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Abstract

This paper proposes the first implementation of a self-stabilizing regular

register emulated by n servers that is tolerant to both mobile Byzantine agents,

and transient failures in a round-free synchronous model. Differently from

existing Mobile Byzantine tolerant register implementations, this paper con-

siders a more powerful adversary where (i) the message delay (i.e., δ) and

the period of mobile Byzantine agents movement (i.e., ∆) are completely de-

coupled and (ii) servers are not aware of their state i.e., they do not know if

they have been corrupted or not by a mobile Byzantine agent.

The proposed protocol tolerates (i) any number of transient failures, and

(ii) up to f Mobile Byzantine agents. In addition, our implementation uses

bounded timestamps from the Z13 domain and it is optimal with respect to

the number of servers needed to tolerate f mobile Byzantine agents in the

given model.

1 Introduction

Byzantine fault tolerance is a fundamental building block in distributed system as

Byzantine failures include all possible faults, attacks, virus infections and arbitrary

behaviors that can occur in practice (even unforeseen ones). Such bad behaviors

have been typically abstracted by assuming an upper bound f on the number of
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Byzantine failures in the system. However, such assumption has two main limita-

tions: (i) it is not suited for long lasting executions and (ii) it does not consider

the fact that compromised processes/servers may be restored as infections may be

blocked and confined or rejuvenation mechanisms can be put in place [25] making

the set of faulty processes changing along time.

Mobile Byzantine Failure (MBF) models have been recently introduced to in-

tegrate those concerns. Failures are represented by Byzantine agents that are man-

aged by an omniscient adversary that “moves” them from a host process to another

and when an agent is in some process it is able to corrupt it in an unforeseen man-

ner. Models investigated so far in the context of mobile Byzantine failures consider

mostly round-based computations, and can be classified according to Byzantine

mobility constraints: (i) constrained mobility [11] agents may only move from one

host to another when protocol messages are sent (similarly to how viruses would

propagate), while (ii) unconstrained mobility [3, 5, 16, 21, 22, 23] agents may move

independently of protocol messages. In the case of unconstrained mobility, several

variants were investigated [3, 5, 16, 21, 22, 23]: Reischuk [22] considers that ma-

licious agents are stationary for a given period of time, Ostrovsky and Yung [21]

introduce the notion of mobile viruses and define the adversary as an entity that can

inject and distribute faults; finally, Garay [16], and more recently Banu et al. [3],

and Sasaki et al. [23] or Bonnet et al. [5] consider that processes execute syn-

chronous rounds composed of three phases: send, receive, and compute. Between

two consecutive such synchronous rounds, Byzantine agents can move from one

node to another. Hence the set of faulty processes at any given time has a bounded

size, yet its membership may evolve from one round to the next. The main differ-

ence between the aforementioned four works [3, 5, 16, 23] lies in the knowledge

that hosts have about their previous infection by a Byzantine agent. In Garay’s

model [16], a host is able to detect its own infection after the Byzantine agent left

it. Sasaki et al. [23] investigate a model where hosts cannot detect when Byzan-

tine agents leave. Finally, Bonnet et al. [5] considers an intermediate setting where

cured hosts remain in control on the messages they send (in particular, they send

the same message to all destinations, and they do not send obviously fake informa-

tion, e.g. fake id). Those subtle differences on the power of Byzantine agents turns

out to have an important impact on the bounds for solving distributed problems.

A first step toward decoupling algorithm rounds from mobile Byzantine moves

is due to Bonomi et al. [8]. In their solution to the regular register implementation,

mobile Byzantine movements are synchronized, but the period of movement is

independent to that of algorithm rounds.

Alternatively, self-stabilization [13, 14] is a versatile technique to recover from

any number of Byzantine participants, provided that their malicious actions only

spread a finite amount of time. In more details, starting from an arbitrary global
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state (that may have been caused by Byzantine participants), a self-stabilizing pro-

tocol ensures that problem specification is satisfied again in finite time, without

external intervention.

Register Emulation. Traditional solutions to build a Byzantine tolerant storage

service (a.k.a. register emulation) can be divided into two categories: replicated

state machines [24], and Byzantine quorum systems [4, 18, 20, 19]. Both ap-

proaches are based on the idea that the current state of the storage is replicated

among processes, and the main difference lies in the number of replicas that are

simultaneously involved in the state maintenance protocol.

Multi-tolerance. Extending the effectiveness of self-stabilization to permanent

Byzantine faults is a long time challenge in distributed computing. Initial re-

sults were mostly negative [12, 15, 26] due to the impossibility to distinguish a

honest yet incorrectly initialized participant from a truly malicious one. On the

positive side, two notable classes of algorithms use some locality property to tol-

erate Byzantine faults: space-local and time-local algorithms. Space-local algo-

rithms [27, 26, 28] try to contain the fault (or its effect) as close to its source as

possible. This is useful for problems where information from remote nodes is

unimportant (such as vertex coloring, link coloring, or dining philosophers). Time-

local algorithms [29, 30, 31] try to limit over time the effect of Byzantine faults.

Time-local algorithms presented so far can tolerate the presence of at most a single

Byzantine node. Thus, neither approach is suitable to register emulation.

Recently, several works investigated the emulation of self-stabilizing or pseudo-

stabilizing Byzantine tolerant SWMR or MWMR registers [1, 9, 7]. All these

works do not consider the complex case of mobile Byzantine faults.

To the best of our knowledge, the problem of tolerating both arbitrary transient

faults and mobile Byzantine faults has been considered recently only in round-

based synchronous systems [6]. The authors propose optimal unbounded self-

stabilizing atomic register implementations for round-based synchronous systems

under the four Mobile Byzantine models described in [3, 5, 16, 23].

Our Contribution. The main contribution of the paper is a protocol Preg emulat-

ing a regular register in a distributed system where both arbitrary transient failures

and mobile Byzantine failures can occur. In particular, the proposed solution dif-

fers from previous work on round-free register emulation [8, 10] as we add the

self-stabilization property. In more details, we present a regular register implemen-

tation that uses bounded timestamps from the Z13 domain and it is optimal with

respect to the number of replicas needed to tolerate f mobile Byzantine agents. Fi-

nally, the convergence time of our solution is upper bounded by T10write(), where
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T10write() is the time needed to execute ten complete write() operations.

2 System Model

We consider a distributed system composed of an arbitrary large set of client pro-

cesses C and a set of n server processes S = {s1, s2 . . . sn}. Each process in the

distributed system (i.e., both servers and clients) is identified by a unique identi-

fier. Servers run a distributed protocol emulating a shared memory abstraction and

such protocol is totally transparent to clients (i.e., clients do not know the protocol

executed by servers). The passage of time is measured by a fictional global clock

(e.g., that spans the set of natural integers). At each time t, each process (either

client or server) is characterised by its internal state, i.e., by the set of all its local

variables and the corresponding values. No agreement abstraction is assumed to

be available at each process (i.e. processes are not able to use consensus or total

order primitives to agree upon the current values). Moreover, we assume that each

process has the same role in the distributed computation (i.e., there is no special

process acting as a coordinator).

Communication model. Processes communicate through message passing. In par-

ticular, we assume that: (i) each client ci ∈ C can communicate with every server

through a broadcast() primitive, (ii) each server can communicate with every other

server through a broadcast() primitive, and (iii) each server can communicate with

a particular client through a send() unicast primitive. We assume that communica-

tions are authenticated (i.e., given a message m, the identity of its sender cannot be

forged) and reliable (i.e., spurious messages are not created and sent messages are

neither lost nor duplicated).

