
HAL Id: hal-01362193
https://hal.sorbonne-universite.fr/hal-01362193v1

Submitted on 8 Sep 2016 (v1), last revised 22 Oct 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Self-Stabilizing Mobile Byzantine-Tolerant Regular
Register with bounded timestamp

Silvia Bonomi, Antonella del Pozzo, Maria Potop-Butucaru, Sébastien Tixeuil

To cite this version:
Silvia Bonomi, Antonella del Pozzo, Maria Potop-Butucaru, Sébastien Tixeuil. Self-Stabilizing Mobile
Byzantine-Tolerant Regular Register with bounded timestamp. [Research Report] UPMC - Université
Paris 6 Pierre et Marie Curie; Sapienza Università di Roma (Italie). 2016. �hal-01362193v1�

https://hal.sorbonne-universite.fr/hal-01362193v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Self-Stabilizing Mobile Byzantine-Tolerant Regular Register

with bounded timestamp

Silvia Bonomi⋆, Antonella Del Pozzo⋆†, Maria Potop-Butucaru†, Sébastien Tixeuil†

⋆Sapienza Università di Roma,Via Ariosto 25, 00185 Roma, Italy

{bonomi, delpozzo}@dis.uniroma1.it
†Université Pierre & Marie Curie (UPMC) – Paris 6, France

{maria.potop-butucaru, sebastien.tixeuil}@lip6.fr

Abstract

This paper proposes the first implementation of a regular register by n servers that is tolerant to both

mobile Byzantine agents, and transient failures (it is self-stabilizing) in a round-free synchronous model.

We consider the most difficult model for mobile Byzantine agents to date where the message delay, δ,

and the speed of mobile Byzantine agents, ∆, are completely decoupled. Moreover, servers are not aware

of their state (infected or correct) after mobile Byzantine agents left them.

The register is maintained by n servers and our algorithm tolerates (i) any number of transient fail-

ures, and (ii) up to f Mobile Byzantine agents. Our implementation uses bounded timestamps from the

Z5 domain, and is optimal with respect to the number of tolerated mobile Byzantine agents. The con-

vergence time of our solution is upper bounded by 3∆+T5write(), where T5write() is the time needed to

execute five complete write() operations.

Contact Author: Silvia Bonomi

Address: Dipartimento di Ingegneria Informatica, Automatica e Gestionale “A. Ruberti”

Universitá degli Studi di Roma “La Sapienza”

Via Ariosto, 25

I-00185 Roma (RM)

Italy

Telephone Number: +39 06 77 27 4017

1 Introduction

Byzantine fault tolerance is a fundamental building block in distributed system, as Byzantine failures include

all possible faults, attacks, virus infections and arbitrary behaviors that can occur in practice (even unfore-

seen ones). The classical setting considers Byzantine participants remain so during the entire execution, yet

software rejuvenation techniques increase the possibility that a corrupted node does not remain corrupted

during the whole system execution and may be aware of its previously compromised status [27].

Mobile Byzantine Failures (MBF) models have been recently introduced to integrate those concerns.

Then, faults are represented by Byzantine agents that are managed by an omniscient adversary that “moves”

them from a host process to another, an agent being able to corrupt its host in an unforeseen manner. MBF

investigated so far consider mostly round-based computations, and can be classified according to Byzantine

mobility constraints: (i) constrained mobility [7] agents may only move from one host to another when

protocol messages are sent (similarly to how viruses would propagate), while (ii) unconstrained mobility [1,

3, 15, 22, 23, 25] agents may move independently of protocol messages. In the case of unconstrained

mobility, several variants were investigated [1, 3, 15, 22, 23, 25]: Reischuk [23] considers that malicious

agents are stationarity for a given period of time, Ostrovsky and Yung [22] introduce the notion of mobile

viruses and define the adversary as an entity that can inject and distribute faults; finally, Garay [15], and

more recently Banu et al. [1], and Sasaki et al. [25] or Bonnet et al. [3] consider that processes execute

synchronous rounds composed of three phases: send, receive, and compute. Between two consecutive such

synchronous rounds, Byzantine agents can move from one node to another. Hence the set of faulty hosts

at any given time has a bounded size, yet its membership may evolve from one round to the next. The

main difference between the aforementioned four works [1, 3, 15, 25] lies in the knowledge that hosts have

about their previous infection by a Byzantine agent. In Garay’s model [15], a host is able to detect its own

infection after the Byzantine agent left it. Sasaki et al. [25] investigate a model where hosts cannot detect

when Byzantine agents leave. Finally, Bonnet et al. [3] considers an intermediate setting where cured hosts

remain in control on the messages they send (in particular, they send the same message to all destinations,

and they do not send obviously fake information, e.g. fake id). Those subtle differences on the power of

Byzantine agents turns out to have an important impact on the bounds for solving distributed problems.

A first step toward decoupling algorithm rounds from mobile Byzantine moves is due to Bonomi et

al. [6]. In their solution to the regular register implementation, mobile Byzantine movements are synchro-

nized, but the period of movement is independent to that of algorithm rounds.

Alternatively, self-stabilization [9, 10] is a versatile technique to recover from any number of Byzantine

participants, provided that their malicious actions only spread a finite amount of time. In more details,

starting from an arbitrary global state (that may have been cause by Byzantine participants), a self-stabilizing

protocol ensure that problem specification is satisfied again in finite time, without external intervention.

Register Emulation. Traditional solutions to build a Byzantine tolerant storage service (a.k.a. register em-

ulation) can be divided into two categories: replicated state machines [26], and Byzantine quorum systems

[2, 17, 19, 18]. Both approaches are based on the idea that the current state of the storage is replicated

among processes, and the main difference lies in the number of replicas that are simultaneously involved in

the state maintenance protocol. Recently, Bonomi et al. [4] proposed optimal self-stabilizing atomic register

implementations for round-based synchronous systems under the four Mobile Byzantine models described

in [1, 3, 15, 25]. The round-free model [6] where Byzantine moves are decoupled from protocol rounds

also enables optimal solutions (with respect to the number of Byzantine agents) for the implementation of

regular registers.

Multitolerance. Extending the effectiveness of self-stabilization to permanent Byzantine faults is a long

2

time challenge in distributed computing. Initial results were mostly negative [8, 11, 21] due to the impossi-

bility to distinguish a honest yet incorrectly initialized participant from a truly malicious one. On the positive

side, two notable classes of algorithms use some locality property to tolerate Byzantine faults: space-local

and time-local algorithms. Space-local algorithms [20, 21, 24] try to contain the fault (or its effect) as close

to its source as possible. This is useful for problems where information from remote nodes is unimportant

(such as vertex coloring, link coloring, or dining philosophers). Time-local algorithms [12, 13, 14] try to

limit over time the effect of Byzantine faults. Time-local algorithms presented so far can tolerate the pres-

ence of at most a single Byzantine node. Thus, neither approach is suitable to register emulation. To our

knowledge, the problem of tolerating both arbitrary transient faults and mobile Byzantine faults has been

considered in the literature only in round-based synchronous systems [4].

Our Contribution. We consider the problem of emulating a regular register in a network where both

arbitrary transient faults and mobile Byzantine faults can occur, but where processes and Byzantine agent

moves are decoupled. With respect to previous work on round-free register emulation [6], we add the

self-stabilization property, and bounded (memory) timestamps. With respect to previous results that are

self-stabilizing and mobile Byzantine tolerant [4], we consider the more relaxed round-free hypothesis, and

bounded timestamps.

In more details, we present a regular register implementation that uses bounded timestamps from the Z5

domain and is optimal with respect to the upper bound on the number of mobile Byzantine processes. The

convergence time of our solution is upper bounded by 3∆+ T5write(), where T5write() is the time needed to

execute five complete write() operations, each write() operation copleting in finite time.

2 System Model

We consider a distributed system composed of an arbitrary large set of client processes C and a set of n
server processes S = {s1, s2 . . . sn}. Each process in the distributed system (i.e., both servers and clients) is

identified by a unique identifier. Servers run a distributed protocol emulating a shared memory abstraction

and such protocol is totally transparent to clients (i.e., clients do not know the protocol executed by servers).

The passage of time is measured by a fictional global clock (e.g., that spans the set of natural integers). Pro-

cesses in the system do not have access at the fictional global time. At each time t, each process (either client

or server) is characterized by its internal state, i.e., by the set of all its local variables and the corresponding

values.

We assume that an arbitrary number of clients may crash while up to f servers are affected, at any

time t, by Mobile Byzantine Failures. The Mobile Byzantine Failure adversarial model considered in this

paper (and described in details below) is stronger than any other adversary previously considered in the

literature [1, 3, 7, 15, 22, 23, 25].

