance to extract meaningful parameters from the in vivo fluorescence
correlation spectroscopy data. In this paper we study the fluctuations of the concentration of a reactive
species involved in a cyclic network that is in a non-equilibrium steady state perturbed by a noisy force,
taking into account both the breaking of detailed balance and extrinsic noises. Using a generic model for the
network and the extrinsic noise, we derive a Chemical Langevin Equation that describes the dynamics of the
system, we determine the expressions of the correlation functions of the concentrations, estimate the deviation
of the fluctuation-dissipation theorem and the range of parameters in which an effective temperature can be
defined.

I. INTRODUCTION

For a chemist, the living world is a system capable to
convert an energy source into self-organization. In a cell,
biochemical pathways are organized to transmit a signal
from outside of the cell to the nucleus, to polarize the cell,
etc...1. The networks are out-of-equilibrium and energy
sources (sources of reactants, sinks of products, temper-
ature, light, ... ) drive the reactive cycles in a particular
direction. The kinase signaling cascade that accelerates
and amplifies a signal from the cell membrane to the nu-
cleus functioning as a domino-like relay is an example of
these interconnected out-of-equilibrium cycles2.

To highlight the key ingredients governing the self-
organization in cells, different approaches have been un-
dertaken. Biomimetic approaches consist in coupling
patterns of energy sources with reaction-diffusion sys-
tems in order to reproduce organization states of bio-
logic interest3. In parallel to the design of artificial sys-
tems, quantitative description of in vivo cellular protein
networks have been developped4,5. Fluorescence correla-
tion spectroscopy (FCS) is a single molecule method that
gives acces to the abundance, the diffusive and the reac-
tive properties of biochemical species by analyzing local
concentration fluctuations6. This technique was designed
more than 40 years ago7 and was generalized during the
last ten years for the study of living systems. The anal-
ysis of FCS data involves two steps, the determination
of the chemical mechanism (reaction, diffusion, convec-
tion, ...) which is a priori unknown and the estimation
of the parameters of the model8,9. However, the theoret-
ical framework used in the fitting procedure remains the
one developed in the seminal paper based on equilibrium
thermodynamics fluctuations10.

Important effort has also been made to describe out-
of-equilibrium systems. The field of stochastic thermo-
dynamics has allowed a better comprehension by intro-
ducing the concepts of internal energy, heat, work11 and

entropy12 at the level of a trajectory, i. e. as fluctuat-
ing quantities. Important properties of their probability
distributions were established (see13 for a review). For
systems in a non-equilibrium steady state (NESS), mod-
ified fluctuation-dissipation relations were derived14–16.
These were applied to small enzymatic cycles maintained
out of equilibrium by sources and sinks of substrates
and products17,18. Such relations provide a frame to ex-
tract the information contained in correlation functions
of species involved in out-of-equilibrium networks.

A model of a chemical cycle maintained in a NESS
by a constant driving force does not include the fluctu-
ations generated by the environment. However, extrin-
sic fluctuations are omnipresent in a living cell19,20. An
example often discussed in the literature is the transla-
tion process: the number of protein copies is a stochastic
variable whose probability distribution depends on the
distribution of the number of messenger RNA and on
the intrinsic noise originating in the stochastic nature of
the translation process. The first one, referred to as ex-
trinsic noise, was shown to represent the main source of
concentration variance in many biological pathways21,22.
The effect of the input noise in the signaling function of
genetic circuits has been extensively studied23,24.

In this paper, we consider a three-state chemical cy-
cle in a NESS perturbed by a noisy force with vanish-
ing value. In this case, the extrinsic fluctuations do nut
blur an input signal received by the network but per-
turb an energy source that maintains the system out of
equilibrium. How does this extrinsic noise influence the
variance and the correlation of the chemical species con-
centrations and what are the consequences on the mod-
ified fluctuation-dissipation relations? Here, we describe
the dynamics of the system is described in the frame
of Chemical Langevin Equations obtained by a coarse-
graining on a small macroscopic time τ25. We show that
a fast relaxing extrinsic noise mimics a thermal noise
and modifies the diffusion term of the Langevin equa-
tion whereas a slowly relaxing noise generates an extra
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FIG. 1. Cyclic three-state Michaelis-Menten mechanism
maintained out-of-equilibrium. The enzyme E catalyses the
transformation of the substrate S in the product P. The con-
centrations of both S and P are controlled by mechanisms
external to the catalytic cycle and s(t) follows the dynam-
ics of an Onrstein-Uhlenbeck process governed by Eq. (1).
This chemical system can be modeled by a set of pseudo-
isomerizations, one of which ( E→ ES) being associated with
a time-dependent rate constant ka(t) given in Eq. (5).

multiplicative force that fluctuates at the extrinsic noise
timescales.

The paper is organized as follows. In the first part,
we present the model used for the chemical cycle and
the driving force. In the second part, following Gille-
spie’s paper25, the Chemical Langevin Equations are es-
tablished and a particular attention is paid to the noise
term which depends on the driving force fluctuations
timescale. In the third part, the modified fluctuation-
dissipation theorem is derived in the case of a constant
driving force and the effects of extrinsic fluctuations on
this relation are discussed. The last parts are devoted to
the discussion and the conclusion.

