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Optimal Self-Stabilizing Mobile Byzantine-Tolerant Regular Register with bounded timestamps

This paper proposes the first implementation of a self-stabilizing regular register emulated by n servers that is tolerant to both mobile Byzantine agents, and transient failures in a round-free synchronous model. Differently from existing Mobile Byzantine tolerant register implementations, this paper considers a more powerful adversary where (i) the message delay (i.e., δ) and the period of mobile Byzantine agents movement (i.e., ∆) are completely decoupled and (ii) servers are not aware of their state i.e., they do not know if they have been corrupted or not by a mobile Byzantine agent.

The proposed protocol tolerates (i) any number of transient failures, and (ii) up to f Mobile Byzantine agents. In addition, our implementation uses bounded timestamps from the Z 13 domain and it is optimal with respect to the number of servers needed to tolerate f mobile Byzantine agents in the given model.

Introduction

Byzantine fault tolerance is a fundamental building block in distributed system as Byzantine failures include all possible faults, attacks, virus infections and arbitrary behaviors that can occur in practice (even unforeseen ones). Such bad behaviors have been typically abstracted by assuming an upper bound f on the number of Byzantine failures in the system. However, such assumption has two main limitations: (i) it is not suited for long lasting executions and (ii) it does not consider the fact that compromised processes/servers may be restored as infections may be blocked and confined or rejuvenation mechanisms can be put in place [START_REF] Sousa | Highly available intrusion-tolerant services with proactive-reactive recovery[END_REF] making the set of faulty processes changing along time.

Mobile Byzantine Failure (MBF) models have been recently introduced to integrate those concerns. Failures are represented by Byzantine agents that are managed by an omniscient adversary that "moves" them from a host process to another and when an agent is in some process it is able to corrupt it in an unforeseen manner. Models investigated so far in the context of mobile Byzantine failures consider mostly round-based computations, and can be classified according to Byzantine mobility constraints: (i) constrained mobility [START_REF] Buhrman | Optimal resiliency against mobile faults[END_REF] agents may only move from one host to another when protocol messages are sent (similarly to how viruses would propagate), while (ii) unconstrained mobility [START_REF] Banu | An improved byzantine agreement algorithm for synchronous systems with mobile faults[END_REF][START_REF] Franc ¸ois Bonnet | Tight bound on mobile byzantine agreement[END_REF][START_REF] Garay | Reaching (and maintaining) agreement in the presence of mobile faults[END_REF][START_REF] Ostrovsky | How to withstand mobile virus attacks (extended abstract)[END_REF][START_REF] Reischuk | A new solution for the byzantine generals problem[END_REF][START_REF] Sasaki | Mobile byzantine agreement on arbitrary network[END_REF] agents may move independently of protocol messages. In the case of unconstrained mobility, several variants were investigated [START_REF] Banu | An improved byzantine agreement algorithm for synchronous systems with mobile faults[END_REF][START_REF] Franc ¸ois Bonnet | Tight bound on mobile byzantine agreement[END_REF][START_REF] Garay | Reaching (and maintaining) agreement in the presence of mobile faults[END_REF][START_REF] Ostrovsky | How to withstand mobile virus attacks (extended abstract)[END_REF][START_REF] Reischuk | A new solution for the byzantine generals problem[END_REF][START_REF] Sasaki | Mobile byzantine agreement on arbitrary network[END_REF]: Reischuk [START_REF] Reischuk | A new solution for the byzantine generals problem[END_REF] considers that malicious agents are stationary for a given period of time, Ostrovsky and Yung [START_REF] Ostrovsky | How to withstand mobile virus attacks (extended abstract)[END_REF] introduce the notion of mobile viruses and define the adversary as an entity that can inject and distribute faults; finally, Garay [START_REF] Garay | Reaching (and maintaining) agreement in the presence of mobile faults[END_REF], and more recently Banu et al. [START_REF] Banu | An improved byzantine agreement algorithm for synchronous systems with mobile faults[END_REF], and Sasaki et al. [START_REF] Sasaki | Mobile byzantine agreement on arbitrary network[END_REF] or Bonnet et al. [START_REF] Franc ¸ois Bonnet | Tight bound on mobile byzantine agreement[END_REF] consider that processes execute synchronous rounds composed of three phases: send, receive, and compute. Between two consecutive such synchronous rounds, Byzantine agents can move from one node to another. Hence the set of faulty processes at any given time has a bounded size, yet its membership may evolve from one round to the next. The main difference between the aforementioned four works [START_REF] Banu | An improved byzantine agreement algorithm for synchronous systems with mobile faults[END_REF][START_REF] Franc ¸ois Bonnet | Tight bound on mobile byzantine agreement[END_REF][START_REF] Garay | Reaching (and maintaining) agreement in the presence of mobile faults[END_REF][START_REF] Sasaki | Mobile byzantine agreement on arbitrary network[END_REF] lies in the knowledge that hosts have about their previous infection by a Byzantine agent. In Garay's model [START_REF] Garay | Reaching (and maintaining) agreement in the presence of mobile faults[END_REF], a host is able to detect its own infection after the Byzantine agent left it. Sasaki et al. [START_REF] Sasaki | Mobile byzantine agreement on arbitrary network[END_REF] investigate a model where hosts cannot detect when Byzantine agents leave. Finally, Bonnet et al. [START_REF] Franc ¸ois Bonnet | Tight bound on mobile byzantine agreement[END_REF] considers an intermediate setting where cured hosts remain in control on the messages they send (in particular, they send the same message to all destinations, and they do not send obviously fake information, e.g. fake id). Those subtle differences on the power of Byzantine agents turns out to have an important impact on the bounds for solving distributed problems.