Timing assumptions. The system is synchronous in the following sense: (i) the

processing time of local computations (except for wait() statements) is negligible

with respect to communication delays and is assumed to be equal to 0, and (ii)

messages take time to travel to their destination processes. In particular, concerning

point-to-point communications, we assume that if a process sends a message m at

time t then it is delivered by time t+ δp (with δp > 0). Similarly, let t be the time

at which a process p invokes the broadcast(m) primitive, then there is a constant

δb (with δb ≥ δp) such that all servers have delivered m at time t + δb. For the

sake of presentation, in the following we consider a unique message delivery delay

δ (equal to δb ≥ δp), and we assume δ is known to every process. Moreover, we

assume that any process is provided with a physical clock, i.e., non corruptible.

Computation model. Each process of the distributed system executes a distributed

protocol Preg that is composed by a set of distributed algorithms. Each algorithm

in Preg is represented by a finite state automaton and it is composed of a sequence
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of computation and communication steps. A computation step is represented by

the computation executed locally to each process while a communication step is

represented by the sending and the delivering events of a message. Computation

steps and communication steps are generally called events.

The computation is round-free i.e., the distributed protocol Preg does not evolve

in synchronous rounds and messages can be sent, according to the protocol, at any

point in time.

Given a process pi and the protocol Preg, we say that pi is correctly executing Preg
in a time interval [t, t′] if pi never deviates from Preg in [t, t′] (i.e., it always follows

the automata transitions and never corrupts its local state).

Definition 1 (Valid State at time t) Let pi be a process and let statepi be the state

of pi at some time t. statepi is said to be valid at time t if it is equal to the state of

some fictional process p̄ correctly executing Preg in the interval [t0, t].

Failure Model. An arbitrary number of clients may crash while servers are affected

by Mobile Byzantine Failures i.e., failures are represented by Byzantine agents that

are controlled by a powerful external adversary “moving” them from a server to

another. We assume that, at any time t, at most f mobile Byzantine agents are in

system.

In this work we consider the ∆-synchronized and Cured Unaware Model, i.e.

(∆S,CUM) MBF model, introduced in [8] that is suited for round-free compu-

tations1. More in details, (∆S,CUM) can be specified as follows: the external

adversary moves all the f mobile Byzantine agents at the same time t and move-

ments happen periodically (i.e., movements happen at time t0 +∆, t0 + 2∆, . . . ,

t0 + i∆, with i ∈ N) and at any time t, no process is aware about its failure state

(i.e., processes do not know if and when they have been affected from a Byzantine

agent) but it is aware about the time at which mobile Byzantine agents move.

Let us note that when we are considering Mobile Byzantine agents no process

is guaranteed to be in the same failure state for ever. Processes, in fact, may change

their state between correct and faulty infinitely often. As a consequence, it is fun-

damental to re-define the notion of correct and faulty process as follows:

Definition 2 (Correct process at time t) A process is said to be correct at time t
if (i) it is correctly executing its protocol P and (ii) its state is a valid state at time

t. We will denote as Co(t) the set of correct processes at time t while, given a

time interval [t, t′], we will denote as Co([t, t′]) the set of all the processes that are

correct during the whole interval [t, t′] (i.e., Co([t, t′]) =
⋂

τ ∈ [t,t′]Co(τ)).

1The (∆S,CUM) model abstracts distributed systems subjected to proactive rejuvenation [25]

where processes have no self-diagnosis capability.
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Definition 3 (Faulty process at time t) A process is said to be faulty at time t if

it is controlled by a mobile Byzantine agent and it is not executing correctly its

protocol P (i.e., it is behaving arbitrarily). We will denote as B(t) the set of faulty

processes at time t while, given a time interval [t, t′], we will denote as B([t, t′])
the set of all the processes that are faulty during the whole interval [t, t′] (i.e.,

B([t, t′]) =
⋂

τ ∈ [t,t′]B(τ)).

Definition 4 (Cured process at time t) A process is said to be cured at time t if

(i) it is correctly executing its protocol P and (ii) its state is not a valid state at

time t. We will denote as Cu(t) the set of cured processes at time t while, given a

time interval [t, t′], we will denote as Cu([t, t′]) the set of all the processes that are

cured during the whole interval [t, t′] (i.e., Cu([t, t′]) =
⋂

τ ∈ [t,t′]Cu(τ)).

As in the case of round-based MBF models [3, 5, 11, 16, 23], we assume that

any process has access to a tamper-proof memory storing the correct protocol code.

Let us stress that even though at any time t, at most f servers can be controlled

by Byzantine agents, during the system life time, all servers may be affected by a

Byzantine agent (i.e., none of the servers is guaranteed to be correct forever).

Processes may also suffer from transient failures, i.e., local variables of any

process (clients and servers) can be arbitrarily modified [14]. It is nevertheless

assumed that transient failures are quiescent, i.e., there exists a time τno tr (which

is unknown to the processes) after which no new transient failures happens.

3 Self-Stabilizing Regular Register Specification

A register is a shared variable accessed by a set of processes, i.e. clients, through

two operations, namely read() and write(). Informally, the write() operation up-

dates the value stored in the shared variable while the read() obtains the value

contained in the variable (i.e. the last written value). In distributed settings, every

operation issued on a register is, generally, not instantaneous and it can be charac-

terized by two events occurring at its boundary: an invocation event and a reply

event. An operation op is complete if both the invocation event and the reply event

occur (i.e. the process executing the operation does not crash between the invoca-

tion and the reply). Contrary, an operation op is said to be failed if it is invoked

by a process that crashes before the reply event occurs. According to these time

instants, it is possible to state when two operations are concurrent with respect to

the real time execution. Given two operations op and op′, their invocation event

times (tB(op) and tB(op
′)) and their reply event times (tE(op) and tE(op

′)), we

say that op precedes op′ (op ≺ op′) iff tE(op) < tB(op
′). If op does not precede

op′ and op′ does not precede op, then op and op′ are concurrent (op||op′). Given a
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write(v) operation, the value v is said to be written when the operation is complete.

We assume that locally any client never performs read() and write() operations con-

currently (i.e., for any given client ci, the set of operations executed by ci is totally

ordered). We also assume that initially the register stores a default value ⊥ written

by a fictional write(⊥) operation happening instantaneously at time t0. In case of

concurrency while accessing the shared variable, the meaning of last written value

becomes ambiguous. Depending on the semantics of the operations, three types of

register have been defined by Lamport [17]: safe, regular and atomic.

In this paper, we consider a Self-Stabilizing Single-Writer/ Multi-Reader (SWMR)

regular register, i.e., an extension of Lamport’s regular register that considers tran-

sitory failures.

The Self-Stabilizing Single-Writer/Multi-Reader (SWMR) register is specified

as follow:

• ss− Termination: Any operation invoked on the register by a non-crashed

process eventually terminates.

• ss− Validity: There exists a time tstab such that each read() operation in-

voked at time t > tstab returns the last value written before its invocation, or

a value written by a write() operation concurrent with it.

4 A Self-Stabilizing Regular Register Implementation

In this Section we propose a protocol Preg implementing a self-stabilizing SWMR

regular register in the (∆S,CUM) Mobile Byzantine Failure model. Such an

algorithm copes with the (∆S,CUM) model following the same approach as in

[10], which is improved with the bounded timestamps in order to design a self-

stabilizing algorithm.