II. MODEL

We consider the transformation of a substrate S in a
product P catalyzed by an enzyme E. This reaction is
modeled by a three-state Michaelis-Menten mechanism
represented in Fig. 1. The cycle is composed of four
isomeriations, ES → E, ES → EP, EP → ES, EP → E,
that for sake of simplicity are characterized by the same
rate constant k, and of two second order reactions E+S
→ ES, E+P → EP associated with the rates kS and kP
respectively. The substrate and the product concentra-
tions, S(t) and P (t), are supposed to be controlled by

other processes in the cell and act as external driving
forces that maintain the cycle in a NESS. The expres-
sion of the stochastic thermodynamics quantities, such
as heat, entropy production, ..., and their related proper-
ties have been derived for this system17,26. Moreover, this
cycle is a toy model used to develop methods of mech-
anism identification27–29 and of discrimination between
equilibrium and non-equilibrium steady-states for in vivo
systems30–32.

We consider the case in which P (t) is constant and
fixed to P = k/kP , and S(t) is fluctuating following an
Ornstein-Uhlenbeck process. We define the rescaled con-
centration s(t) = kSS(t)/k whose dynamics is governed
by

ds(t)

dt
= −s(t)− sm

τs
+

√
2

τs
σsΓ(t), (1)

with a relaxation time τs and a diffusion coefficient√
2
τs
σs. Γ(t) is a white noise of unit variance. In the

stationary state, the substrate concentration s(t) obeys
a normal distribution

P(s) =
1√

2πσs
e
− (s−sm)2

2σ2
s , (2)

of mean value sm and of variance σs. Note that s(t) has
to be positive which imposes the condition σs/sm � 1.
The concentration s(t) is equal to

s(t) = sm + δs(t), (3)

with δs(t) =

∫ t

−∞
dt′et

′/τs

√
2

τs
σsΓ(t′)e−t/τs . (4)

In the limit of a vanishing variance σs, the concentration
s(t) is constant and equal to sm.

The enzymatic cycle can be represented by the scheme
given in Fig. 1b, a set of six isomerizations driven in a
non-equilibrium steady state by a fluctuating chemical
rate,

ka(t) = ks(t) = ka + δka(t), (5)

of mean value ka = ksm and fluctuating part δka(t) =
kδs(t), with 〈δka(t)〉 = 0.

The chemical system is in an equilibrium state in the
absence of external driving and extrinsic fluctuations,
conditions that are expressed by the vanishing values of
two dimensionless parameters (λ = 0,∆ = 0), where

λ = log(sm), ∆ =
σs
sm

. (6)

λ represents the chemical potential difference between
S, P in kBT units and ∆ is the rescaled width of the
probability distribution of s.

A system composed of N molecules maintained in a
NESS by a non-noisy driving force (λ 6= 0,∆ = 0) is
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characterized by a mean number of particles in configu-
rations E and ES such that31

〈NE〉 = PEN, 〈NES〉 = PESN (7)

with PE =
1

2 + sm
, PES =

2sm + 1

3(2 + sm)
. (8)

A positive (negative), value of λ corresponds to a reac-
tion flux in the direction S → P (P→S). The parameter
space (λ 6= 0,∆ > 0) models a chemical system in a
NESS perturbed by a noisy source of energy. This will
generates non-equilibrium intrinsic noises (λ 6= 0) and
extrinsic noises (∆ > 0). We aim to characterize the
fluctuations of Ni(t), (i = E,ES,EP ), for such systems.
To do so, we derive in the next section the Chemical
Langevin Equations describing the dynamics of this sys-
tem.

To check our analytic results, we simulate numerically
the evolution of the system represented in Fig. 1. The
enzymatic cycle dynamics is described by a master equa-
tion associated with time-dependent rates which is solved
using the Gillespie algorithm33. For each time t at which
one of the six possible chemical transformation occurs,
the concentration of the substrate s(t) is updated using
the equation for an Ornstein-Uhlenbeck process34.

III. CHEMICAL LANGEVIN EQUATION

In this part, we derive the Chemical Langevin Equa-
tions that govern the dynamics of the network described
in Fig. 1b and we calculate the correlation functions as-
sociated with these equations.

We assume that the total number of enzyme N is con-
stant. At time t, NE(t) molecules are in the conformation
E, NES(t) in the conformation ES. The number NEP (t)
of enzymes in state EP is deduced from the matter con-
servation NEP (t) = N − NE(t) − NES(t). The chem-

ical system is thus in a state e(t) =

(
NE(t)
NES(t)

)
. Let

njr(e(t), τ), for any τ > 0, be the number of reactions j
(j =E→ ES, ES→ E ..., EP→ E) that occur during the
time interval [t, t+τ ]. The chemical state at t+τ , e(t+τ)
can be expressed as

ei(t+ τ) = ei(t) + njr(e(t), τ)νij , i = (1, 2),

j = E → ES, ..., EP → E (9)

where νij is the stoichiometric coefficient associated with
species i in the reaction channel j. For a channel as-
sociated with a constant rate, i. e. j 6= E → ES, the
number of reactions njr(e(t), τ) is a stochastic variable
that follows a Gaussian probability law for unrestrictive
conditions, as demonstrated by Gillespie in reference25.