No agreement abstraction is assumed to be available at each process (i.e. processes are not able to use

consensus or total order primitives to agree upon the current values). Moreover, we assume that each process

has the same role in the distributed computation (i.e., there is no special process acting as a coordinator).

Communication model. Processes communicate trough message passing. In particular, we assume that: (i)

each client ci ∈ C can communicate with every server trough a broadcast() primitive, (ii) each server can

communicate with every other server trough a broadcast() primitive, and (iii) each server can communicate

with a particular client trough a send() unicast primitive. We assume that communications are authenticated

(i.e., given a message m, the identity of its sender cannot be forged) and reliable (i.e., spurious messages are

not created and sent messages are neither lost nor duplicated).

Synchronous System.

3

The system is round-free synchronous if: (i) the processing time of local computations (except for wait

statements) are negligible with respect to communication delays, and are assumed to be equal to 0, and

(ii) messages take time to travel to their destination processes. In particular, concerning point-to-point

communications, we assume that if a process sends a message m at time t then it is delivered by time t+ δp
(with δp > 0). Similarly, let t be the time at which a process p invokes the broadcast(m) primitive, then

there is a constant δb (with δb ≥ δp) such that all servers have delivered m at time t + δb. For the sake of

presentation, in the following we consider a unique message delivery delay δ (equal to δb ≥ δp), and assume

δ is known to every process. Moreover we assume that any process is provided with a physical clock, i.e.,

non corruptible.

Computation model. Each process of the distributed system executes a distributed protocol P that is com-

posed by a set of distributed algorithms. Each algorithm in P is represented by a finite state automata and it

is composed of a sequence of computation and communication steps. A computation step is represented by

the computation executed locally to each process while a communication step is represented by the sending

and the delivering events of a message. Computation steps and communication steps are generally called

events.

Definition 1 (Execution History) Let P be a distributed protocol. Let H be the set of all the events gen-

erated by P at any process pi in the distributed system and let → be the happened-before relation. An

execution history Ĥ = (H,→) is a partial order on H satisfying the relation→.

Definition 2 (Valid State at time t) Let Ĥ = (H, →) be an execution history of a generic computation

and let P be the corresponding protocol. Let pi be a process and let statepi be the state of pi at some time

t. statepi is said to be valid at time t if it can be generated by executing P on Ĥ .

The Mobile Byzantine Failure (MBF) models considered so far in literature [1, 3, 7, 15, 22, 23, 25]

assume that faults, represented by Byzantine agents, are controlled by a powerful external adversary that

“moves” them from a server to another. Note that the term “mobile” does not necessary mean that a

Byzantine agent physically moves from one process to another but it rather captures the phenomenon of

a progressive infection, that alters the code executed by a process and its internal state.

2.1 Mobile Byzantine Models

As in the case of round-based MBF models [1, 3, 7, 15, 25], we assume that any process previously infected

by a mobile Byzantine agent has access to a tamper-proof memory storing the correct protocol code. How-

ever, a healed (cured) server may still have a corrupted internal state and cannot be considered correct. As

a consequence, the notions of correct and faulty process need to be redefined when dealing with Mobile

Byzantine Failures.

Definition 3 (Correct process at time t) Let Ĥ = (H,→) be an execution history and let P be the proto-

col generating Ĥ . A process is said to be correct at time t if (i) it is correctly executing its protocol P and

(ii) its state is a valid state at time t. We will denote as Co(t) the set of correct processes at time t while,

given a time interval [t, t′], we will denote as Co([t, t′]) the set of all the processes that are correct during

the whole interval [t, t′] (i.e., Co([t, t′]) =
⋂

τ ∈ [t,t′]Co(τ)).

Definition 4 (Faulty process at time t) Let Ĥ = (H,→) be an execution history and let P be the protocol

generating Ĥ . A process is said to be faulty at time t if it is controlled by a mobile Byzantine agent and

it is not executing correctly its protocol P (i.e., it is behaving arbitrarily). We will denote as B(t) the set

4

of faulty processes at time t while, given a time interval [t, t′], we will denote as B([t, t′]) the set of all the

processes that are faulty during the whole interval [t, t′] (i.e., B([t, t′]) =
⋂

τ ∈ [t,t′]B(τ)).

Definition 5 (Cured process at time t) Let Ĥ = (H,→) be an execution history and let P be the protocol

generating Ĥ . A process is said to be cured at time t if (i) it is correctly executing its protocol P and (ii) its

state is not a valid state at time t. We will denote as Cu(t) the set of cured processes at time t while, given a

time interval [t, t′], we will denote as Cu([t, t′]) the set of all the processes that are cured during the whole

interval [t, t′] (i.e., Cu([t, t′]) =
⋂

τ ∈ [t,t′]Cu(τ)).

In this work we consider the (∆S,CUM) MBF model [6], that can be specified as follows. (∆S, ∗)
allows to consider coordinated attacks where the external adversary needs to control a subset of machines. In

this case, compromising new machines will take almost the same time as the time needed to detect the attack

or the time necessary to rejuvenate. This may represent scenarios with low diversity where compromising

time depends only on the complexity of the exploit and not on the target server. More formally, the external

adversary moves all the f mobile Byzantine Agents at the same time t and movements happen periodically

(i.e., movements happen at time t0 +∆, t0 + 2∆, . . . , t0 + i∆, with i ∈ N).

(∗, CUM) represents situations where the server is not aware of a possible past infection. This scenario is

typical of distributed systems subject to periodic maintenance and proactive rejuvenation. In this systems,

there is a schedule that reboots all the servers and reloads correct versions of the code to prevent infections

to be propagated in the whole network. However, this happens independently from the presence of a real

infection and implies that there could be periods of time where the server execute the correct protocol

however its internal state is not aligned with non compromised servers.

As in the round-based models, we assume that the adversary can control at most f Byzantine agents at

any time (i.e., Byzantine agents are not replicating themselves while moving).

In our work, only servers can be affected by the mobile Byzantine agents1. It follows that, at any time

t, |B(t)| ≤ f . However, during the system life time, all servers may be affected by a Byzantine agent (i.e.,

none of the server is guaranteed to be correct forever).

In addition to the possibility of mobile Byzantine failures at server side, processes may also suffer form

transient failures, i.e., local variables of any process (writer, reader, servers) can be arbitrarily modified [10].

It is nevertheless assumed that transient failures are quiescent, i.e., there exists a time τno tr (which is

unknown to the processes) after which no new transient failures happens.

3 Regular Register Specification

A register is a shared variable accessed by a set of processes, i.e. clients, through two operations, namely

read() and write(). Informally, the write() operation updates the value stored in the shared variable while

the read() obtains the value contained in the variable (i.e. the last written value). In distributed settings,

every operation issued on a register is, generally, not instantaneous and it can be characterized by two events

occurring at its boundary: an invocation event and a reply event.

An operation op is complete if both the invocation event and the reply event occur (i.e. the process

executing the operation does not crash between the invocation and the reply). Contrary, an operation op

1It is trivial to prove that in our model when clients are Byzantine it is impossible to implement deterministically even a safe

register. The Byzantine client will always introduce a corrupted value. A server cannot distinguish between a correct client and a

Byzantine one.

5

is said to be failed if it is invoked by a process that crashes before the reply event occurs. According to

these time instants, it is possible to state when two operations are concurrent with respect to the real time

execution. For ease of presentation we assume the existence of a fictional global clock (unknown to the

processes) and the invocation time and response time of every operation are defined with respect to this

fictional clock.

Given two operations op and op′, their invocation event times (tB(op) and tB(op
′)) and their reply event

times (tE(op) and tE(op
′)), we say that op precedes op′ (op ≺ op′) iff tE(op) < tB(op

′). If op does

not precede op′ and op′ does not precede op, then op and op′ are concurrent (op||op′). Given a write(v)
operation, the value v is said to be written when the operation is complete.

We assume that locally any client never performs read() and write() operation concurrently (i.e., for any

given client ci, the set of operations executed by ci is totally ordered). We also assume that initially the

register stores a default value⊥written by a fictional write(⊥) operation happening instantaneously at round

r0. In case of concurrency while accessing the shared variable, the meaning of last written value becomes

ambiguous. Depending on the semantics of the operations, three types of register have been defined by

Lamport [16]: safe, regular and atomic.

In this paper, we consider a Self-Stabilizing Single-Writer/ Multi-Reader (SWMR) regular register, i.e.,

an extension of Lamport’s regular register that considers transitory failures.

The Self-Stabilizing Single-Writer/Multi-Reader (SWMR) register is specified as follow:

• ss− Termination: Any operation invoked on the register eventually terminates.