We implemented read() and write() operations following the classical quorum-

based approach (like in the ABD protocol [2]) and exploiting the synchrony of the

system to guarantee their termination. Informally, when the writer client wants

to write, it simply propagates the new value to servers that update the value of the

register while, when a reader client wants to read, it asks for the current value of the

register and waits for replies: after 3δ time “enough”2 replies have been received

and a value is selected and returned (the reason why a read() operation lasts for 3δ
is explained in the following).

In order to do that, the maintenance() operation must guarantee that there al-

ways exists a sufficient number of servers storing a valid value for the register.

2The exact number of replies is provided in Table 1 depending on the relationship between ∆ and

δ.

7



Thus, its aim is threefold: (i) ensuring that cured servers get a valid value at the

end of maintenance(), (ii) possible concurrent written values are always taken into

account by cured servers running maintenance() and (iii) correct servers do not

overwrite their correct value with a non-valid one.

Each server si stores three pairs 〈value, timestamp〉 corresponding to the last

three written values and periodically (when Byzantine agents move at every Ti =
t0 + i∆, with i ∈ N) executes the maintenance() operation.

The basic idea is to keep separated information that can be trusted (e.g., val-

ues received by the writer client or values sent from “enough” processes) from

those that are untrusted (e.g., values stored locally that can be compromised) and

to decide the current state accordingly.

To this aim, maintenance() makes use of three fundamental set variables: (i)

Vi stores the knowledge of si at the beginning of each maintenance() operation

and contains the last three values of the register and the corresponding sequence

numbers (untrusted information), (ii) Vsafe (emptied at the beginning of each the

maintenance() operation) is used to collect values selected among those sent through

echoes by other servers (trusted information due to the presence of “enough” cor-

rect servers) and (iii) Wi contains values and the corresponding timestamps con-

currently received by the writer (untrusted information as it can be potentially com-

promised by the Byzantine agent before it leaves the server).

As an example, consider the execution of the i-th maintenance() operation

starting at time t0 + i∆ shown in Figure 1 for the two servers s0 and s1 that are

respectively correct and cured.

When maintenance() starts, every server si echoes the relevant information

stored locally (i.e., list of pending read() operations and the sets Vi and Wi). Such

information are then collected by any server sj and can be used (based on the

number of occurrence of each pair 〈value, sequence number〉) to update the set

Vsafe. Let us note that, due to the synchrony of the system, after δ time units (i.e.,

at time t0 + i∆ + δ), si collected at least all the values sent by every correct and

cured server and it is able to decide and update its local variables. Thus, it selects

the values occurring “enough times” (see footnote 2) from echoes, updates Vsafe

and empties Vi.

In Figure 1, it is possible to see that, at time t0 + i∆+ δ, s0 basically does not

update its information while s1 is able to update its Vsafe set consistently with s0
using the values gathered through echoes.

However, the maintenance() operation is not yet terminated as it could happen

that a write() operation is running concurrently and the concurrently written value

may not yet be in Vi and in Vsafe. In order to manage this case, every time that

a value is written, it is also relayed to all servers. In addition, in order to avoid to

overwrite values just written with those selected from the maintenance() operation,
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s0

s1

W0

V0

Vsafe0

{0, 1, 2}

∅

∅

{0, 1, 2}

{0, 1, 2}

∅

{0, 1, 2}

3

{0, 1, 2}

∅

{0, 1, 2}

{1, 2, 3}

∅

{1, 2, 3}

∅

W1

V1

Vsafe1

{7, 8, 9}

∅

10

{7, 8, 9}

{0, 1, 2}

10, 3 3

∅

{0, 1, 2}

{0, 1, 2}

∅

{0, 1, 2}

{1, 2, 3}

∅

{1, 2, 3}

∅

echo0

echo1

echo

echo

w(3)

w(3)

echo0

echo1

echo

echo

maintenance() maintenance()

maintenance() maintenance()

t0 + i∆ t0 + i∆ + δ t0 + (i + 1)∆ t0 + (i + 1)∆ + δ

t

write() persistence time

w(3)

Figure 1: Example of a partial run for a correct server s0 and a cured server s1 with

∆ = 2δ. For the sake of simplicity we report only timestamps instead of the pair

〈value, timestamp〉.
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concurrently written values are temporarily stored in Wi with an associated timer

(i.e., like a time-to-leave) set to 2δ.

The timer is set in such a way that each value in Wi remains stored long enough

to ensure its propagation to all servers and guarantees that written values will even-

tually appear in every non-faulty Vsafe set (e.g., the value 3 in Figure 1). At the

same time, the 2δ period is not long enough to allow mobile Byzantine agents to

leverage the propagation of corrupted values to force reader clients to return a bad

value (e.g., the value 10 left by the mobile Byzantine agent in W1 at the beginning

of the i-th maintenance() operation). We call the time necessary for a value to be

present in Vsafe as the write persistence time.

Note that, depending on the relationship between ∆ and δ, it may happen that a

maintenance() operation is triggered while the previous one is not yet terminated.

This is not an issue as the set Vi is updated before the second maintenance() oper-

ation starts and Wi is the only set that is not reset between the two maintenance()
operations and it prevents values to be lost having a time-to-live of 2δ which is

enough to propagate it.

Finally, concurrently with the maintenance() and write() operations, servers

may need to answer also to clients that are currently reading. In order to preserve

the validity of read() operations and in order to cope with possible corrupted val-

ues stored by si just before the mobile Byzantine agent left, si replies with all the

values it is storing (i.e., providing Vi, Vsafe and Wi). Note that, given the update

mechanism of local variables (designed to keep separated trusted information from

untrusted ones), there could be a fraction of time where the last written value is re-

moved from Wi (as its timer is expired) and it is not yet inserted in Vi and in Vsafe

(as the corresponding propagation message is still traveling - cfr. the red zone in

Figure 1). To cope with this issue, the read() operation lasts 3δ time i.e., an extra

waiting period is added for the collection of replies to guarantee that values are not

lost.

In order to stabilise in a finite and known period and manage transient failures,

Preg employs bounded timestamps. It is important to note that timestamps are

necessary in the (∆S,CUM) model as, during the maintenance(), servers must

be able to distinguish new and old values in order to guarantee that a new value

possibly received by the writer is not overwritten by the maintenance() operation.

In the following we will explain why using bounded timestamps guarantees a finite

and known stabilisation period.

Let us note that, in order to stabilise, at least one write() operation must be ex-

ecuted after time τno tr. However, due to the fact that this operation is the first one

after τno tr, if the domain of timestamps is unbounded (e.g., the domain of natural

numbers N as in [6, 8, 10]), it could happen that the timestamp used by the writer
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Table 1: Parameters for PRreg Protocol.

k = ⌈ 3δ
∆
⌉ nCUM ≥ (2k + 2)f + 1 #replyCUM ≥ 2kf + 1 #echoCUM ≥ kf + 1

∆ = δ, k = 3 8f + 1 6f + 1 3f + 1
∆ = 2δ, k = 2 6f + 1 4f + 1 2f + 1

s0

s1

s2

w(3) persistence time

w(3) w(4) w(5)

(a)

0
1

2

3

4

5

67

8

9

10

11

12

s0

s1

s2

w(3) w(4) w(5) w(6) w(7)

r()

0
1

2

3

4

5

67

8

9

10

11

12

Figure 2: Runs for ∆ = δ. The small vertical lines are the points where the

maintenance() operations begin. For simplicity we represent values with their

timestamp and we consider only correct servers si that store Vi = {0, 1, 2}.

is way much smaller than those stored locally by servers. This means that such an

operation will be ignored and the same will happen until the writer timestamp will

reach those stored by servers making the stabilisation period unknown.