The first condition is that the time interval τ should
be small enough so that the change in the state e during
[t, t + τ ] does not change nrj significantly. This means
that

Ni(t
′) ≈ Ni(t) ∀t′ ∈ [t, t+ τ ], i = (E,ES,EP ). (10)

In other words, the number of reactions that occur during
τ should be much smaller than the number of molecules
in each state. Such a condition can be fulfilled by choos-
ing a small time interval. In this approximation, the
number of chemical transformations will be a statistically
independent random variable that follows a Poisson law
Pj(Λ

j) of rate Λj which expression depends of the reac-
tion channel, for example ΛES→EP = kNES(t)τ . The
mean value 〈nES→EPr 〉 of nES→EPr is equal to kNES(t)τ ,

its variance σES→EPr is equal to
√
kNES(t)τ .

The second condition is to choose τ large enough so
that the number of occurrence of each reaction is much
larger than one,

〈njr(τ)〉 � 1 ∀j. (11)

In this case, the Poisson variable njr can be approxi-
mated by a variablefollowing a normal probability law
Nj(〈njr〉, σjr) of mean value 〈nrj〉 and variance σjr

25 . The

random variable njr can be written as follows,

njr = 〈njr〉+ σjrδ
j , (12)

where δj is a normal random variable of vanishing mean
value and unit variance. A large number of particles in
each state is in most cases a sufficient condition for the
existence of a time τ fulfilling the conditions given by Eqs.
(10,11). τ is a mesoscopic time interval large enough so
that each reaction channel is visited several times but
small enough so that the state of system does not change
significantly. The following expressions are valid for a
time coarse-grained on τ .

Once this time is estimated for the channels associated
with constant rates, we consider the chemical transfor-
mation E→ES associated with a fluctuating rate. Two
situations are envisaged. First, τs the characteristic time
of the Ornstein-Uhlenbeck process defined in Eq. (1) is
much smaller than τ (τ � τs). In this case, s(t) and ka(t)
reach a stationary distribution on τ . In the second case,
τs is much larger than τ , s(t) and ka(t) are constant on
τ but vary on longer timescales (τ � τs). In both cases,
the number of reactions nE→ESr (τ) can be approximated
by a normal variable which mean and variance is given
in Table I (See appendix A for the derivation).

We are now able to express the state of the system at
time t+τ , e(t+τ), as a function of the state of the system
at time t for a fast fluctuating extrinsic noise (τ � τs)
and a slow fluctuating extrinsic noise (τ � τs),

e(t+ τ) = e(t) + Me(t)τ + Kτ + Σ(t)
√
τ (13)

where the conservation law has been used and where the
matrices M, K and the vector Σ(t) are given by

M =

(
−dr − 2k 0
dr − k −3k

)
, K =

(
kN
kN

)
, (14)

Σ(t) =

(
Σ1(t)
Σ2(t)

)
(15)
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〈nr〉 = drNE(t)τ σ2
r = v2rτ

with dr with v2r

Constant rate k kNE(t)

ES →E

Fluctuating rate ∆ = 0 ksm kNE(t)sm

E → ES τS � τ ksm (kNE(t)sm + 2k2N2
E(t)σ2

sτs)

τS � τ ks(t) kNE(t)s(t)

TABLE I. Mean value and variance of the reaction number nr during the mesoscopic time τ for constant and fluctuating rates.
For fluctuating rates, the two cases of a fast and a slow Ornstein-Uhlenbeck process are considered. The expressions of the
mean and the variance of nr are given in Eqs (A6,A7) and Eqs (A9,A10)

with

Σ1(t) = −
√
v2
rδ
E→ES +

√
kNESδ

ES→E

−
√
kNEδ

E→EP +
√
kNEP δ

EP→E , (16)

Σ2(t) =
√
v2
rδ
E→ES −

√
kNESδ

ES→E

−
√
kNESδ

ES→EP +
√
kNEP δ

EP→ES . (17)

The expressions of dr and vr are given in Table 1. The
dependence in t of Ni(t) is omitted for the ease of nota-
tion. The random variables δj can be rewritten as δj(t);
δi(t) and δj(t′) will be independent either if i 6= j, t 6= t′.
We use the property that a stochastic variable of van-
ishing mean and variance 1/

√
τ is a white noise when

τ → 0, we replace the notation δi(t)/
√
τ by Γi(t) and τ

by dt and we rewrite Eq (13) for the fast and the slow
fluctuating noise. In both cases, the multiplicative noises
have to be understood according to the Ito convention35.

We find for a NESS perturbed by a fast relaxing ex-
trinsic noise,

de(t)

dt
= Mfe(t) + K + Γ(t), (18)

where

Mf =

(
−k(2 + sm) 0
k(sm − 1) −3k

)
Γ(t) =

(
ΓE(t)
ΓES(t)

)
,(19)

with

ΓE(t) = −
√
v2
rΓE→ES(t) +

√
kNESΓES→E(t)

−
√
kNEΓE→EP (t) +

√
kNEPΓEP→E(t) (20)

ΓES(t) =
√
v2
rΓE→ES(t)−

√
kNESΓES→E(t)

−
√
kNESΓES→EP (t) +

√
kNEPΓEP→ES(t)(21)

in which the time dependence of the particle number has
been omitted to simplify the expressions. Equation (18)
is a Chemical Langevin Equation for a chemical system
driven in a non-equilibrium state by a noisy driving force.
Its deterministic part is identical to the one describing
an unperturbed NESS but the amplitude of the white
noise is increased. The extrinsic noise plays the role of

an additional thermal force. The particular case of a
system maintained in a NESS by a constant driving force
is obtained by writing v2

r = kNE(t)sm in Eqs. (20,21).
We now consider the stochastic equation obtained for

a slow extrinsic noise (τs � τ). In this case, we get

de(t)

dt
= Mse(t) + K + Γ(t), (22)

where

Ms =

(
−k(2 + sm + δs(t)) 0
k(sm + δs(t)− 1) −3k

)
. (23)

The expression of Γ(t) given in Eqs (19-21) and Table
1. This equation is not a Chemical Langevin Equation
because of the stochastic rates appearing in the matrix
Ms. The fluctuating part of s(t) generates an additional
multiplicative force.