• ss− Validity: There exists a time τstab such that each read operation invoked at time t > τstab returns

the last value written before its invocation, or a value written by a write() operation concurrent with

it.

Bonomi et al. [6] proved the necessity of an additional maintenance() operation, executed regularly, to

cope with the Byzantine agent moves between read() and write() operations. This result naturally extends

to our case, as a self-stabilizing algorithm, once stabilized, must provide the same guarantees as a non-

stabilizing one.

Theorem 1 Let n be the number of servers emulating a safe register and let f be the number of Mobile

Byzantine Agents affecting servers. LetAR andAW be respectively the algorithms implementing the read()
and the write() operation assuming no communication between servers. If f > 0 then there exists no

protocol Preg = {AR,AW } implementing a self-stabilizing safe register in any of the MBF models for

round-free computations defined in [6].

Proof Let us assume that such algorithm Preg = {AR,AW } exists, i.e., after the end of transient failures

it provides a self-stabilized safe register. If Preg is correct, it means that both AR and AW implementing

respectively the read() and the write() operation terminates i.e., they stop to execute steps when the operation

is completed. Let t > τstab be the time at which the last operation op terminated and let us assume that no

other operation is invoked until time t′ > t. Let us note that during the time interval [t, t′] no algorithm is

running as all the operations issued in the past are completed. As a consequence, no correct server and no

cured server change its state. However, considering that t′ does not depend on Preg (i.e., it is not controlled

by the register protocol but it is defined by clients) and considering the mobility of the Mobile Byzantine

agents, we may easily have a run where every correct server is faulty and its state can be corrupted at some

time in [t, t′]. Considering that Preg = {AR,AW } and that AR and AW are not running in [t, t′] we can

have that every server stores a non valid state at time t′ and the register value is lost. As a consequence, AR

6

Table 1: Parameters for PRreg Protocol.

k∆ ≥ 2δ, k ∈ {1, 2} n ≥ 2(k + 1)f + 1 #reply ≥ 2kf + 1 #echo ≥ (k + 1)f + 1
k = 1 4f + 1 2f + 1 2f + 1
k = 2 6f + 1 4f + 1 3f + 1

has no way to read a valid value and the validity property is violated. It follows that Preg is does not exist

and we have a contradiction. 2Theorem 1

4 Regular Register implementations

Our self-stabilizing regular register emulation is composed of three parts: the write operation, the read oper-

ation, and the maintenance operation prescribed by our execution model.The write() and read() algorithms

follow the classical quorum-based implementations. The first is in charge of writing on enough servers

such that there are enough correct servers able to reply when a read() operation occurs. The maintenance()
operation is in charge to keep the number of correct servers above the thresholds in Table 1 despite mobile

Byzantine movements.The tricky part of the algorithm is to employ bounded timestamps from the domain

Z5 in such a way to always define a total order on the written values with respect to their timestamps.

Each written value is represented as 〈val, sn〉 where val is the content and sn the corresponding sequence

number, sn ∈ Z5 = {0, 1, 2, 3, 4}. Let us define two operations on such values: addition: +5 : Z5 × Z5 →
Z5, a +5 b = (a+ b) mod 5; and subtraction: −5 : Z5 × Z5 → Z5, a−5 b = a+5 (−b). Note that (−b) is

the opposite of b. That is, the number that added to b gives 0 as result, i.e., b+5 (−b) = 0.

4.1 Preg Detailed Description

Our emulation, protocol Preg, is described in Figures 2 - 4.

Local variables at client ci. Each client ci maintains a set replyi that is used during the read() operation

to collect the three tuples 〈j, 〈v, sn〉〉 sent back from servers. Additionally, ci maintains a local sequence

number csn that is incremented, respect to theZ5 arithmetic, each time it invokes a write() operation, which

is timestamped with such sequence number.

Local variables at server si. Each server si maintains the following local variables:

• Vi[0..2]: an array such that Vi[0] = 〈val0, sn0〉, Vi[1] = 〈val1, sn1〉 and Vi[2] = 〈val2, sn2〉 such

that sn2 −5 sn1 ≤ 2 and sn1 −5 sn0 ≤ 1 and snk ∈ Z5, k ∈ {0, 1, 2}. This array, when a server is

correct is expected to be completely filled with three values. This set is reset and repopulated at each

maintenance() operation.

• FWi: a set that contains elements 〈valk, snk〉, snk ∈ Z5. This set may contain up to three values,

depending on how many consecutive write() operations occur in δ. Such set is populated with values,

due to a write() operation, that have been forwarded #reply times by servers. It is emptied during

the maintenance() at most every δ time.

• Wi: is the set where servers store values coming directly from the writer, including an epoch value,

〈v, sn, epoch〉. epoch is set to 1 at the beginning and is decreased by maintenance() operations.

Values from this set are deleted when the same value appears in the FW set or when epoch reaches

the (−1) value.

7

• echo valsi and echo readi: two sets used to collect information propagated trough ECHO messages

at the beginning of the maintenance() operation. echo valsi stores vectors vecj whose elements are

〈v, sn, epoch〉j propagated by servers sj . Every vecj is the concatenation of Vj (which is a vector

itself) and Wj , which is a set whose elements can be ordered with respect to their timestamp. The

semantic of the epoch variable is the same as in Wj . trunc(echo valsi), with a slightly abuse of

notation, is the set {trunc(vecj , 3),∀vecj ∈ echo valsi}. Finally, echo readi stores the identifiers of

concurrently reading clients in order to notify cured servers about them.

• fw valsi: set variable storing a triple 〈v, sn, epoch〉j meaning that server sj forwarded a write mes-

sage with value v and sequence number sn. The semantic of the epoch variable is the same as in

Wi.

• pending readi: set variable used to collect identifiers of the clients that are currently reading.

In order to simplify the code of the algorithm, let us define the following functions:

• select three pairs max sn(echo valsi): this function takes as input the set echo valsi whose values

vecj are the result of conCut(Vj ,Wj). That function returns, if there exist, the three newest tuples

〈v, sn〉, such that there exist at least #echo occurrences in echo valsi of such tuple. If there are less

than three tuples, the remaining tuples returned are 〈⊥, 0〉.

• select value(replyi): this function takes as input the replyi set of replies collected by client ci and

returns the pair 〈v, sn〉 occurring #reply times. If there are more pairs occurring enough times, it

returns the newest.

• older(Set): given a set of values, whose associated timestamps belong to Z5, then such function

returns the older value among those in Set.

• trunc(V ector, index): takes as input an array and returns the last index elements.

• conc(V ector, Set): takes as input an array V ector and a set Set, assuming that is it possible to order

univocally elements in Set, and returns the concatenation V ector ◦ Set.

• conCut(Vi,Wi) takes as input the array Vi and the set Wi. Since we can order the elements in

Wi with respect to their timestamp, then we manage it as a vector. Such function first concate-

nates them: V ector ← conc(Vi,Wi), removes 〈⊥,⊥〉 elements and returns trunc(V ector, 3). An

example: V = [〈va, 5〉, 〈vb, 0〉, 〈vc, 1〉] and W = [〈⊥,⊥〉, 〈w0, 2〉, 〈w1, 3〉]. The concatenation is

[〈va, 5〉, 〈vb, 0〉, 〈vc, 1〉, 〈⊥,⊥〉, 〈w0, 2〉, 〈w1, 3〉] and the returned array is [〈vc, 1〉, 〈w0, 2〉, 〈w1, 3〉]
which is composed by the last three values different from 〈⊥,⊥〉.

In the following we present a general view of our algorithm.

Maintenance operation. Such operation is executed by servers periodically at times Ti = t0 + i∆. Each

server checks if there are expired (i.e., epoch/∈ {0, 1}) or invalid values in Wi, echo valsi and fw valsi.
In both cases such values are deleted. Otherwise their epoch is decreased by 1. Function check is invoked

on Vi to check if its values are compliant to a correct system behavior. More in details, with respect to

their timestamps, values in V [0] and V [1] are temporarily be one after the other and value in V [2] can be

temporarily just after V [1] or there can be a missing one. Finally it checks if all timestamps belong to Z5

and that there are no values with the same timestamp. Notice that Vi may contain ⊥ values, for readability

8

this case is not explicitly managed, but situations as Vi = [〈⊥,⊥〉, 〈⊥,⊥〉, 〈v2, sn2〉] are allowed. Finally

FWi is emptied.