We use timestamps in the domain Zm, with m = 13. Each written value is rep-

resented as 〈val, sn〉 where val is the content and sn the corresponding sequence

number, sn ∈ Zm = {0, 1, . . . ,m− 1}. Let us define two operations on such val-

ues: addition: +m : Zm×Zm → Zm, a+m b = (a+ b) (mod m); and subtraction:

−m : Zm × Zm → Zm, a−m b = a+m (−b). Note that (−b) is the opposite of b.
That is, the number that added to b gives 0 as result, i.e., b+m (−b) = 0.

Two scenarios are depicted in Figure 2 to characterize how many different val-

ues clients and servers may have to manage (and thus uniquely order) at the same

time. We consider a sequence of write() operations and then what happens if a

read() operation is concurrent with a sequence of write() operations. In the first

case, just before the time instant marked as (a) s0 could be ready to store values
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0, 1, 2 and 5 that need to be ordered. In the meantime values 3 and 4 are still echoed.

In any case the timestamps range that a server can manage at the same time is from

0 to 5, more in general 6 subsequent timestamps. 3 values are stored in Vi and 3
values come from the subsequent write() operations. At time (a), in Figure 2, 3
takes the place of 0, which is discharged. Let us consider the most distant values, 0
and 5. There are two ways to order them, either 0 precedes 5 or 5 precedes 0. But

the second one is impossible since in that case there could be 7 timestamps around

at the same time. In the second scenario, concurrently to a sequence of write()
operations there is a read() operation. In this case we have to consider all values

that could be returned to the client. In this case, values from 0 to 7 (thus at most at

distance 7) and we notice that the last written value, 3, is always returned. Thus a

client may have to order the following values 0, 3, 7. There are three possibilities:

(i) 0, 3, 7, (ii) 3, 7, 0, or (iii) 7, 0, 3. In cases (ii) and (iii) we have 0−13 3 = 10 and

3−13 7 = 9 respectively, both of them greater than 7. Thus the only possible order

the case (i).

The pseudo-code for Preg is shown in Figures 3 - 5.

Local variables at client ci. Each client ci maintains two sets replyi that is used

during the read() operation to collect the three tuples 〈j, 〈v, sn〉〉 sent back from

servers. Additionally, if ci is the writer, it maintains a local sequence number csn
that is incremented, respect to the Z13 arithmetic, each time it invokes a write()
operation, which is timestamped with such sequence number.

Local variables at server si. Each server si maintains the following local vari-

ables:

• Vi: a set containing 3 tuples 〈v, sn〉, where v is a value and sn the corre-

sponding sequence number.

• Vsafei : this set has the same characteristic as Vi, and is populated by the

function insert(Vsafei , 〈vk, snk〉).

• Wi: a set where si stores values coming directly from the writer, associating

to it a timer, 〈v, sn, timer〉. When the timer expires, the associated value is

deleted.

• echo valsi and echo readi: two sets used to collect information propagated

through ECHO messages. The former set stores tuple 〈v, sn〉j whilst the latter

set contains identifiers of concurrently reading clients in order to notify cured

servers and expedite termination of read() operations.

• pending readi: set variable used to collect identifiers of the clients that

are currently reading. Notice, for simplicity we do not explicitly manage
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the values discharge from such set since it has no impact on the protocol

correctness.

In order to simplify the code of the algorithm, let us define the following func-

tions:

• select pairs(echo valsi): this function takes as input the set echo valsi and

returns tuples 〈v, sn〉, such that there exist at least #echoCUM occurrences

in echo valsi of such tuple (ignoring the Timer value, if present).

• insert(Vsafei , 〈vk, snk〉): this function inserts 〈vk, snk〉 in Vsafe according

with the incremental order and if there are more than 3 values then the oldest

one is discarded. In case it is not possible to establish an unique order among

the elements in the set then Vsafei is reset (this may happen due to transient

failures).

• select value(replyi): this function returns the newest pair 〈v, sn〉 occurring

at least #replyCUM times in replyi (ignoring the Timer value, if present).

• checkOrderAndTrunc(Vsafei): this function checks if it is possible to uniquely

order the elements in Vsafei with respect to the timestamps. If yes, the 3
newest element are kept, the others are discharged. If it is not possible to

uniquely establish an order for each pair of elements then all the elements

are discharged.

• checkOrder(Vsafei): this function checks if it is possible to establish an

unique order for each couple of elements in Vsafei . If not, Vsafei is emp-

tied.

• conCut(Vi, Vsafei ,Wi): this function takes as input three 3 dimension or-

dered sets and returns another 3 dimension ordered set. The returned set

is composed by the concatenation of Vsafei ◦ Vi ◦Wi, without duplicates,

truncated after the first 3 newest values (with respect to the timestamp). e.g.,

d = 3, Vi = {〈va, 1〉, 〈vb, 2〉, 〈vc, 3〉} and Vsafei = {〈vb, 2〉, 〈vd, 4〉, 〈vf , 5〉}
and Wi = ∅, then the returned set is {〈vc, 3〉, 〈vd, 4〉, 〈vf , 5〉}. If is it not pos-

sible to establish and order in one of those sets because of transient failures

then the result is ⊥.

• checkTimer(Wi): this function removes from Wi all the values whose asso-

ciated timer is 0 or strictly greater than 2δ.

The maintenance() operation. Such operation is executed by servers periodically

at any time Ti = t0 + i∆. Each server first stores the content of Vsafei in Vi and
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init() :

(1) trigger maintenance(); checkTimer(Wi); select(echo valsi);
——————————————————————————————————

operation maintenance() executed every Ti = t0 +∆i :

(2) checkOrderAndTrunc(Vsafei
);

(3) echo valsi ← ∅; Vi ← Vsafei
; Vsafe ← ∅;

(4) broadcast ECHO(i, Vi ∪Wi, pending readi);
(5) wait(δ);
(6) Vi ← ∅;
————————————————————————————————————-

when ECHO (j, S, pr) is received:

(7) for each (〈v, sn〉j ∈ S)
(8) echo valsi ← echo valsi ∪ 〈v, sn〉j ;

(9) endFor

(10) echo readi ← echo readi ∪ pr;

——————————————————————————————————

function select(echo valsi):
(11) while(TRUE):

(12) if select pairs(echo valsi) 6= ⊥;

(13) 〈vk , snk〉 ← select pairs(echo valsi);
(14) insert(Vsafei

, 〈vk , snk〉);
(15) send REPLY (i, conCut(Vi, Vsafei

,Wi))) to cj ;

(16) endIF

(17) endWhile

Figure 3: AM algorithm implementing the maintenance() operation (code for

server si) in the (∆S,CUM) model with bounded timestamp.

all Vsafei and echo valsi sets are reset. Each server broadcasts an ECHO message

with the content of Vi, Wi and the pending readi set. When there is a value in the

echo valsi set that occurs at least #echoCUM times, si tries to update Vsafei set

by invoking insert on the value returned by the select pairs(echo valsi) function.

To conclude, after δ time since the beginning of the operation, the Vi set is reset.

Informally speaking, during the maintenance() operation Vsafei is filled with safe

values, then the content in Vi is not longer necessary. Notice that the content of Wi

is continuously monitored so that expired values are removed.