We obtain for the constant driving force, the fast re-
laxing fluctuations and the slow relaxing fluctuations, the
following correlation functions

〈δNE(t)δNE(t′)〉c =
sm + 1

sm + 2
〈NE〉e−(t−t′)/τr , (24)

〈δNE(t)δNE(t′)〉f =

(
1 + k

〈NE〉
sm + 1

σsτs

)
× 〈δNE(t)δNE(t′)〉c, (25)

〈δNE(t)δNE(t′)〉s = 〈δNE(t)δNE(t′)〉c

+ σ2
s

k2τ2
r τs

(τ2
s − τ2

r )
〈NE〉2(

τse
−(t−t′)/τs − τre−(t−t′)/τr

)
,(26)

where t > t′, τr = 1/k(2 + sm) is the relaxation time
of NE(t) for a non-perturbed NESS and δNE(t) is the
difference between NE(t) and its stationary value that is
given in Eq. (7) for the fast relaxing driving force and in
Eq. (C12) for the slow process. The derivation of an ap-
proximate solution of Eq. (18) is performed in Appendix
B. Eq. (22) is solved in Appendix C in the particular case
of weak fluctuation amplitudes (∆� 1). The correlation
functions are represented in Fig 2. The expressions given
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in Eqs (25,26) are compared to numerical results and the
agreement is good.

Lets consider first the correlation function given in Eq.
(24) obtained in the absence of extrinsic noise. The
system is at equilibrium for sm = 1. Otherwise, the
chemical cycle is in a NESS characterized by the value
of sm and is associated with a reactive current. The
variance 〈δNE(0)δNE(0)〉c and the characteristic time
τr = 1/k(2 + sm) of the correlation function of NE(t)
are functions of sm.

When a given NESS (sm) is perturbed by a fast fluc-
tuating noise, (τs � τ), the correlation function given in
Eq. (25) remains proportional to one obtained in the ab-
sence of noise, the characteristic time is unchanged and
only the variance is increased by the extrinsic noise.

A slow relaxing noise perturbing a NESS generates a
stochastic multiplicative force, as shown in Eq. (22),
whose dynamics interferes with the relaxation of the
chemical system. The stationary state of the system is
modified (see Appendix C). The correlation function of
NE is the sum of the correlation of the unperturbed NESS
and of a contribution associated with the characteristic
time of the extrinsic noise τs and of the chemical reac-
tion τr. The amplitude of the corrective term scales in
N2 and depends on the properties of the extrinsic noise
and can be negligible or dominant when compared to the
unperturbed NESS correlation function depending on the
parameters characterizing s(t).

IV. MODIFIED FLUCTUATION-DISSIPATION
THEOREM IN THE PRESENCE OF EXTRINSIC NOISE

The response to a perturbation or the fluctuations of
a system in an equilibrium state contain the same in-
formation and one can equally collect one or the others
depending on experimental constraints. The analysis of
FCS data is based on this equivalence and the seminal pa-
per developing the theoretical basis of this method treats
the fluctuations as macroscopic perturbations that re-
lax according to chemical deterministic equations10. The
fluctuation-dissipation theorem links the macroscopic re-
sponse to a perturbation and the correlation functions of
the unperturbed state. A modified version of the theo-
rem establishes a similar relation for systems in a non-
equilibrium state13.

The results of the previous section show that the cor-
relation functions of a system in a NESS perturbed by
a stochastic force depend on the dynamic properties of
the extrinsic noises. In certain cases, the correlations
inform us on the environmental noise and not anymore
on the system dynamics. The breakdown of the modified
fluctuation-dissipation theorem is a good criterion to dis-
tinguish these two regimes. In this section we first derive
the fluctuation-dissipation theorem and its modified ver-
sion for a system in a NESS in the absence of stochastic
driving (∆ = 0). Then, we study how this relation is
violated in the presence of extrinsic noise.

4
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FIG. 2. Correlation function in the presence of extrinsic noise.
a. 〈NE(t)NE(0)〉 for a system maintained in a NESS by a
constant driving force and a fast fluctuating driving force
(τs � τ). The analytic expression given in (25) (red line) is
compared to numerical results (+) for the set of parameters in
dimensionless units (N=1000, sm = 2 τr = 0.25, τs = 10−4,
σs = 0.2). The correlation function without extrinsic noise
given in Eq. (24) is represented in blue. b. 〈NE(t)NE(0)〉 for
a system maintained in a NESS by a constant driving force
and by a fast fluctuating driving force (τs � τ). The analytic
expression given in (26) (red line) is compared to numerical
results (+) for the set of parameters (N=12000, sm = 1.2
τr = 0.3125, τs = 0.72, σs = 0.06). The correlation function
without extrinsic noise Eq. (24) is represented in blue.