Now each server is ready to broadcast an ECHO message with the result of conc(Vi,Wi) and the set

pending readi (it contains identifiers of clients that are currently running a read() operation). After δ
time units, servers try to update their state by checking the number of occurrences of each pair 〈v, sn〉 re-

ceived with ECHO messages. In particular, the first empties the V set and then they try to update such set by

invoking select three pairs max sn(echo valsi) function which populates V with at least one tuple 〈v, sn〉.
If there is only one tuple 〈v, sn〉, si can deduce that there exists a concurrent write() operations that are

updating the register value concurrently with the maintenance() operation. Thus, si considers 〈⊥, 0〉 as the

pair associated to the value that is concurrently written. After that it checks if there are values in FWi. In

that case the function INSERT is invoked on such values and FWi is emptied. Such function tries to insert

the value in the proper position in Vi (V [1] or V [2]) and then checks if the vector is properly defined invok-

ing the check function. If not, Vi is reseted and the value is inserted in V [2]. Finally server starts replying

to clients that are currently reading. The same check on FWi and insertion in Vi is performed after ∆ − δ
time during the maintenance() operation. Notice that this second check happens if ∆ > δ.

Write operation. When the write() operation is invoked, the writer increments csn ← csn +5 1, sends

WRITE(vcsn) to all servers and finally returns after δ time.

For each server si, two cases may occurs: (case 1) si delivers WRITE(〈v, csn〉) message when it is not

affected by a Byzantine agent; (case 2) si delivers WRITE(vcsn) message when it is affected by a Byzantine

agent.

case 1 si stores v in W and forward it to every servers sending the WRITE FW(i, 〈v, csn〉) message. Then

it is echoed at the beginning of each maintenance() operation as long as v is in Wi or Vi. In order for

v to be in Vi it has to appear enough times in fw valsi ∪ echo valsi, when it happens v is inserted in

FWi. At the next check on FWi, during the maintenance() operation, v is removed from FWi and inserted

in Vi. case 2 When si is no more affected it can deliver v with both WRITE FW(j, 〈v, csn〉) message and

ECHO(j, Vj∪Wj, pending readi) message, so that v goes to populate the fw valsi∪echo valsi set. When

there are enough occurrences, v is stored in FWi and at the next check on FWi, during the maintenance()
operation, v is removed from FWi and inserted in Vi.

Read operation. At client side, when the read() operation is invoked at client ci, it empties the replyi set

and sends to all servers the READ(i) message. Then ci waits 2δ time, while the replyi set is populated with

servers replies, and from such set it picks the values occurring enough times invoking select value(replyi)
and returns it. Notice that before returning ci sends to every server the read termination notification,

READ ACK(i) message. At server side when sj delivers the READ(i) message, client ci identifier is stored in

the pending readj set. Such set is part of the content of ECHO message in every maintenance() operation,

which populates the echo readj set, so that cured servers can be aware of the reading clients. After, sj in-

vokes conCut(Vj ,Wj) function to prepare the reply message for ci. The result of such function is sent back

to ci in the REPLY message. Such message is also computed and sent at the end of each maintenance() op-

eration, in the case sj was affected by Byzantine agent. Finally a REPLY message containing just one value

is sent when a new value is added in FWj and there are clients in the pending readj ∪ echo readj set.

When the READ ACK(i) message is delivered from ci then its identifier is removed from the pending readj
and echo readj sets.

4.2 Correctness

Let us fist characterize the correct system behavior, i.e., when the protocol is correctly executed after τstab
(the end of the transient failure).

9

function epochCheck(Set):
(01) for each (〈v, sn, epoch〉j ∈ Set) do

(02) if (epoch /∈ {0, 1})
(03) Set← Set \ 〈v, sn, epoch〉j ;

(04) else epoch← epoch− 1;
(05) endif

(06) endFor

——————————————————————————————————

function check(Vi): % Vi[k] = 〈valk , snk〉, k ∈ {0, 1, 2}
(07) if (¬(sn1 −5 sn0 = 0 ∧ (sn2 −5 sn1 = 1 ∨ sn2 −5 sn1 = 2)))∨
(08) (∃i, j ∈ {0, 1, 2}s.t.sni = snj) ∨ (∃snk, k ∈ {0, 1, 2}, s.t. snk /∈ Z5)
(09) then return FALSE;

(10) else return TRUE;

(11) endif

——————————————————————————————————

function insert(Vi, 〈val, sn〉):
(12) if ∃V [k] = 〈val, sn〉, k ∈ {0, 1, 2}
(13) then return;

(14) endIf

(15) if (sn1 +5 1 = sn = sn2 −5 1)
(16) then V [0]← V [1]; V [1]← 〈val, sn〉;
(17) endIf

(18) if (sn1 +5 2 = sn2 +5 1 = sn)
(19) then V [0]← V [1]; V [1] = V [2]; V [2]← 〈val, sn〉;
(20) endIf

(21) if ¬(check(Vi));
(22) thenVi[0]← 〈⊥,⊥〉, Vi[1]← 〈⊥,⊥〉, Vi[2]← 〈val, sn〉;
(23) endif

Figure 1: Auxiliary functions.

Definition 6 (legal sequence) Let opW1
, opW2

, . . . , opWk
, opWk+1

, . . . be S a sequence of consecutive write()
operations issued on the regular register after τstab and let 〈v1, sn1〉, 〈v2, sn2〉, . . . , 〈vk, snk〉, 〈vk+1, snk+1〉, . . .
be the respective written values. The sequence S′ is legal if S′ is obtained from S after applying the follow-

ing rule: for each adjacent couple of elements in S, 〈vk, snk〉, 〈vk+1, snk+1〉, s.t. snk +5 1 = snk+1, every

element can be swapped with an adjacent one at most once.

Definition 7 (legal state) For any correct server si, Vi is in a legal state if its three elements belong to a

subsequence of a legal sequence.

Definition 8 (legal value) Let Vi be in a legal state and let v be a value to be inserted in Vi in such a way

that all elements in Vi are ordered from the oldest to the newest. v is said to be a legal value if after its

insertion in Vi, Vi is still in a legal state.

To prove the correctness of Preg, we first demonstrate that the termination property is satisfied i.e, that

read() and write() operations terminates. Let us note that the termination property is independent from the

specific instance of the MBF model considered.

Lemma 1 If a correct client ci invokes write(v) operation at time t then this operation terminates at time

t+ δ.

Proof The claim simply follows by considering that a write confirmation event is returned to the writer

client ci after δ time, independently of the servers behavior (see lines 03-04, Figure 3). 2Lemma 1

10

operation maintenance() executed every Ti = t0 +∆i :

(01) if |Wi| > 3
(02) then Wi ← ∅
(03) else epochCheck(Wi);
(04) endIf;

(05) epochCheck(echo valsi); epochCheck(fw valsi);
(06) if ¬(check(Vi));
(07) thenVi[0]← 〈⊥,⊥〉, Vi[1]← 〈⊥,⊥〉, Vi[2]← 〈⊥,⊥〉;
(08) endif

(09) FWi ← ∅;
(10) broadcast ECHO(i, conCut(Vi,Wi), pending readi);
(11) wait(δ);
(12) V ← ⊥;

(13) set tmp← select three pairs max sn(echo valsi);
(14) while set tmp 6= ⊥ do

(15) insert(Vi, older(set tmp));
(16) set tmp← set tmp \ older(set tmp);
(17) endWhile;

(18) if (FWi 6= ⊥ ∧ older(FWi) 6= ⊥):
(19) while (FWi 6= ⊥) do

(20) insert(Vi, older(FWi));
(21) Wi ←Wi \ older(FWi);
(22) FWi ← FWi \ older(FWi);
(23) endWhile

(24) endif

(25) for each (j ∈ (pending readi ∪ echo readi)) do

(26) send REPLY (i, conCut(Vi,Wi)) to cj ;

(27) endFor

(28) wait(∆ − δ);
(29) if (FWi 6= ⊥ ∧ older(FWi) 6= ⊥):
(30) while (FWi 6= ⊥) do

(31) insert(Vi, older(FWi));
(32) Wi ←Wi \ older(FWi);
(33) FWi ← FWi \ older(FWi);
(34) endWhile

(35) endif

(36) for each (j ∈ (pending readi ∪ echo readi)) do

(37) send REPLY (i, conCut(Vi,Wi)) to cj ;

(38) endFor

——————————————————————————————————

when ECHO (j, V W, pr) is received:

(39) for each (〈v, sn〉j ∨ 〈v, sn, t〉j)
(40) echo valsi ← echo valsi ∪ 〈v, sn, 1〉j ;

(41) endFor

(42) echo readi ← echo readi ∪ pr;

Figure 2: AM algorithm implementing the maintenance() operation (code for server si) in the (∆S,CUM)
model with bounded timestamp.