A first step toward decoupling algorithm rounds from mobile Byzantine moves is due to Bonomi et al. [START_REF] Bonomi | Optimal mobile byzantine fault tolerant distributed storage[END_REF]. In their solution to the regular register implementation, mobile Byzantine movements are synchronized, but the period of movement is independent to that of algorithm rounds.

Alternatively, self-stabilization [START_REF] Edsger | Self-stabilizing systems in spite of distributed control[END_REF][START_REF] Dolev | Self-Stabilization[END_REF] is a versatile technique to recover from any number of Byzantine participants, provided that their malicious actions only spread a finite amount of time. In more details, starting from an arbitrary global state (that may have been caused by Byzantine participants), a self-stabilizing protocol ensures that problem specification is satisfied again in finite time, without external intervention.

Register Emulation. Traditional solutions to build a Byzantine tolerant storage service (a.k.a. register emulation) can be divided into two categories: replicated state machines [START_REF] Schneider | Implementing fault-tolerant services using the state machine approach: A tutorial[END_REF], and Byzantine quorum systems [START_REF] Rida | Synchronous byzantine quorum systems[END_REF][START_REF] Malkhi | Byzantine quorum systems[END_REF][START_REF] Martin | Small byzantine quorum systems[END_REF][START_REF] Martin | Minimal byzantine storage[END_REF]. Both approaches are based on the idea that the current state of the storage is replicated among processes, and the main difference lies in the number of replicas that are simultaneously involved in the state maintenance protocol.

Multi-tolerance. Extending the effectiveness of self-stabilization to permanent Byzantine faults is a long time challenge in distributed computing. Initial results were mostly negative [START_REF] Daliot | Self-stabilization of byzantine protocols[END_REF][START_REF] Dolev | Self-stabilizing clock synchronization in the presence of byzantine faults[END_REF][START_REF] Nesterenko | Tolerance to Unbounded Byzantine Faults[END_REF] due to the impossibility to distinguish a honest yet incorrectly initialized participant from a truly malicious one. On the positive side, two notable classes of algorithms use some locality property to tolerate Byzantine faults: space-local and time-local algorithms. Space-local algorithms [START_REF] Masuzawa | Stabilizing Link-Coloration of Arbitrary Networks with Unbounded Byzantine Faults[END_REF][START_REF] Nesterenko | Tolerance to Unbounded Byzantine Faults[END_REF][START_REF] Sakurai | A Selfstabilizing Link-Coloring Protocol Resilient to Byzantine Faults in Tree Networks[END_REF] try to contain the fault (or its effect) as close to its source as possible. This is useful for problems where information from remote nodes is unimportant (such as vertex coloring, link coloring, or dining philosophers). Timelocal algorithms [START_REF] Dubois | On Byzantine Containment Properties of the min+1 Protocol[END_REF][START_REF] Dubois | Bounding the Impact of Unbounded Attacks in Stabilization[END_REF][START_REF] Dubois | Maximum Metric Spanning Tree made Byzantine Tolerant[END_REF] try to limit over time the effect of Byzantine faults. Time-local algorithms presented so far can tolerate the presence of at most a single Byzantine node. Thus, neither approach is suitable to register emulation.

Recently, several works investigated the emulation of self-stabilizing or pseudostabilizing Byzantine tolerant SWMR or MWMR registers [START_REF] Alon | Practically stabilizing SWMR atomic memory in message-passing systems[END_REF][START_REF] Bonomi | Byzantine Tolerant Storage[END_REF][START_REF] Bonomi | Stabilizing Server-Based Storage in Byzantine Asynchronous Message-Passing Systems[END_REF]. All these works do not consider the complex case of mobile Byzantine faults.