We consider a chemical network in a equilibrium state
(λeq = 0,∆eq = 0) that is perturbed at time t′ by a
modification λ(t) = λeq+h(t) of the normalized chemical
potential of the species S. The response function of NE(t)
associated with this variation is defined as

χNE ,λ(t, t′) =
δ〈NE(t)〉
δh(t′)

∣∣∣∣
h(t)=0

, (27)

with t > t′. Solving the deterministic part of Eq (18) in
the frame of the linear response theory, one obtains

χNE ,λ(t, t′) = −k〈NE〉e−3k(t−t′). (28)
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The fluctuation-dissipation theorem states that the re-
sponse function of NE(t) can be expressed as the cor-
relation of this observable with the conjugated variable
of the perturbation λ with respect to energy, i. e. s(t).
This gives

χNE ,λ|λ=0(t, t′) =
d

dt′
〈NE(t)s(t′)〉 (29)

.

where the reaction flux ds(t′)/dt′ is equal to −kNE(t′) +
kNES(t′).

For a system maintained out-of-equilibrium by station-
ary constraints, in our case (λ 6= 0,∆ = 0), generaliza-
tions of the fluctuation-dissipation theorem have already
been obtained in a large number of cases18,36,37. The
first modified fluctuation-dissipation relation for driven
Markovian dynamics on a network of chemical states was
proposed by U. Seifert38. The response function of a
state concentration was expressed as its correlation with
appropriate currents. A short time later, this relation
was rederived for a molecular motor cycle maintained
out-of-equilibrium by a steady concentration of ATP and
submitted to mechanical or chemical perturbation18. We
express the currents as functions of NE(t) and NES(t)
using the expressions derived in refs18,38,

j(t) = −PES
PE

kNE(t) +
PE
PES

ksmNES(t) (30)

ν(t) =

(
ksm − k

PES
PE

)
NE(t), (31)

Pi being the stationary probability of configuration i
given in Eq (8). The current j can be interpreted as
an instantaneous rate of consumption of s and ν as a
local rate of consumption of s18. The response function
for a system maintained in a NESS by a driving force
associated to a parameter λ is equal to

χNE ,λ(t, t′) = −ksm〈NE〉e−(2+sm)(t−t′). (32)

The modified fluctuation-dissipation theorem is ex-
pressed by

χNE ,λ(t, t′) = 〈NE(t)(j(t′)− ν(t′))〉. (33)

As expected, the correlation functions calculated by solv-
ing the Chemical Langevin Equation obtained in the ab-
sence of extrinsic noise satisfy Eq. (33).

This relation is not valid anymore for a NESS per-
turbed by an extrinsic noise. To quantify the extent to
which the modified fluctuation-dissipation theorem is vi-
olated by an additional external noise, we introduce an
effective temperature

Teff (t) =
〈NE(t)(j(0)− ν(0))〉

kbχNE ,∆µs
(34)

with λ = ∆µs/kbT0 and T0 is the temperature of the
thermostat. In the absence of extrinsic noise, Teff is
constant and equal to T0. For a NESS perturbed by a

fast relaxing noise, correlations and response keep the
same time dependence. Using the expressions of the cor-
relation functions given in Eq. (25) and in Appendix B
and injecting it in Eq (34), one sees that in this case, the
effective temperature will be constant and equal to

Teff,f = T0

(
1 + 2k

〈NE〉
2sm + 1

σ2
sτs

)
. (35)

The way a noise keeps a NESS away for the tempera-
ture T0 depends on the unperturbed NESS (〈NE〉, sm)
and on the noise parameters (τs, σs). A NESS perturbed
by a noise that fluctuates slower than τ will be associ-
ated with a time dependent temperature. However, if the
characteristic time of the noise remains smaller than the
one of the chemical cycle (τs < τr), Teff (t) will tend to a
constant value for a time t > τs. Its value is obtained by
replacing in Eq. (34) the correlation functions by their
the expressions given in Eq. (26) and in Appendix C.
One gets

Teff,s = T0

(
1 + 2

2 + sm
2sm + 1

σ2
sk

2τ3
r τs

τ2
r − τ2

s

〈NE〉
)

(36)

For τs > τr, Teff (t) diverges for large t, the response
vanishing faster than the correlations. These cases are il-
lustrated in Figure 3. We consider a chemical system that
is perturbed either by a fast extrinsic noise (τs � τ) or a
slow extrinsic noise (τs � τ). We determine numerically
the effective temperature given in Eq. (34) by solving
the master equation associated to the two systems and
plot the ratio of this function and of the corresponding
constant effective temperature. As expected, the ratio
is constant and equal to one in the first situation and
converges to 1 for t > τs in the second situation.

An effective temperature has been already experimen-
tally measured for a biochemical reaction, the folding
of a single short-DNA hairpin driven by a fluctuating
force39. In agreement with our results, the experimen-
talists observed that correlations and response are pro-
portional when the fluctuating part of the driving force
is fast enough.

To conclude this section, one can see that the fluctu-
ations of a system in a NESS perturbed by an extrinsic
noise are not necessary related to its response function.
The link between the correlation functions and response
breaks in a different manner depending on the dynamic
properties of the system and of the noise. This can be
illustrated by the introduction of an effective tempera-
ture. For the less favorable case, the correlation function
time-dependence is controlled by the extrinsic noise.