The write() operation. When the write() operation is invoked, the writer incre-

ments csn ← csn +m 1, sends WRITE(〈v, csn〉) to all servers and finally returns

after δ time. For each server si, two cases may occurs, si delivers WRITE(〈v, csn〉)
message when it is not affected by a Byzantine agent or when it is affected by

a Byzantine agent. In the first case si stores v in Wi and forwards it to every

server sending the ECHO(i, 〈v, csn〉, pending readi) message. Such value is fur-

ther echoed at the beginning of each next maintenance() operation as long as

〈v, csn〉 is in Wi or Vi, this is true for #echoCUM correct servers. When 〈v, csn〉
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operation write(v):

(1) csn← (csn+m 1);
(2) broadcast WRITE(v, csn);
(3) wait (δ);
(4) return write confirmation;

when WRITE(v, csn) is received:

(5) Wi ←Wi ∪ 〈〈v, csn〉, setT imer(2δ)〉;
(6) broadcast ECHO(i, 〈v, csn〉, pending readi);
(7) for each j ∈ (pending readi ∪ echo readi) do

(8) send REPLY (i, {〈v, csn〉});
(9) endFor

Figure 4: AW algorithms, server side and client side respectively, implementing

the write(v) operation in the (∆S,CUM) model with bounded timestamp.

occurs #echoCUM times in echo valsi then si tries to update Vsafei set by invok-

ing insert on the value returned by the select pairs(echo valsi) function.

The read() operation. At client side, when the read() operation is invoked at client

ci, it empties the replyi set and sends to all servers the READ(i) message. Then ci
waits 3δ time, while the replyi set is populated with servers replies, and from such

set it picks the newest value occurring #echoCUM times invoking select value(replyi)
and returns it. Notice that before returning ci sends to every server the read termi-

nation notification, READ ACK(i) message. At server side when sj delivers the

READ(i) message, client ci identifier is stored in the pending readj set. Such set

is part of the content of ECHO message in every maintenance() operation, which

populates the echo readj set, so that cured servers can be aware of the reading

clients. Afterwards, sj invokes conCut(Vj , Vsafei ,Wi) function to prepare the re-

ply message for ci. The result of such function is sent back to ci in the REPLY

message. Finally a REPLY message containing just one value is sent when a new

value is added in Wi and there are clients in the pending readj ∪ echo readj set.

When the READ ACK(i) message is delivered from ci then its identifier is removed

from the pending readj and echo readj sets.

4.1 Correctness proofs

In the following we prove that the protocol defined in Section 4 is correct.

Definition 5 (Faulty servers in the interval I) Let us define as B̃[t, t+T ] the set

of servers that are affected by a Byzantine agent for at least one time unit in the

time interval [t, t+ T ]. More formally B̃[t, t+ T ] =
⋃

τ∈[t,t+T ]B(τ).

Definition 6 (MaxB̃(t, t+ T )) Let [t, t + T ] be a time interval. The cardinality

of B̃(t, t + T ) is maximum if for any t′, t′ > 0, is it true that |B̃(t, t + T )| ≥
|B̃(t′, t′ + T )|. Let MaxB̃(t, t+ T ) be such cardinality.

Lemma 1 If ∆ > 0 and T ≥ δ then MaxB̃(t, t+ T ) = (⌈ T∆⌉+ 1)f .
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operation read():
(1) replyi ← ∅;
(2) broadcast READ(i);
(3) wait (3δ);
(4) 〈v, sn〉 ← select value(replyi);
(5) broadcast READ ACK(i);
(6) return v;

————————————————————-

when REPLY (j, Vset) is received:

(7) for each(〈v, sn〉 ∈ Vset) do

(8) replyi ← replyi ∪ {〈v, sn〉j};
(9) endFor

when READ (j) is received:

(10) pending readi ← pending readi ∪ {j};
(11) send REPLY (i, conCut(Vi, Vsafei

,Wi));
(12) broadcast READ FW(j);
———————————————————————–

when READ FW (j) is received:

(13) pending readi ← pending readi ∪ {j};
———————————————————————–

when READ ACK (j) is received:

(14) pending readi ← pending readi \ {j};
(15) echo readi ← echo readi \ {j};

Figure 5: AR algorithms, client side and server side respectively, implementing the

read() operation in the (∆S,CUM) model with bounded timestamp.
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Proof For simplicity let us consider a single agent ma1, then we extend the rea-

soning to all the f agents. In the [t, t + T ] time interval, with T ≥ δ, ma1 can

affect a different server each ∆ time. It follows that the number of times it may

“jump” from a server to another is T
∆ . Thus the affected servers are at most ⌈ T∆⌉

plus the server on which ma1 is at t. Finally, extending the reasoning to f agents,

MaxB̃(t, t+ T ) = (⌈ T∆⌉+ 1)f , concluding the proof. ✷Lemma 1

In the following we first characterize the correct system behavior, i.e., when

the protocol is correctly executed after τstab (the end of the transient failure and

system stabilization). In doing this we assume that it is always possible to establish

the correct order among the values that are collected by clients and servers. After

we prove that it is always possible to establish an order among those values and

finally, we prove that the protocol is self-stabilizing after a finite number of write()
operations.

Concerning the protocol correctness, the termination property is guaranteed by the

way the code is designed, after a fixed period of time all operations terminate. The

validity property is proved with the following steps:

1. maintenance() operation works (i.e., at the end of the operation n−f servers

store valid values). In particular, for a given value v stored by #echoCUM

correct servers at the beginning of the maintenance() operation, there are

n− f servers that store v after δ time since the beginning of the operation;

2. given a write() operation that writes v at time t and terminates at time t+ δ,

there is a time t′ < t+ 3δ after which #replyCUM correct servers store v;

3. at the next maintenance() operation after t′ there are #replyCUM − f =
#echoCUM correct servers that store v, for step (1) this value is maintained

in the register;

4. the validity property follows considering that the read() operation is long

enough to include the t′ of the last written value in such a way that servers

have enough time to reply and after t′ this value is maintained in the register,

step (3), as long as there are no others write() operations. To such purpose

we show that Vi is big enough to do not be full filled with new values before

that the last written value is returned.

Correctness proofs considering t > tstab.

In the following we prove the correctness of the protocol when there are no tran-

sient failures, the system is stable and thus timestamp are not bounded, thus it is

always possible to uniquely order all values.
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Lemma 2 If a client ci invokes a write(v) operation at time t then this operation

terminates at time t+ δ.

Proof The claim simply follows by considering that a write confirmation event is

returned to the writer client ci after δ time, independently of the servers behavior

(see lines 3-4, Figure 4). ✷Lemma 2

Lemma 3 If a client ci invokes a read() operation at time t then this operation

terminates at time t+ 3δ.

Proof The claim simply follows by considering that a read() returns a value to

the client after 3δ time, independently of the behavior of the servers (see lines 3-6,

Figure 5). ✷Lemma 3

Theorem 1 Any operation invoked on the register eventually terminates.

Proof The proof simply follows from Lemma 2 and Lemma 3. ✷Theorem 1

Lemma 4 (Step 1.) Let v be a value stored at #echoCUM correct servers sj ∈
Co(Ti), v ∈ Vj∀sj ∈ Co(Ti). Then ∀sc ∈ Cu(Ti) at Ti + δ (i.e., at the end of the

maintenance()) v is returned by the function select pairs(echo valsi).