11

operation write(v):
(01) csn← (csn+5 1);
(02) broadcast WRITE(v, csn);
(03) wait (δ);
(04) return write confirmation;

when WRITE(v, csn) is received:

(05) if (〈v, csn〉 /∈ V) then

(06) W ←W ∪ 〈v, csn, 1〉;
(07) for each j ∈ (pending readi ∪ echo readi) do

(08) send REPLY (i, {〈v, csn〉});
(09) endFor

(10) endif

(11) broadcast WRITE FW(i, 〈v, csn〉);
—————————————————————————————————————

when WRITE FW(j, 〈v, csn〉) is received:

(12) fw valsi ← fw valsi ∪ {〈v, csn,1〉j};
—————————————————————————————————————

when ∃〈j, 〈v, sn〉〉 ∈ (fw valsi ∪ echo valsi) occurring at least #replyCUM times:

(13) FW ← FW ∪ 〈v, sn〉;
(14) ∀j : fw valsi ← fw valsi \ {〈v, ts,−〉j};
(15) ∀j : echo valsi ← echo valsi \ {〈v, ts,−〉j};
(16) for each (j ∈ (pending readi ∪ echo readi)) do

(17) send REPLY (i, {〈v, sn〉}) to cj ;

(18) endFor

Figure 3: AW algorithms, server side and client side respectively, implementing the write(v) operation in

the (∆S,CUM) model with bounded timestamp.

operation read():
(01) replyi ← ∅;
(02) broadcast READ(i);
(03) wait (2δ);
(04) 〈v, sn〉 ← select value(replyi);
(05) broadcast READ ACK(i);
(06) return v;

———————————————————————–

when REPLY (j, V W) is received:

(07) for each (〈v, sn〉 ∈ VW) do

(08) replyi ← replyi ∪ {〈v, sn〉j};
(09) endFor

when READ (j) is received:

(10) pending readi ← pending readi ∪ {j};
(11) send REPLY (i, conCut(Vi,Wi));
(12) broadcast READ FW(j);
———————————————————————–

when READ FW (j) is received:

(13) pending readi ← pending readi ∪ {j};
———————————————————————–

when READ ACK (j) is received:

(14) pending readi ← pending readi \ {j};
(15) echo readi ← echo readi \ {j};

Figure 4: AR algorithms, server side and client side respectively, implementing the read() operation in the

(∆S,CUM) model with bounded timestamp.

12

Lemma 2 If a correct client ci invokes read() operation at time t then this operation terminates at time

t+ 2δ.

Proof The claim simply follows by considering that a read() returns a value to the client after 2δ time,

independently of the behavior of the servers (see lines 03-06, Figure 4). 2Lemma 2

Theorem 2 (ss-Termination) Any operation invoked on the register eventually terminates.

Proof The proof simply follows from Lemma 1 and Lemma 2. 2Theorem 2

Lemma 3 If (i) k∆ ≥ 2δ (with k ∈ {1, 2}), (ii) n ≥ 2(k+1)f+1, (iii) there are #echo server sj ∈ Co(Ti)
such that Vj = Vk,∀sj, sk ∈ Co(Ti) and (iv) there are no write() operations during [Ti, Ti + δ], then

∀sc ∈ Cu(Ti), sc ∈ Co(Ti + δ) and all servers in Co(Ti + δ) are storing Vj .

Proof By hypotheses at Ti there are #echo correct servers sj storing the same Vj = [〈v0, sn0〉, 〈v1, sn1〉,
〈v2, sn2〉] and running the code in Figure 2. In particular each server broadcasts a ECHO() message with

attached the content of conCut(Vi,Wi) (line 08). By hypothesis there are no write() operations during

[Ti, Ti + δ], thus Wj = ∅ and each correct server broadcasts the same set of values Vj . Since those servers

are #echo then after δ time all non Byzantine servers collect #echo occurrences of all values in Vj . Thus

all correct and cured servers set Vc = Vj = [〈v0, sn0〉, 〈v1, sn1〉, 〈v2, sn2〉]. 2Lemma 3

Lemma 4 If (i) k∆ ≥ 2δ (with k ∈ {1, 2}), (ii) n ≥ 2(k + 1)f + 1. (iii) there are #echo server

sj ∈ Co(Ti), Then ∀sc ∈ Cu(Ti), sc ∈ Co(Ti + δ) and for every server sk ∈ Co(Ti + δ),
⋂

Vk 6= ⊥ in

particular among the common values there is the last written value before Ti or the value belong to opW
such that Ti ∈ [tB(opW), tE(opR)].

Proof Let us start considering that at Ti there are #echo correct servers storing Vi = [〈v0, sn0〉, 〈v1, sn1〉,
〈v2, sn2〉] and running the code in Figure 2. Each server broadcasts an ECHO() message whose content

is conCut(Vi,Wi) (line 08). Let opW1 be a write() operation, such that Ti ∈ [tB(W1), tE(W1)] and let

〈v3, sn3〉 be the value to be written. When a non Byzantine server delivers a WRITE() message 〈v3, sn3〉 ∈
Wi set (Figure 3 line 06). Since Ti ∈ [tB(W1), tE(W1)], at the beginning of the maintenance() operation

non all correct servers have 〈v3, sn3〉 ∈ Wi. Thus, #echo servers in Co(Ti) broadcast different values as

result of conCut(Vi,Wi): [〈v0, sn0〉, 〈v1, sn1〉, 〈v2, sn2〉]} or [〈v1, sn1〉, 〈v2, sn2〉, 〈v3, sn3〉]. At Ti+ δ non

Byzantine servers si select values occurring at least #echo times setting Vi = [〈v1, 1〉, 〈v2, 2〉].
At Ti+ δ it may also happen that another write() operation, opW2 occurs. Let 〈v4, sn4〉 be the value written

by opW2
subsequent to opW1, such that Ti+ δ ∈ [tB(opW2),tB(opW2)]. In that case it may happen that all

servers that were in Co(t) and are now in Co(t+ δ) delivers the WRITE(〈v4 , sn4〉) message and no yet the

servers that were in Cu(Ti). So that the first group of servers is storing in V ∪W , {〈v1, 1〉, 〈v2, 2〉, {〈v3, 3〉}
and the second group is storing {〈v2, 2〉, 〈v3, 3〉, 〈v4, 4〉}. All of those servers are storing 〈v2, 2〉 in common,

which is the last written value respecting to Ti, concluding the proof.

2Lemma 4

Corollary 1 The maintenance() operation guarantees that ∀Ti, i ∈ N, ∀s ∈ Cu(Ti), then s ∈ Co(Ti + δ).

13

Definition 9 (Faulty servers in the interval I) Let us define as B̃[t, t + T] the set of servers that are af-

fected by a Byzantine agent for at least one time unit in the time interval [t, t + T]. More formally

B̃[t, t+ T] =
⋃

τ∈[t,t+T]B(τ).

Definition 10 (MaxB̃(t, t+ T)) Let [t, t+T] be a time interval. The cardinality of B̃(t, t+T) is maximum

if for any t′, t′ > 0, is it true that |B̃(t, t+ T)| ≥ |B̃(t′, t′ + T)|. Let MaxB̃(t, t+ T) be such cardinality.

Lemma 5 If δ ≤ ∆ < 3δ and T ≥ δ then MaxB̃(t, t+ T) = (⌈ T∆⌉+ 1)f .

Proof For simplicity let us consider a single agent ma1, then we extend the reasoning to all the f agents.

In the [t, t+ T] time interval, with T ≥ δ, ma1 can affect a different server each ∆ time. It follows that the

number of times it may “jump” from a server to another is T
∆ . Thus the affected servers are at most ⌈ T∆⌉ plus

the server on which ma1 is at t. Finally, extending the reasoning to f agents, MaxB̃(t, t+T) = (⌈ T∆⌉+1)f ,

concluding the proof. 2Lemma 5

Lemma 6 Let op be a read() operation issued at time t and terminating at time t+2δ. Let MaxB̃(t, t+2δ)
be the maximum number of servers that can be faulty for at least one time unit in the interval [t, t+2δ]. If (i)

k∆ ≥ 2δ (with k ∈ {1, 2}) and (ii) n ≥ 2(k+1)f +1, then |Co(t, t+δ)| > |MaxB̃([t, t+2δ])|+ |Cu(t)|.

Proof

• Case 1 - (∆S,CUM) with 2δ ≤ ∆.

Let us note that the maximum number of faulty servers in any interval [t, t + 2δ] is strictly related to

the ∆ value. From Lemma 5, MaxB̃(t, t+2δ) = (⌈2δ∆ ⌉+1)× f . Considering that δ ≤ ∆ < 2δ, we

obtain MaxB̄(t, t+ 2δ) = 3f .