V. CONCLUSION AND DISCUSSION

The experimental evidence that gene expression vari-
ability is not only determined by intrinsic fluctuations
but also depends on environmental noise was provided
15 years ago19. It is now clear that extrinsic noises
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FIG. 3. Effective temperature in the presence of an extrinsic

noise. We plot the ratio Teff(t)
Teff,f

and
Teff (t)

Teff,s
as a function

of t for the chemical system characterized by the parameter
set N = 12000, τr = 0.3125, sm = 1.2 and submitted to the
noise τs = 0.01, σs = 0.12 (4) and τs = 0.1, σs = 0.12 (4).
The expressions of Teff (t), Teff,f and Teff,s are given in Eqs.
(34-36).

may have an important effect on the statistics of cel-
lular events. Important theoretical works studied their
influence on the dynamics of network motifs that com-
pose gene regulation pathways40. First, extrinsic noises
were supposed to perturb the input signal received by
the chemical networks. More recently, the effect of fluc-
tuating chemical rates on the properties of switch cir-
cuits were considered41,42 . The dynamics of such sys-
tems is described by master equations or Fokker-Planck
equations that can be approached by Hamiltonian sys-
tems. Statistical properties of generic chemical networks
in which a rate is perturbed by a bounded extrinsic noise
were numerically studied43.

In this paper, we considered the fluctuations of reac-
tive species concentrations in conditions that model in
vivo environment. To do so, we studied a chemical cycle
in a NESS perturbed by a stochastic force. The sys-
tem can be far from equilibrium and subject to extrinsic
noises. We have adapted the elegant approach proposed
by Gillespie to derive stochastic equations describing the
dynamics of the network. This consists in coarse-graining
the dynamics of the system on a small macroscopic time
scale τ by expressing the number of reactions occurring in
each reactive channel by normal variables with identified
mean and variance. This is a very convenient framework
to investigate the effect of fluctuating rates. A fast fluctu-
ating rate mimics an extra thermal force, whereas a slow
one generates an extra multiplicative force. To quantify
the corrections induced by the extrinsic noise on the cor-
relation functions we have studied the breakdown of the
modified fluctuation-dissipation theorem and introduced
an effective temperature as the ratio of correlations and

response. This ratio is constant when the extrinsic noise
does not modifies the relaxation time of the fluctuations,
i. e. when the noise relaxes faster as the chemical sys-
tem.

Spectroscopy methods such as Fluorescence Correla-
tion Spectroscopy (FCS) register the in vivo fluctuations
of concentrations and give access to correlation functions
for targeted species. This observable is used to discrimi-
nate between different physical processes that can govern
the fluctuations of the target (passive or active diffusion,
reaction, ...) and to evaluate the associated parameters.
In this work, we show that an extrinsic noise inducing
a fluctuating rate can drastically perturb the correlation
functions of the chemical system. Many ingredients such
as diffusion or migration are missing in this model, how-
ever we believe that this work is a step toward the deriva-
tion of a theoretical framework well adapted to in vivo
conditions.
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Appendix A: Probability distribution of reaction number
E→ ES during τ

We evaluate the probability distribution of nE→ESr , the
number of reactions E→ ES, that occur during the time
τ , when the substrate concentration follows an Ornstein-
Uhlenbeck process whose dynamics is governed by Eq.
(1). The time τ is a mesoscopic timescale chosen so that
the conditions given in Eqs. (10,11) are satisfied for the
five channels associated with constant rates

We first consider an Ornstein-Uhlenbeck process that
relaxes fast compared to this timescale, i. e. τs � τ . In
this case, the stochastic variables s(t) and ka(t) defined
in Eqs. (1,5) fully explore their stationary distribution
on τ . Providing that the condition given in Eq. (10)
is satisfied also for the channel E→ ES, the number of
reactions nE→ESr is a Poisson random variable of rate
ΛE→ES = kNE(t)

∫ τ
0
s(t)dt which is itself a stochastic

variable. The fluctuating contribution
∫ τ

0
s(t)dt is the

integral of a Ornstein-Uhlenbeck variable and is a normal
stochastic variable34 with mean value smτ and variance
2σ2

sτsτ . The rate ΛE→ES is thus characterized by the
following probability law

P(ΛE→ES) =
1√

2πσΛ

e
− (ΛE→ES−〈Λ〉)2

2σ2
s , (A1)

with

〈Λ〉 = kNE(t)〈
∫ τ

0

s(t)dt〉 = kNE(t)smτ (A2)
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and

σ2
Λ = 〈(kNE(t)

∫ τ

0

s(t)dt− kNE(t)〈s〉τ)2〉

= 2k2NE(t)2σ2
sτsτ (A3)

in the limit τ � τS . As a consequence, the number of
reactions nE→ESr follows a probability law that can be
written as

P (nr) =

∫ ∞
−∞

dΛE→ESP(ΛE→ES)PΛ(nr), (A4)

where PΛ(nr) is the Poisson distribution associated with
the rate Λ. All the moments of P (nr) can easily be cal-
culated, as they all take the form of Gaussian integrals.
They can be approximated by the moments of the normal
distribution

Nf (nr) =
1√

2πσr
e
− (nr−〈nr〉)2

2σ2
r , (A5)

with

〈nr〉f = kNEsmτ, (A6)

σ2
r,f = 〈nr〉+ 2k2N2

Eσ
2
sτsτ, (A7)

in the limit 〈nr〉 � 1, which is equivalent to the condi-
tion given in Eq. (11). The moments of the distribu-
tion given in Eq. (A5) are equal to ones of the distribu-
tion given in Eq. (A4) up to a negligible correction in
1/〈Λ〉2 = 1/〈nr〉2. The stochastic variable nE→ESr fol-
lows the normal distribution given in Eq. (A5) if the
conditions given in Eqs. (10,11) are fulfilled.