Proof By hypothesis at Ti there are #echoCUM correct servers sj storing the same

v and running the code in Figure 3. In particular each server broadcasts a ECHO()
message with attached the content of Vj which contains v (line 4). Messages sent

by #echoCUM correct servers are delivered by sc and stored in echo valsc. The

communication channels are synchronous, thus by time T i+δ function select pairs(echo valsc)
returns v. ✷Lemma 4

Lemma 5 Let si be a correct server running the maintenance() operation at time

Ti, then if v is returned by the function select pairs(echo valsi) there exist a

write() operation that wrote such value.

Proof Let us suppose that select pairs(echo valsi) returns v′ and there no exist

a write(v′). This means that si collects in echo valsi at least #echoCUM occur-

rences of v′ coming from cured and Byzantine servers. Let us consider a cured

server sc running the maintenance() operation at time Tc. At the beginning of the

maintenance() operation sc broadcasts values contained in Vi and Wi (Figure 3,

line 4). Vi is reset at each operation with the content of Vsafei which is reset at
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each maintenance() operation (line 3). It follows that sc broadcasts non valid val-

ues contained in Vi only during the maintenance() operation run at Tc. Contrarily,

values in Wi, depending on k, are broadcast only at Tc or also at Tc+1. Let us

consider two cases: k = 2 and k = 3.

case k = 2: In this case since ∆ = 2δ and the maximum value of the timer as-

sociated to a value is 2δ, thus each cured server sc broadcasts a non valid value

contained in Wi only during the first maintenance() operation. So, during each

maintenance() operation there are f Byzantine servers and f cured servers, those

are not enough to send #echoCUM = 2f +1 occurrences of v′. For Lemma 4 this

is the necessary condition to return v′ invoking select pairs(echo valsi), leading

to a contradiction.

case k = 3: ∆ = δ and the maximum value of the timer associated to a value

is 2δ, thus each cured server sc broadcasts a non valid value contained in Wi

during the two subsequent maintenance() operations. Summing up, during each

maintenance() operation at time Ti there are f Byzantine servers, f cured servers

and f servers that were cured during the previous operation. Those servers are

not enough to send #echoCUM = 3f + 1 occurrences of v′, for Lemma 4 this is

the necessary condition to return v′ invoking select pairs(echo valsi), leading to

a contradiction and concluding the proof. ✷Lemma 5

From the reasoning used in this Lemma, the following Corollary follow.

Corollary 1 Let si be a non faulty process and v a value in Wi. Such value is in

Wi during at most k − 1 sequential maintenance() operations.

Finally, considering that servers reply during a read() operation with values in

Wi, Vi and Vsafei . Vsafei is safe by definition, Vi is reset after the first maintenance()
operation then it follows that servers can be in a cured state for 2δ time, the time

that never written values can be present in Wi.

Corollary 2 Protocol P implements a maintenance() operation that implies γ ≤
2δ.

Lemma 6 Let Tc be the time at which sc becomes cured. Each cured server sc
can reply back with incorrect message to a READ() message during a period of 2δ
time.

Proof The proof directly follows considering that the content of a REPLY() mes-

sage comes from the Vc, Vsafec and Wi sets. The first one is filled with the content

of Vsafec at the beginning of each maintenance() operation and after δ time is re-

set (cf. Figure 3, lines 5-6). The second one is emptied at the beginning of each
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maintenance() operation and the third one keeps its value during k maintenance()
operations (cf. Corollary 1). Thus by time Tc + 2δ sc cleans all the values that

could come from a mobile agent. ✷Lemma 6

Lemma 7 (Step 2.) Let opW be a write(v) operation invoked by a client ck at time

tB(opW ) = t then at time t+ 3δ there are at least n− 2f ≥ #replyCUM correct

servers such that v ∈ Vsafei and is returned by the function concCut().

Proof Due to the communication channel synchrony, the WRITE messages from ck
are delivered by servers within the time interval [t, t+ δ]; any non faulty server sj
executes the correct algorithm code. When sj delivers a WRITE message it stores

the value in Wj and sets the associated timer to 2δ (line 5, Figure 4).

For Lemma 1 in the [t, t+δ] time interval there are maximum 2f Byzantine servers,

thus at t + δ v is stored in Wj at n − 2f ≥ #echoCUM correct servers sj . All

those servers broadcast v by time t + δ, so by time t + 2δ there are #echoCUM

occurrences of v in echo valsi, each server si stores v in Vsafei . If a Byzantine

agent movement happens before t+2δ, i.e., Ti ∈ [t+δ, t+2δ] then at time Ti, due to

Byzantine agents movements, there are n− 3f ≥ #echoCUM correct servers that

run the maintenance() operation and broadcast v. Thus at time t+ 3δ, for Lemma

4, all correct servers are storing v ∈ Vsafei and by construction v is returned by

the function conCut(). We conclude the proof by considering that there are at least

n− 2f ≥ #replyCUM . ✷Lemma 7

For simplicity, from now on, given a write() operation opW we call tB(opW )+
3δ = twP the persistence time of opW , the time at which there are at least

#replyCUM servers si storing the value written by opW in Vsafei .

Lemma 8 (Step 3/1.) Let opW be a write() operation and let v be the written

value. If there are no other write() operations, the value written by opW is stored

by all correct servers forever (i.e., v is returned invoking the conCut() function).

Proof From Lemma 7 at time twP there are at least n−2f ≥ #replyCUM correct

servers sj that have v in Vsafei . At the next Byzantine agents movement there

are n − 2f − f ≥ #echoCUM correct server storing v in Vsafei , which is moved

to Vi and broadcast during the maintenance() operation. For Lemma 4, after δ
time, all non Byzantine servers are storing v in Vsafei . At the next Byzantine

agents movement there are f less correct servers that store v in Vsafei , but those

servers are still more than #echoCUM . It follows that cyclically before each agent

movement there are f servers more that store v thanks to the maintenance() and

f servers that lose v because faulty, but this set of non faulty servers is enough to
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successfully run the maintenance() operation (cf. Lemma 4)). By hypothesis there

are no more write() operations, then v is never overwritten and all correct servers

store v forever.

✷Lemma 8

Lemma 9 (Step 3/2.) Let opW0 , opW1 , . . . , opWk−1
, opWk

, opWk+1
, . . . be the se-

quence of write() operation issued on the regular register. Let us consider a generic

opWk
, let v be the written value by such operation and let twP be its persistence

time. Then v is in the register (there are #replyCUM correct servers storing it) up

to time at least tBWk+3.

Proof The proof simply follows considering that:

• for Lemma 8 if there are no more write() operation then v, after twP , is in

the register forever;

• any new written value eventually is stored in ordered set Vsafe, whose di-

mension is 3;

• write() operation occur sequentially.

It follows that after 3 write() operations, opWk+1
, opWk+2

, opWk+3
, v is no more

stored in the regular register. ✷Lemma 9

Before to prove the validity property, let us consider how many Byzantine and

cured servers can be present during a read() operation that last 3δ. For simplicity,

to do that we refer to the scenarios depicted in Figure 6. If k = 3 there can be

up to 4f (cf. Lemma 1) Byzantine servers and 2f cured servers. If k = 2 there

can be up to 3f Byzantine servers (cf. Lemma 1) and f cured servers. In Figure 6

we depicted the extreme case in which there is a read() operation just after the last

write() operation. The line marked as twP represents the time at which for sure

correct servers are storing and thus replies with the last written value (cf. Lemma

7). Notice that when δ = ∆ s4 has just the time to correctly reply to the client

before being affected. Notice that if twP was concurrent with Byzantine agents

movements, then during [t, t + δ] s4 was still able to reply with the last written

value because still present in Wi, i.e., the reply message happens before the 2δ
timer expiration. In any case there are #replyCUM correct servers that reply with

the last written value and the number of those replies is greater than the number

of replies coming from cured and Byzantine servers. From those observations the

next Corollary follows.
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Figure 6: In the first scenario ∆ = 2δ and in the second one is ∆ = δ. In red

the period during which servers are faulty and in yellow the period during which

servers are in a cured state. Blue arrows are the correct replies sent back by correct

servers.