In addition to Byzantine servers, in the (∆S,CUM) model also cured servers may send a reply. Let

us consider that the maintenance() operation code run in δ time. At any Ti servers sends their value

and after δ time the collected values are analyzed. Thus we can consider that δ time is enough to

terminate the maintenance() operation). It follows that for each Byzantine server there can be only

one server that is in the cured state (the one that was previously affected by the same agent) whose

become correct before the agent affect another server. Thus there are, in the worst case, f more non

correct servers that may reply. It follows that |Cu(t)| ≤ f .

The number of correct servers at time t + δ is given by the number of serves that are non-faulty

in the whole interval (n −MaxB̄(t, t + 2δ) − |Cu(t)| = f) plus the number of server that were

not correct at time t but that had “enough” time to terminate the maintenance operation before time

t+ δ (i.e., MaxB̄(t, t+2δ)−MaxB̄(t+ δ, t+ 2δ)). On the other side, if a sever si begins a read()
operation in a cured state, then the agent left si at most t− δ + 1. Thus, it can not move again before

t+ δ. Thus the server that will be affected after t+ δ is correct at t+ δ. So, there are as many servers

being correct at t and faulty after as much as the servers in |Cu(t)| = f .

Finally each servers in |Cu(t)| has the time to became correct at time t+ δ (for Corollary 1).

Thus

|Co(t, t+δ)| = n−(MaxB̄(t, t+2δ)+|Cu(t)|)+MaxB̄(t, t+2δ)−MaxB̄(t+δ, t+2δ)+2×|Cu(t)|

14

|Co(t, t+ δ)| = n− |Cu(t)| −MaxB̄(t+ δ, t+ 2δ) + 2× |Cu(t)|

|Co(t, t+ δ)| = n−MaxB̄(t+ δ, t+ 2δ) + |Cu(t)|

|Co(t, t+ δ)| = 4f + 1− 2f + f = 3f + 1

• Case 2 - (∆S,CUM) with δ ≤ ∆ < 2δ. Following the consideration done in Case 1, we obtain that

MaxB̄(t, t+ 2δ) = 3f for δ ≤ ∆ < 2δ and also |Cu(t) = f |. Note that in this case, the presence of

|Cu(t)| does not implies an extra presence of the same amount of server that are correct at t+ δ and

then became faulty. Thus we have that:

|Co(t, t+δ)| = n−(MaxB̄(t, t+2δ)+|Cu(t)|)+MaxB̄(t, t+2δ)−MaxB̄(t+δ, t+2δ)+|Cu(t)|

|Co(t, t+ δ)| = n− |Cu(t)| −MaxB̄(t+ δ, t+ 2δ) + |Cu(t)|

|Co(t, t+ δ)| = n−MaxB̄(t+ δ, t+ 2δ)

|Co(t, t+ δ)| = 6f + 1− 2f = 4f + 1

From which the claim follows.

2Lemma 6

Considering the worst case scenario where each message sent to and by non correct servers is instanta-

neously delivered, while each message sent to and by correct servers needs δ time, from Lemma 6 the next

corollary follows

Corollary 2 Let op be a read() operation issued at time t and terminating at time t + 2δ. The number of

replies sent by correct servers at some time τ ∈ [t, t+ 2δ] is always greater than the number of replies sent

by non correct servers.

Definition 11 (write() completion time twE) Let write() be an operation opW writing v on the register.

twE is the time after which, if a read() operation occurs, there are always at least #reply correct servers

that reply with v.

For simplicity let us first prove that the algorithm as it has been presented in [5] works, even if we

consider the three values result of conCut(V,W), instead of V ∪ W , assuming we can order them from

the oldest to the newest. The main difference is that in [5] all values in V ∪W are ordered by sequential

timestamp. This is not true in conCut(V,W), but those values can be univocally order from the oldest to the

newest. Such proof is moved after.

Lemma 7 Let op be a write(v) operation invoked by a correct client at time tB(op) = t, then the write

completion time twE ≤ t+ 2δ.

Proof To prove this Lemma we have to prove that by time twE ≤ t + 2δ, v is always in conCut(V,W) in

#reply correct servers.

Due to the communication channel synchrony, WRITE messages are delivered by servers within the time

interval [t, t+ δ]; any server sj ∈ Co(t, t+ δ) executes the correct algorithm code. Thus, when sj delivers

WRITE message it checks if the value is already stored (line 05, Figure 3), otherwise it executes line 06

storing the value in Wj and setting the associated epoch to 1.

15

Let us consider case k = 2. By time tE(opW) there are n − MaxB̃(tB(opW), tE(opW)) ≥ #reply
servers able to reply with v to a read() operation. This is true up to the next Byzantine agent move-

ment Ti > tE(opW), in other words, if Ti−1 ∈ [tB(opW), tE(opW)] then the hypothesis of Lemma

3 does not hold (there are no #echo servers having the same vector V , such that v ∈ V), so that at

Ti there are at least #reply − f servers that can reply with messages whose content is v, whose are

not enough. Since #reply − f = #echo then at Ti there are enough correct servers that during the

maintenance() that send v in the ECHO() message. So for Lemma 3 at Ti+1 all correct servers are able

to reply with v. What is left to prove is that twE ∈ [Ti, Ti+1] and twE ≤ t + 2δ. During the write()
operation there are at least n − MaxB̃(tB(opW), tE(opW)) ≥ #reply = 4f + 1 servers always cor-

rect, Co(tB(opW), tE(opW)). Let B(tB(opW), Ti−1) the set of servers that missed the WRITE(v) message.

Some servers in Co(tB(opW), tE(opW)) may deliver the WRITE() message before of after Ti−1, and thus

send the WRITE FW() message before of after Ti−1. In the first case the WRITE FW() message can be

lost as well, but v is also present in the result of conCut(V,W) (Figure 3 line 06) and sent at Ti−1 in the

ECHO() message (Figure 2 line 08) so that servers in B(tB(opW), Ti−1) deliver it at most at Ti + δ. In the

second case, the WRITE FW() message is sent by servers in the time interval [Ti−1, tE(op)] (Figure 3 line

11). Since a message is delivered at most after δ time, is it true that at most at tE(op) + δ = t + 2δ any

servers that missed the write() message has now enough occurrence of it in the fw valsi ∪ echo valsi set

so that line 13 in Figure 3 by time t + 2δ is executed storing v in FWi, which is sent back to any reading

client, concluding the proof. If k = 1 the proof structure is similar. 2Lemma 7

Considering Lemma 7 and that every time t > tno tr the function insert(V, v) is invoked, ∃k ∈
{0, 1, 2}, V [k] = v (every branch of such function ends with an insertion), then the following Corollary

holds.

Corollary 3 Let opW be a write() operation such that tB(opW) > τno tr and let v be the value to be written

in the register. Then for every si ∈ Co(tB(opW) + 2δ), v ∈ FWi by time tB(opW) + 2δ.

Lemma 8 Let opW be a write() operation such that tB(opW) > τno tr and let v be the written value. Let

tEw be its time completion and let Ti the time of the next Byzantine agent movement just after tEw. Then if

there are no other write() operation, the value written by opW is stored by #reply servers forever.

Proof The proof follows directly from Lemma 7 and considering that if there a no more write() operation

W = ∅, so at every maintenance() operation there are at least #echo servers storing v ∈ V so that

v ∈ conCut(V,W). 2Lemma 8

Lemma 9 Let opW0
, opW1

, . . . , opWk−1
, opWk

, opWk+1
, . . . be the sequence of write() operation issued on

the register after τstab. Let us consider a generic opWk
and let v be the written value by such operation and

tEwk be its completion time. Then v is in the register (there are #reply correct servers such that v ∈ V)

up to time at least tBWk+3.

Proof The proof simply follows considering that:

• for Lemma 8 if there are no more write() operation then v, after tEw, is in the register forever.

• any new written value eventually is stored in vector V (cf. Figure 2 line 12 or line 15) whose dimen-

sion is three.

• write() operation occur sequentially.

16

s0

s1

s2

s3

s4

s5

s6

write()

Ti−1 Ti Ti+1

Figure 5: write() operation in a scenario where δ ≤ ∆ < 2δ.

From that after three write() operations, opWk+1
, opWk+2

, opWk+3
, v is no more stored in the regular register.

2Lemma 9

Let us now finally prove that the result of conCut(V,W) is compliant to the expected behavior that we

would have from V ∪W set of elements ordered with respect to sequential timestamps.

Lemma 10 For each server sj issuing a maintenance() operation opMj
, such that tB(opMj

) > τstab and

sj /∈ B(tB(opMj
)), |FWi| ≤ 3 and values in FWi belong to a legal subsequence.