We are now interested in the probability distribution
of nE→ESr when the relaxation time τs of the fluctuations
of s(t) is much larger than the time τ . s(t) and ka(t) are
assumed to be constant on τ . For a fixed value of s(t), we
are back to the case of passive channels with constant ki-
netic rates. The number of reaction is a Poisson random
variable characterized by a rate ΛE→ES = kNEs(t)τ ,
providing that kNE(t)s(t)τ � NE(t), i. e. that the con-
dition given in Eq. (10) is fulfilled. The mean value and
the variance of nE→ESr are thus 〈nE→ESr 〉 = kNE(t)s(t)
and σ2

r = kNE(t)s(t)τ . This Poissonian law can be
approximated by a normal distribution if the condition
given in Eq. (11) is satisfied. We consider an ensem-
ble of n time intervals τ associated to an ensemble of
values of reaction numbers nr and to a set of values si,
i = 1, ..., n, of s(t), such that (si) reaches its stationary
distribution given in Eq. (2). The number of reactions nr
is a stochastic variable following the normal probability
distribution

Ns(nr) =
1√

2πσr
e
− (nr−〈nr〉)2

2σ2
r , (A8)

with

〈nr〉s = kNE(t)smτ, (A9)

σ2
r,s = kNE(t)smτ + k2N2

Eσ
2
sτ. (A10)
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Nf(nr )

nra.

nrb.

FIG. A1. Probability distribution P (nr) of the reaction num-
ber nr of E → ES during a time τ . Fig. a, Fast Ornstein-
Uhlenbeck process. The figure represents the probability dis-
tribution for the number of reactions of E→ ES during the
time τ obtained numerically (+) and theoretically (red line).
The analytic expression is given in Eq. (A5). Both theoretical
and numerical curves are obtained for N = 1000000, k = 1,
τ = 0.005, sm = 2, σ = 800, τs = 0.0001 in dimensionless
units. Fig. b, Slow Ornstein-Uhlenbeck process. The figure
represents the probability distribution for the number of re-
actions of E→ ES during the time τ obtained numerically (+)
and theoretically (red line). The analytic expression is given
in Eq. (A8). Both theoretical and numerical curves are ob-
tained for N = 1000000, k = 1, τ = 0.001, sm = 2, σ = 0.08,
τs = 0.01 in dimensionless units.

In both cases, the reaction number nr is a stochas-
tic variable associated with a normal distribution which
properties are summed in Table A. I. The probability dis-
tributions of nE→ESr are also obtained numerically. The
numerical results are plotted and compared to analytic
results in the Fig. A1. The agreement is very good.
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nτ σ2
r

∆ = 0 kNE(t)smτ kNE(t)smτ

τs � τ kNE(t)smτ kNE(t)smτ + 2k2N2
E(t)σ2

sτsτ

τs � τ kNE(t)smτ kNE(t)smτ + k2N2
E(t)σ2

sτ
2

TABLE A1. Mean value and variance of the reaction number nE→ESr during a mesoscopic time τ . The values are given for a
constant driving force, for a driving force that relax much faster than τ and a driving force that relaxes much slower than τ .

Appendix B: Solution of the Chemical Langevin Equation in
the case of a fast relaxation driving force.

In this part we derive an approximate solution of the
Chemical Langevin Equation (18) obtained when s(t) re-
laxes fast when compared to the incremental time dt. To
do so, we approximate the time dependent diffusion co-
efficients of Eq. (18) by their mean values and the noise
term Γ(t) by Γs(t) with

ΓsE(t) = −
√
〈v2
r〉ΓE→ES(t) +

√
k〈NES〉ΓES→E(t)

−
√
k〈NE〉ΓE→EP (t) +

√
k〈NEP 〉ΓEP→E(t)(B1)

ΓsES(t) =
√
〈v2
r〉ΓE→ES(t)−

√
k〈NES〉ΓES→E(t)

−
√
k〈NES〉ΓES→EP (t)

+
√
k〈NEP 〉ΓEP→ES(t). (B2)

with 〈v2
r〉 = k〈NE〉sm + 2k2〈NE〉2σsτs. The linearized

Chemical Langevin Equation characterizing the dynam-
ics of the cycle given in Fig. 1. is obtained by replacing
Γ(t) by Γs(t). This equation can be written as

de(t)

dt
= Mfe(t) + K + Γs(t), (B3)

with

Mf =

(
−k(2 + sm) 0
k(sm − 1) −3k

)
(B4)

and the coefficients of Γs(t) given in Eqs. (C4,C5). The
Eq. (B3) is solved without difficulties and one gets

NE(t) = 〈NE〉+

∫ t

−∞
dt′ΓsE(t′)ek(2+sm)t′e−k(2+sm)t,(B5)

NES(t) = 〈NES〉+

∫ t

−∞
dt′(−ΓsE(t′) + ΓsES(t′))e3kt′e−3kt

+

∫ t

−∞
dt′ΓsE(t′)ek(2+sm)t′e−k(2+sm)t, (B6)

with the stationary values

〈NE〉 =
N

2 + sm
,

〈NES〉 =
1 + 2sm

3(2 + sm)
N. (B7)

The corresponding correlation functions are

〈δNE(t)δNE(t′)〉 =
DE,E

2k(2 + sm)
e−k(2+sm)(t−t′) (B8)