Corollary 3 Let ci be a client that invokes a read() operation that lasts 3δ time.

During such time, the number of replies coming from correct servers is strictly

greater than the number of replies coming from Byzantine and cured servers.

Theorem 2 (Step 4.) Any read() operation returns the last value written before its

invocation, or a value written by a write() operation concurrent with it.

Proof Let us consider a read() operation opR. We are interested in the time interval

[tB(opR), tB(opR)+δ]. The operation lasts 3δ, thus reply messages sent by correct

servers within tB(opR) + 2δ are delivered by the reading client. During [t, t +
2δ] time interval there are at least #replyCUM correct servers that have the time

to deliver the read request and reply (cf. Corollary 3). We have to prove that

22



what those correct servers reply with is a valid value. There are two cases, opR is

concurrent with some write() operations or not.

- opR is not concurrent with any write() operation. Let opW be the last write()
operation such that tE(opW ) ≤ tB(opR) and let v be the last written value. For

Lemma 8 after the write persistence time twP there are at least #replyCUM correct

servers storing v (i.e., v ∈ conCut(Vi, Vsafei ,Wi). Since tB(opR) + 2δ ≥ tCw,

then there are #replyCUM correct servers replying with v. So the last written

value is returned.

- opR is concurrent with some write() operation. Let us consider the time interval

[tB(opR), tB(opR)+2δ]. In such time there can be at most three sequential write()
operations opW1 , opW2 , opW3 . Let opW0 be the last write operation before opR. In

the extreme case in which those operations happen one after the other we have the

following situation. tE(opW0 < tB(opR)) and the write persistence time of opW0 ,

twP0 < tB(opW0) + 3δ < tB(opR) + 2δ < tB(opW3). Basically, the value written

by opW0 is overwritten in Vi by the value written opW3 , but not before tB(opR)+2δ,

thus all correct servers have the time to reply with the last written value. Notice

that the concurrently written values may be returned if the WRITE() and REPLY()
messages are fast enough to be delivered before the end of the read() operation. To

conclude, for Lemma 6 Byzantine and cured servers can no force correct servers

to store and thus to reply with a never written value. Only cured and Byzantine

servers can reply with non valid values. As we stated, if k = 2 there are up to

4f non correct servers. If k = 3 there are 6f non correct servers. In both cases

the threshold #replyCUM is higher than the occurrences of non valid values that a

reader can deliver. Mobile agents can not force the reader to read another or older

value and even if an older values has #replyCUM occurrences the one with the

highest sequence number is chosen. ✷Theorem 2

From the reasoning used to prove Theorem 2 the next Corollary follows.

Corollary 4 When a client ci invokes a read() operation the last written value

occurs in replyi at least #replyCUM times.

Theorem 3 Let n be the number of servers emulating the register and let f be

the number of Byzantine agents in the (∆S,CUM) round-free Mobile Byzantine

Failure model with no transient failures. Let δ be the upper bound on the commu-

nication latencies in the synchronous system. If (i) n ≥ 6f + 1 for ∆ = 2δ and

(ii) n ≥ 8f + 1 for ∆ = δ, then Preg implements a SWMR Regular Register in the

(∆S,CUM) round-free Mobile Byzantine Failure model.

Proof The proof simply follows from Theorem 1 and Theorem 2. ✷Theorem 3
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Self-Stabilization correctness proofs

What is left to prove are the necessary conditions for the system to self-stabilize

after τno tr. We first prove that with timestamps in Z13 it is always possible to

uniquely order the values that clients and servers manage at the same time. Then,

we prove that when the system is not stable, given the fact the timestamps are

bounded, after a finite number of write() operations the system becomes stable.

Lemma 10 During each write() operation opW such that tB(opW ) > τstab, each

non faulty server si has at most 6 values returned by the function select pairs(echo valsi)
during the same maintenance() operation and it is always possible to uniquely or-

der them.

Proof For sake of simplicity let us consider the scenario depicted in Figure 7,

where opW (3), opW (4), opW (5), a sequence of write() operations, occurs (we rep-

resent each value with its associated timestamp ∈ Z13). By hypothesis the system

is stable tB(opW ) > τstab, thus each correct server si has Vi = {0, 1, 2} and those

values are broadcast at the beginning of the maintenance() operation along with

values in Wi as long as there are not enough occurrences of those values to be

stored in Vsafei and then Vi. Considering that:

• from Lemma 7, for each write() operation opW , by time t < tB(opW ) + 3δ
the written value is stored in Vsafei ;

• a written value v is removed from Wi after 2δ time, so at most by time

tB(opW ) + 3δ v /∈Wi;

• write() operations are sequential and last δ time (cf. 2)

• Vsafei is a 3 dimension set.

It follows that given a sequence of at least three write() operations opW (3), opW (4), opW (5),
before that opW (5) terminates the value written by opW (3) is in Vsafei and 0
has been discharged (cf. Figure 7 the point marked by (a)), i.e. tE(opW (5) >
tB(opw(3)+3δ). It follows if opW (6) occurs such that tB(opW (6)) = tE(op(W (5)))
then 0 is no more in Vi and during this time 1 is overwritten by 3. Generalizing,

during each maintenance() operation there are at most the 3 values in Vi and val-

ues belonging to the last 3 write() operations.

Let us now prove the second part of the statement. Considering that:

• timestamps are generated sequentially;

• during the same maintenance() operation timestamps can span a range of 6
values.
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Figure 7: Example for ∆ = δ. The small vertical lines are the points where

maintenance() operations terminates and begins. Servers are storing Vi =
{0, 1, 2}, for simplicity we represent values with their timestamp and we consider

only correct servers.

Then for each couple of timestamp tsq and tsp returned by select pairs(echo valsi)
during the maintenance() operation, if tsq has been generated before tsp then

tsp −m tsq ≤ 5. This means that given Z13 and tsq, tsp there is only one way

to order them. If tsp is generated before tsq then tsq −m tsp ≥ 7 which is a con-

tradiction with the fact that during the same maintenance() operation timestamps

can span a range of 6 values (cf. the “clock” depicted in Figure 7). ✷Lemma 10

Lemma 11 During each read() operation opR such that tB(opR) > τstab, each

client ci delivers at most 9 values whose occurrence is #replyCUM and it is always

possible to uniquely order them.

Proof For simplicity let us consider the scenario depicted in Figure 8, where the

read() operation opR happens after the end of the last write() operations opW (3)
and opW (4) but before their persistence time twP . Moreover opR is concurrent

with four subsequent write() operations opW (4), opW (5), opW (6), opW (7). Dur-

ing opW we have the following:

• twP of opW (3) and opW (4) are after tB(opR);

• for times constraints all the previous write() operations are in Vi at each

correct servers;

• by hypothesis the system is stable, thus each correct server si can have Vi =
{0, 1, 2} (no yet overwritten by opW (3) and opW (4) values);
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Figure 8: Example for ∆ = δ. The small vertical lines are the points where

maintenance() operations terminates and begins. In both cases servers are stor-

ing Vi = {0, 1, 2}, for simplicity we represent values with their timestamp and we

consider only correct servers.