Proof Consider that:

0 every write() operation, such that tB(opWj
) > τno tr, terminates after δ time from its invocation

(Figure 3 line 01-04);

1 for every write() operation opWj
, such that vj is the value to be written in the register and tB(opWj

) >
τno tr, then for every si ∈ Co(tB(opWj

) + 2δ), v ∈ FWi by time tBopWj
+ 2δ (Corollary 3);

2 FW is analyzed and emptied at most any δ time during any maintenance() operation run by non

Byzantine servers (Figure 2 lines 13 - 18), let us call such time interval M .;

3 the writer executes write() operations sequentially.

From point 1 it follows that during M there can be in FWi a value vj concerning a write() operation opWj

issued before M such that tE(Wj) /∈ M but tB(Wj) + 2δ ∈ M . Combining point 0 and 1 we have that

given the write() operation opWj−1
then tB(Wj−1) + 2δ /∈ M . Combining point 2 and 3, we have that the

time interval M can be overlapped by at most two write() operations, let us name them opW1
and opW2

.

Combining those results, in FWi there can be values coming from opWj
, opW1

and opW2
. Let us consider

again point 1, it is possible to have in FWi opWj
, opWj

, opW2
and opWj

, opW1
as well and all of them are a

legal subsequence, which concludes the proof. 2Lemma 10

17

0

1

23

4

0

1

23

4

Figure 6: The left figure is a general representation of Z5. The right figure shows that given two points there

is only one possible direction, from 3 to 0 and not vice versa, since the distance between these can be at

most 2.

Lemma 11 For any servers si /∈ B(t), t > τstab, it is always possible to univocally order the elements in

FWi, from the oldest to the newest, with respect to their timestamp.

Proof The proof follows considering that, the algorithm depicted in Figure 3 generates timestamps in a

sequence and that in FWi, for Lemma 10 there are at most 3 elements whose belong to a legal subsequence.

Let opWk
, opWk+1

, opWk+2
be the three subsequent write() operations that respectively generate vk, vk+1,

vk+2 ∈ FWi whose respective timestamps are z, z +5 1, z +5 2. Since those elements are sequentially

generated then for each couple of them the difference between those timestamps is at most 2. Let us consider

a couple of elements vk and vk+2, two cases are possible: (i) vk has been generate before vk+2 or (ii)

vice versa. Let us suppose that case (ii) is true, so that vk+2 has been generate before vk. Computing

z −5 z + 2 = 3, which would mean that those two values belong to a sequence of four values, but in FWi

there is at most a sequence of three values (Lemma 10). It follows that case (1) is the only possible one,

where z + 2 −5 z = 2. Figure 6 provides a graphical representation of what has been presented, showing

that there is an unique way to order a legal sequence of three elements, concluding the proof. 2Lemma 11

Lemma 12 For any t > τstab, for any si ∈ Co(t), Wi contains at most three values.

Proof Considering that:

1. there is a new value v in Wi any time a WRITE() message is delivered from the writer issuing a write()
operation opW ;

2. v is deleted from Wi when it is present in FWi, during the maintenance() operation at the next check

on FWi, line 21 or line 32, Figure 2. So this check is performed at most any δ time;

3. for Corollary 3 v ∈ FWi at most by time tB(opW) + 2δ;

4. write() operations are issued sequentially.

Combining point 1,2 and 3 a value v is removed from Wi at most by time tB(opW) + 3δ. From point

4 it follows directly that there are no more than three values is Wi. To be more clearer, if there are four

sequential write() operations opW1
, opW2

, opW3
, opW4

, since those are sequential, when opW4
occurs, the

value in Wi due to opW1
is no more present in Wi. 2Lemma 12

From Lemma 11 we have that if in a set there are at most three values belonging to a legal subsequence

is always possible to order them, so that, considering Lemma 12 the same reasoning can be applied to Wi.

18

Corollary 4 For any servers si /∈ B(t), t > τstab it is always possible to univocally order the elements in

Wi with respect to their timestamp.

Lemma 13 For any t > τstab, the CONCUT function returns at most three values, such that in those values

is it present the last written values before t and, if present, the concurrently written one.

Proof The proof follows considering how the conCut function concatenate Vi and Wi and truncate it. For

Corollary 4 is it possible to order elements in Wi. The same is trivially true for Vi since it is an ordered set.

Thus the concatenation of those two lead to an ordered sequence of values, so that considering the last three

of them implies that we are considering the last written values and if it is present also the concurrent one.

2Lemma 13

Theorem 3 (ss-Validity) There exists a time τstab such that each read operation invoked at time t > τstab
returns the last value written before its invocation, or a value written by a write() operation concurrent with

it.

Proof Let us consider a read() operation opR and the time interval [tB(opR), tB(opR) + δ], i.e., the first

δ period of the read() operation. Since such operation lasts 2δ, the reply messages sent by correct servers,

within the considered period, are delivered by the reading client. For Lemma 2, in such period there are

#reply correct servers that sent back a reply message to the reading client. There is to prove that in those

#reply there is at least one common value that is the last written value or the concurrently written one.

There are two cases, opR is concurrent with some write() operations or not.

opR is not concurrent with any write() operation. Let opW be the last write() operation such that opR
happens after it, i.e., tE(opW) ≤ tB(opR), and let v be the last written value. From Lemma 7 and Lemma 8

after the write completion time there are #reply correct servers storing v in V ∪W such that, for Lemma

13, it is returned by CONCUT(Vi,Wi). So the last written value is returned.

opR is concurrent with some write() operation. During the [tB(opR), tB(opR)+δ] time interval there can

be at most two write() operations. Thus for Lemma 9 and 13 the last written value before tB(opR) is still

present in #reply correct servers. Thus at least the last written value is returned. Note that the concurrently

written values may be returned if the WRITE() and REPLY() messages are fast enough to be delivered before

the end of the read() operation. Note that Byzantine servers may not force the reader to read another or

older value since for Lemma 2 the number of correct replies is greater than the number of incorrect ones

and because even if an older values has #reply occurrences the one with the highest sequence number is

chosen. 2Theorem 3

Basically we can say that thanks to the maintenance() operation and the forwarding mechanism, when

a read() operation opR begins at time tB(opR), at time tB(opR) + δ there are #reply correct servers that

reply with a value v ∈ V V S(tB(opR)).

Theorem 4 Let n be the number of servers emulating the register and let f be the number of Byzantine

agents in the (∆S,CUM) round-free Mobile Byzantine Failure model. Let δ be the upper bound on the

communication latencies in the synchronous system. If (i) k∆ ≥ 2δ (with k ∈ 1, 2) and (ii) n ≥ 2(k +
1)f + 1, then Preg implements a Self-Stabilizing SWMR Regular Register in the (∆S,CUM) round-free

Mobile Byzantine Failure model.

Proof The proof simply follows from Theorem 2 and Theorem 3. 2Theorem 4

19

Theorem 5 Protocol PRreg is tight with respect to the number of replicas.

Proof The proof simply follows considering that Theorems 2-3 proved that PRreg works with bounds

provided in Table 1. Those match the previously known lower bounds [6] for the (∆S,CUM) model.

2Theorem 5

What is left to prove are the necessary conditions for the system to self-stabilize after τno tr.

Lemma 14 Let t > τno tr , then after 3∆ for any server si, the effect of transient failures disappear in all

variables but Vi and echo vali.

Proof After τno tr, all non Byzantine servers si execute the correct code of the algorithm. So that at the

beginning of every maintenance() operations FWi is emptied and the EPOCHCHECK() function is invoked

on Wi, echo valsi and fw valsi sets. So that values populate these sets for at most the time needed for

two maintenance() operations. In fact, the epoch associated to each value has to be in the set {0, 1} which

is decreased by 1 at the beginning of every maintenance() operation. When epoch /∈ {0, 1} the element

associated to it is deleted. Thus, in the worst case scenario epoch is set to 1. During the first maintenance()
operation, it is decreased to 0. During the second maintenance() operation is decreased to 1. At the next

one epoch /∈ {0, 1} and so is deleted. Follows that after 2∆ time those sets, Wi and fw valsi, are cleaned

which is not true for echo valsi and Vi whose are populated at each maintenance() operation. Since the

end of the transient failures is not aligned to the maintenance() operations we consider a ∆ time more.

2Lemma 14

Lemma 15 Let opW1
, . . . , opW5

be a sequence of 5 consecutive write() operations, occurring after τno tr+
3∆, then each servers si ∈ Co(t), t > τno tr +3∆+ tE(opW5

), is storing Vi in a legal state and populated

only by write() operations issued after τno tr.