〈δNE(t)δNES(t′)〉 =

(
DE,E +DE,ES

k(5 + sm)
− DE,E

2k(2 + sm)

)
e−k(2+sm)(t−t′) (B9)

〈δNES(t)δNE(t′)〉 =
DE,E +DE,ES

k(5 + sm)
e−3k(t−t′)

− DE,E

2k(2 + sm)
e−k(2+sm)(t−t′)(B10)

〈δNES(t)δNES(t′)〉 =

(
DE,E + 2DE,ES +DES,ES

6k

− DE,E +DE,ES

k(5 + sm)

)
e−3k(t−t′)

+

(
DE,E

2k(2 + sm)
+
DE,E +DE,ES

k(5 + sm)

)
e−k(2+sm)(t−t′) (B11)

with

DE,E = 2k
sm + 1

2 + sm
N + 2k2(Ns

E)2σ2
sτs (B12)

DE,ES = −k 5sm + 1

3(2 + sm)
N − 2k2(Ns

E)2σ2
sτs (B13)

DES,ES = 4k
2sm + 1

3(2 + sm)
N + 2k2(Ns

E)2σ2
sτ

2
s (B14)

The correlation functions for a system driven by a con-
stant driving force are obtained by setting τs to zero in
Eqs. (B12-B14).

Appendix C: Solution of the stochastic equation obtained
in the case of a slow Ornstein-Uhlenbeck process.

The linearized Chemical Langevin Equation model-
ing the dynamics of a system driven by an Ornstein-
Uhlenbeck process that relaxes slowly when compared
to dt can be written as

de(t)

dt
= Mse(t) + K + Γs(t), (C1)
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with

Ms =

(
−k(2 + sm + δs(t)) 0
k(sm + δs(t)− 1) −3k

)
, (C2)

and the coefficients of Γs(t) given in Eqs. (C4,C5) and
Table 1. The coefficient δs(t) in Ms generates fluctua-
tions in NE(t) that scale as σsN , Γs(t) generates fluctu-
ations in (smN)1/2. We solve Eq. (C1) for σs/sm � 1, i.
e. for a small amplitude of extrinsic noise. We develop
e(t) = e0(t) + σs/sme

1(t) + (σs/sm)2e2(t) to the second
order in σs/sm and solve the corresponding equations.

The expression of Eq. (C1) at the zeroth order in
σs/sm gives

de(t)

dt
= M0e0(t) + K + Γs0(t), (C3)

with M0 = Mf given in Eq. (B4) and Γs0(t) equal to

ΓsE(t) = −
√
k〈NE〉ΓE→ES(t) +

√
k〈NES〉ΓES→E(t)

−
√
k〈NE〉ΓE→EP (t) +

√
k〈NEP 〉ΓEP→E(t)(C4)

ΓsES(t) =
√
k〈NE〉ΓE→ES(t)−

√
k〈NES〉ΓES→E(t)

−
√
k〈NES〉ΓES→EP (t)

+
√
k〈NEP 〉ΓEP→ES(t). (C5)

One gets the stationary values of NE(t) and NES(t)

N0
E(t) = 〈NE〉+

∫ t

−∞
dt′ΓsE(t′)ek(2+sm)t′e−k(2+sm)t,(C6)

N0
ES(t) = 〈NES〉+

∫ t

−∞
dt′(−ΓsE(t′) + ΓsES(t′))e3kt′e−3kt

+

∫ t

−∞
dt′ΓE(t′)ek(2+sm)t′e−k(2+sm)t, (C7)

with the expressions of 〈NE〉 and 〈NES〉 given in Eqs
(B7,B7). At the first order in σs/sm, we solve the follow-
ing equation

de1(t)

dt
= Mfe

1(t) + Cε(t)e0(t), (C8)

with C =

(
−k 0
k 0

)
, δs(t) = σs/smε(t) and e0s =

(〈NE〉, 〈NES〉). The first-order term σs/sme
1(t) =(

N1
E(t), N1

ES(t)
)

is thus equal to

N1
E(t) = −

∫ t

−∞
dt′kε(t′)N0

E(t′)ek(2+sm)t′e−k(2+sm)t(C9)

N1
ES(t) = −

∫ t

−∞
dt′kε(t′)N0

E(t′)ek(2+sm)t′e−k(2+sm)t

+

∫ t

−∞
dt′2kε(t′)N0

E(t′)e3kt′e−3kt (C10)

The development of Eq. (C1) at the second order in
σs/sm gives

de2(t)

dt
= Mfe

2(t)−Cε(t)e1(t). (C11)

The mean value 〈e2(t)〉 does not vanish, and we calculate
it using the expression of e1(t) given in Eq. (C9). We find
for the stationnary value at the second order in σs/sm,

Ns
E = 〈NE〉

(
1 + k2τ2

r σ
2
s

τs
τr + τs

)
, (C12)

when use has been made of 〈ε(t)Γi→j(t)〉 = 0. The cor-
relation functions are calculated at the second order in
σs/sm and one finds

〈δNE(t)δNE(t′)〉 =
σ2
sk

2τ2
r τs

τ2
s − τ2

r

〈NE〉2

×
(
τse
−(t−t′)/τs − τre−(t−t′)/τr

)
+
sm + 1

sm + 2
〈NE〉e−(t−t′)/τr , (C13)

with δNE(t) = NE(t)−Ns
E and t > t′.
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