• for Corollary 4 each correct server replies with the last written value 4;

• if messages are fast enough each correct server can reply with also {5, 6, 7, 8}.

Thus ci has potentially 9 values that occur #replyCUM times.

To prove the second part of the statement, consider that for Corollary 4 the last

written value is always present. Thus, there can be up to 9 sequential values tsp
and the last written value tsls is in the middle, it follows that the distance between

each value tsp and the one in the middle tsls is such that |tsp −m tslw| ≤ 4 (cf.

the “clock” in Figure 8). If follows that for each triple of value there always exist

a value in the middle such that there is one only way to order them. For example,

let us consider the set {7, 0, 3} it can be ordered in three ways: 7, 0, 3, 3, 7, 0 and

0, 3, 7. In the first two cases 7 −m 0 > 4 and 7 −m 0 > 4 respectively, thus the

order 0, 3, 7 is the only possible one. ✷Lemma 11

Lemma 12 Let opW1 , . . . , opW10 be a sequence of 10 write() operations, occur-

ring after τno tr. At time t > tE(opW10) the system is self-stabilized.

Proof For Lemma 4 if there are #echoCUM correct servers storing the same value

v then such value is stored by all correct servers after δ time since the beginning of

the maintenance() operation. Thus given the first maintenance() operation after

τno tr correct servers are either storing the same values or empty set. If correct

servers are storing nothing, then after the end of the first write() operation the

system is stable, since for Corollary 4 such a value is returned by the next read()
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operation.

If Vsafei is not empty then different scenarios may happen.

• case a. If values stored in Vsafei have not an unique order (e.g., ∃tsp, tsq ∈
Z13 : tsp = tsq ∨ |tsp −m tsq| > 5), then at the next maintenance() op-

eration, the function checkOrderAndTrunc(Vsafei) resets such set. Notice

that such reset may happen at the beginning of different maintenance() op-

erations, depending on ∆. For sake of simplicity let us consider Figure 7, 3
can be stored in Vsafe0 during the three different maintenance() operations

that occur since the beginning of the write() operation and the point marked

as (a), the twP . In such time interval two other write() operations may occur.

But after the point marked as (a) all non Byzantine servers reset their Vsafei

set. Thus now, after the end of the next write() operation the system is stable,

indeed, for Corollary 4 such value is returned by the next read() operation.

Thus in such a case after four write() operations the system is stable;

• case b. If values stored in Vsafei can be uniquely ordered, e.g. Vsafei =
{0, 1, 2} then three scenarios may happen;

– the next written value does not have an unique order with respect to

each value in Vsafei , (e.g., 0, 1, 2, 6, 7) then again the set is reset and

case (a.) takes place;

– the next written value timestamp is ordered as newest with respect to

the values in Vsafei (e.g., 3, 4, 5) and then, at the end of the write()
operation, the system is stabilized. Indeed for Corollary 4 such value

is returned to the next read() operation;

– the next written value is ordered as older with respect to each value in

Vsafei and thus is dropped. This happens up to the write() operation

that writes a value equal to a value in Vsafei , when this happens Vsafei

is reset and after four write() operations the system is stable (cf. case

a.). If Vsafei = {0, 1, 2} then in the worst case are needed 6 write()
operations, e.g., 8, 9, 10, 11, 12, 0. Then at the next maintenance() op-

eration, when two values associated with 0 are in Vsafei the function

checkOrderAndTrunc(Vsafei) resets such set. Thus, after the end of

the next four write() operations the system is stable (cf. case a.), in-

deed for Corollary 4 such value is returned by the next read() operation.

Thus, after 10 write() operations the system is stable.

Considering all those cases, the worst case scenario happens when 10 write() oper-

ations are required to stabilise the system. The claim trivially follows generalizing

the argumentation for general timestamps in Z13. ✷Lemma 12
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Table 2: Values for a general read() operation that terminates after 3δ time [10].

MaxB̃(t, t+ 3δ) MaxCu(t) MaxSil(t, t+ 3δ)

(∆S,CUM) ⌈3δ∆ ⌉+ 1 R(⌈
3δ−ǫ−⌈ 3δ

∆
⌉∆+γ

∆ ⌉) ⌈
γ+δ−ǫ−⌈ 3δ

∆
⌉∆

∆ ⌉

min ˜CBC(t, t+ 3δ)

(∆S,CUM) ⌈3δ−ǫ−δ∆ ⌉+R(⌈3δ∆ ⌉ − ⌈
γ+δ
∆ ⌉) + (MaxCu(t)−MaxSil(t, t+ 3δ))

Theorem 4 Let n be the number of servers emulating the register and let f be

the number of Byzantine agents in the (∆S,CUM) round-free Mobile Byzantine

Failure model. Let δ be the upper bound on the communication latencies in the

synchronous system. If (i) n ≥ 6f + 1 for ∆ = 2δ and (ii) n ≥ 8f + 1 for

∆ = δ, then Preg implements a Self-Stabilizing SWMR Regular Register in the

(∆S,CUM) round-free Mobile Byzantine Failure model.

Proof The proof simply follows from Theorem 3 and Lemma 12. ✷Theorem 4

Theorem 5 Protocol PRreg is optimal with respect to the number of replicas.

Proof The proof follows considering that Theorem 4 proved that PRreg imple-

ments a Regular Register with the upper bounds provided in Table 1. Those bounds

match the lower bounds proved in Theorem 1 in [10]. In particular such The-

orem states that no safe register can be solved if nCUMLB
= [2(MaxB̃(t, t +

Tr) +MaxCu(t, t+ Tr))−min ˜CBC(t, t+ Tr)]f where Tr is the upper bound

on the read() operation duration. Each term can be computed applying Table 2

[10] considering γ = 2δ (Corollary 2). In particular if ∆ = δ then nCUMLB
=

[2(4 + 2) − 4]f = 8f while if if ∆ = 2δ then nCUMLB
= [2(3 + 1) − 2]f = 6f ,

concluding the proof. ✷Theorem 5

5 Concluding remarks

This paper proposed a self-stabilizing regular register emulation in a distributed

system where both transient failures and mobile Byzantine failures can occur, and

where messages and Byzantine agent movements are decoupled. The proposed pro-

tocol improves existing works on mobile Byzantine failures [8, 6, 10] being the first

self-stabilizing regular register implementation in a round-free synchronous com-

munication model and to do so it uses bounded timestamps from the Z13 domain

to guarantee finite and known stabilization time. In particular, the convergence

time of our solution is upper bounded by T10write(), where T10write() is the time

28



needed to execute ten complete write() operations. Contrary to the (∆S,CAM)
model, (∆S,CUM) model required to design a longer maintenance() operation

(that lasts 2δ time). As a side effect, also the read() operation completion time in-

creased and it has a direct impact on the size of the bounded timestamp domain that

characterize the stabilization time. However, it is interesting to note that all these

improvements have no additional cost with respect to the number of replicas that

are necessary to tolerate f mobile Byzantine processes and our solution is optimal

with respect to established lower bounds.

An interesting future research direction is to study upper and lower bounds for

(i) memory, and (ii) convergence time complexity of self-stabilizing register emu-

lations tolerating mobile Byzantine faults. Nevertheless, interesting is the study of

optimal maintenance() solutions.
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