Proof From Lemma 14, after τno tr + 3∆ all variables but Vi and echo valsi, for every si not Byzantine,

are cleaned from the effect of transient failures. So that in order to have a stabilized system Vi has to be

completely populated with values belonging to correctly invoked write() operations, i.e., operation invoked

after τno tr . Since Vi by definition contains 3 values, then at most 3 write() operations are necessary. Is it to

prove that at most two extra write() operations can occur. At the beginning of any maintenance() operation

is invoked the function check(Vi). So that this set can be in one of the following states (for simplicity we

represent each element by its timestamp ts and we omit the modulo operation 2):

a. Vi = tsk, tsk+1, tsk+2;

b. Vi = tsk, tsk+1, tsk+3;

c. Vi = ⊥,⊥,⊥;

d. Vi = ⊥,⊥, tsk;

e. Vi = ⊥, tsk, tsk+1;

f. Vi = ⊥, tsk, tsk+2;

2
tsk, tsk+1, . . . in the extended form is tsk, tsk+51,

20

Let us consider the following legal sequence: tsk−1, tsk+1, tsk, tsk+2, . . .
3 and the state (d.) Vi = ⊥,⊥, tsk.

The result of the invocation of INSERT on Vi and tsk−1 is Vi = ⊥, tak−1, tsk. The value after, tsk+1

produces the following legal state Vi = tsk−1, tsk, tsk+1. Finally the value after tsk, since it is already in Vi

produces the following state Vi = ⊥,⊥, tsk. The hereafter values to be inserted belong to a legal sequence

as the value in Vi, so that after two more write() operations Vi is in a legal sequence and all the next values

are legal value. To generalize, after the third write() operation, if Vi contains only values coming from a

legal sequence (i.e., ⊥ has never been inserted in the previous three insertions), then all the next values are

legal values, since the values in Vi belong to the same legal sequence. This mean that there can not be more

than two extra write() operation in addiction to the three necessary ones.

From now on, values in Vi and FWi are consecutive elements of a legal sequence. So that every older

element in FWi is a legal value for Vi, in other words, any time that a new value has to be inserted in Vi

such operation succeed, which is true for each correct server. 2Lemma 15

5 Concluding remarks

We proposed a self-stabilizing regular register emulation in a network where both arbitrary transient faults

and mobile Byzantine faults can occur, and where processes and Byzantine agent moves are decoupled. Our

solution improves the existing work considering mobile Byzantines faults [6, 4] in several key aspects: (i) it

is the first self-stabilizing regular register implementation in round-free synchronous communication model,

and(ii) it uses bounded timestamps from the Z5 domain. All these improvements have no additional cost

with respect to the number of replicas that are necessary to tolerate f mobile Byzantine processes: that is,

our solution is optimal with respect to established lower bounds [6]. Additionally, the convergence time of

our solution is upper bounded by 3∆+T5write(), where T5write() is the time needed to execute five complete

write() operations, each write() operation completing in finite time.

An interesting future research direction is to study upper and lower bounds for (i) memory, and (ii)

convergence time complexity of self-stabilizing register emulations tolerating mobile Byzantine faults.

3Is it enough to swap tsk+1 and tsk to obtain values generated by a sequence of write() operations

21

References

[1] N. Banu, S. Souissi, T. Izumi, and K. Wada. An improved byzantine agreement algorithm for syn-

chronous systems with mobile faults. International Journal of Computer Applications, 43(22):1–7,

April 2012.

[2] Rida A. Bazzi. Synchronous byzantine quorum systems. Distributed Computing, 13(1):45–52, January

2000.

[3] François Bonnet, Xavier Défago, Thanh Dang Nguyen, and Maria Potop-Butucaru. Tight bound on

mobile byzantine agreement. In Distributed Computing - 28th International Symposium, DISC 2014,

Austin, TX, USA, October 12-15, 2014. Proceedings, pages 76–90, 2014.

[4] Silvia Bonomi, Antonella del Pozzo, and Maria Potop-Butucaru. Tight self-stabilizing mobile

byzantine-tolerant atomic register. In Proceedings of the 17th International Conference on Distributed

Computing and Networking, ICDCN ’16, pages 6:1–6:10, New York, NY, USA, 2016. ACM.

[5] Silvia Bonomi, Antonella Del Pozzo, Maria Potop-Butucaru, and Sébastien Tixeuil. Optimal Mobile

Byzantine Fault Tolerant Distributed Storage. Research report, UPMC - Université Paris 6 Pierre et

Marie Curie, July 2016.

[6] Silvia Bonomi, Antonella Del Pozzo, Maria Potop-Butucaru, and Sébastien Tixeuil. Optimal mobile

byzantine fault tolerant distributed storage. In Proceedings of the ACM International Conference on

Principles of Distributed Computing (ACM PODC 2016), Chicago, USA, July 2016. ACM Press.

[7] H. Buhrman, J. A. Garay, and J.-H. Hoepman. Optimal resiliency against mobile faults. In Proceedings

of the 25th International Symposium on Fault-Tolerant Computing (FTCS’95), pages 83–88, 1995.

[8] Ariel Daliot and Danny Dolev. Self-stabilization of byzantine protocols. In 7th International Sympo-

sium on Self-Stabilizing Systems (SSS 2005), pages 48–67, 2005.

[9] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. CACM, 17(11):643–644,

1974.

[10] Shlomi Dolev. Self-Stabilization. MIT Press, 2000.

[11] Shlomi Dolev and Jennifer L. Welch. Self-stabilizing clock synchronization in the presence of byzan-

tine faults. Journal of the ACM, 51(5):780–799, 2004.

[12] Swan Dubois, Toshimitsu Masuzawa, and Sébastien Tixeuil. On byzantine containment properties

of the min+1 protocol. In 12th International Symposium on Stabilization, Safety, and Security of

Distributed Systems (SSS 2010), 2010.

[13] Swan Dubois, Toshimitsu Masuzawa, and Sébastien Tixeuil. Bounding the impact of unbounded at-

tacks in stabilization. IEEE Transactions on Parallel and Distributed Systems, 2011.

[14] Swan Dubois, Toshimitsu Masuzawa, and Sébastien Tixeuil. Maximum metric spanning tree made

byzantine tolerant. In 25th International Symposium on Distributed Computing (DISC 2011), 2011.

[15] J. A. Garay. Reaching (and maintaining) agreement in the presence of mobile faults. In Proceedings

of the 8th International Workshop on Distributed Algorithms, volume 857, pages 253–264, 1994.

22

[16] Leslie Lamport. On interprocess communication. part i: Basic formalism. Distributed Computing,

1(2):77–85, 1986.

[17] Dahlia Malkhi and Michael Reiter. Byzantine quorum systems. Distributed Computing, 11(4):203–

213, October 1998.

[18] Jean-Philippe Martin, Lorenzo Alvisi, and Michael Dahlin. Minimal byzantine storage. In Proceedings

of the 16th International Conference on Distributed Computing, DISC ’02, pages 311–325, London,

UK, UK, 2002. Springer-Verlag.

[19] Jean-Philippe Martin, Lorenzo Alvisi, and Michael Dahlin. Small byzantine quorum systems. In

Dependable Systems and Networks, 2002. DSN 2002. Proceedings. International Conference on, pages

374–383. IEEE, 2002.

[20] Toshimitsu Masuzawa and Sébastien Tixeuil. Stabilizing link-coloration of arbitrary networks with un-

bounded byzantine faults. International Journal of Principles and Applications of Information Science

and Technology, 1(1):1–13, 2007.

[21] Mikhail Nesterenko and Anish Arora. Tolerance to unbounded byzantine faults. In 21st Symposium

on Reliable Distributed Systems (SRDS 2002), pages 22–29. IEEE Computer Society, 2002.

[22] R. Ostrovsky and M. Yung. How to withstand mobile virus attacks (extended abstract). In Proceedings

of the 10th Annual ACM Symposium on Principles of Distributed Computing (PODC’91), pages 51–59,

1991.

[23] R. Reischuk. A new solution for the byzantine generals problem. Information and Control, 64(1-

3):23–42, January-March 1985.

[24] Yusuke Sakurai, Fukuhito Ooshita, and Toshimitsu Masuzawa. A self-stabilizing link-coloring pro-

tocol resilient to byzantine faults in tree networks. In 8th International Conference on Principles of

Distributed Systems (OPODIS 2005), pages 283–298, 2005.

[25] T. Sasaki, Y. Yamauchi, S. Kijima, and M. Yamashita. Mobile byzantine agreement on arbitrary

network. In Proceedings of the 17th International Conference on Principles of Distributed Systems

(OPODIS’13), pages 236–250, December 2013.

[26] Fred B. Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial.

ACM Computing Surveys, 22(4):299–319, December 1990.

[27] Paulo Sousa, Alysson Neves Bessani, Miguel Correia, Nuno Ferreira Neves, and Paulo Verissimo.

Highly available intrusion-tolerant services with proactive-reactive recovery. IEEE Transactions on

Parallel & Distributed Systems, (4):452–465, 2009.

23