To the best of our knowledge, the problem of tolerating both arbitrary transient faults and mobile Byzantine faults has been considered recently only in roundbased synchronous systems [START_REF] Bonomi | Tight selfstabilizing mobile byzantine-tolerant atomic register[END_REF]. The authors propose optimal unbounded selfstabilizing atomic register implementations for round-based synchronous systems under the four Mobile Byzantine models described in [START_REF] Banu | An improved byzantine agreement algorithm for synchronous systems with mobile faults[END_REF][START_REF] Franc ¸ois Bonnet | Tight bound on mobile byzantine agreement[END_REF][START_REF] Garay | Reaching (and maintaining) agreement in the presence of mobile faults[END_REF][START_REF] Sasaki | Mobile byzantine agreement on arbitrary network[END_REF].

Our Contribution. The main contribution of the paper is a protocol P reg emulating a regular register in a distributed system where both arbitrary transient failures and mobile Byzantine failures can occur. In particular, the proposed solution differs from previous work on round-free register emulation [START_REF] Bonomi | Optimal mobile byzantine fault tolerant distributed storage[END_REF][START_REF] Bonomi | Optimal Storage under Unsynchronized Mobile Byzantine Faults[END_REF] as we add the self-stabilization property. In more details, we present a regular register implementation that uses bounded timestamps from the Z 13 domain and it is optimal with respect to the number of replicas needed to tolerate f mobile Byzantine agents. Finally, the convergence time of our solution is upper bounded by T 10write() , where T 10write() is the time needed to execute ten complete write() operations.

System Model

We consider a distributed system composed of an arbitrary large set of client processes C and a set of n server processes S = {s 1 , s 2 . . . s n }. Each process in the distributed system (i.e., both servers and clients) is identified by a unique identifier. Servers run a distributed protocol emulating a shared memory abstraction and such protocol is totally transparent to clients (i.e., clients do not know the protocol executed by servers). The passage of time is measured by a fictional global clock (e.g., that spans the set of natural integers). At each time t, each process (either client or server) is characterised by its internal state, i.e., by the set of all its local variables and the corresponding values. No agreement abstraction is assumed to be available at each process (i.e. processes are not able to use consensus or total order primitives to agree upon the current values). Moreover, we assume that each process has the same role in the distributed computation (i.e., there is no special process acting as a coordinator). Communication model. Processes communicate through message passing. In particular, we assume that: (i) each client c i ∈ C can communicate with every server through a broadcast() primitive, (ii) each server can communicate with every other server through a broadcast() primitive, and (iii) each server can communicate with a particular client through a send() unicast primitive. We assume that communications are authenticated (i.e., given a message m, the identity of its sender cannot be forged) and reliable (i.e., spurious messages are not created and sent messages are neither lost nor duplicated). Timing assumptions. The system is synchronous in the following sense: (i) the processing time of local computations (except for wait() statements) is negligible with respect to communication delays and is assumed to be equal to 0, and (ii) messages take time to travel to their destination processes. In particular, concerning point-to-point communications, we assume that if a process sends a message m at time t then it is delivered by time t + δ p (with δ p > 0). Similarly, let t be the time at which a process p invokes the broadcast(m) primitive, then there is a constant δ b (with δ b ≥ δ p ) such that all servers have delivered m at time t + δ b . For the sake of presentation, in the following we consider a unique message delivery delay δ (equal to δ b ≥ δ p ), and we assume δ is known to every process. Moreover, we assume that any process is provided with a physical clock, i.e., non corruptible. Computation model. Each process of the distributed system executes a distributed protocol P reg that is composed by a set of distributed algorithms. Each algorithm in P reg is represented by a finite state automaton and it is composed of a sequence of computation and communication steps. A computation step is represented by the computation executed locally to each process while a communication step is represented by the sending and the delivering events of a message. Computation steps and communication steps are generally called events. The computation is round-free i.e., the distributed protocol P reg does not evolve in synchronous rounds and messages can be sent, according to the protocol, at any point in time. Given a process p i and the protocol P reg , we say that p i is correctly executing P reg in a time interval [t, t ′ ] if p i never deviates from P reg in [t, t ′ ] (i.e., it always follows the automata transitions and never corrupts its local state).

Definition 1 (Valid State at time t) Let p i be a process and let state p i be the state of p i at some time t. state p i is said to be valid at time t if it is equal to the state of some fictional process p correctly executing P reg in the interval [t 0 , t].

Failure Model. An arbitrary number of clients may crash while servers are affected by Mobile Byzantine Failures i.e., failures are represented by Byzantine agents that are controlled by a powerful external adversary "moving" them from a server to another. We assume that, at any time t, at most f mobile Byzantine agents are in system.

In this work we consider the ∆-synchronized and Cured Unaware Model, i.e. (∆S, CU M ) MBF model, introduced in [START_REF] Bonomi | Optimal mobile byzantine fault tolerant distributed storage[END_REF] that is suited for round-free computations 1 . More in details, (∆S, CU M ) can be specified as follows: the external adversary moves all the f mobile Byzantine agents at the same time t and movements happen periodically (i.e., movements happen at time t 0 + ∆, t 0 + 2∆, . . . , t 0 + i∆, with i ∈ N) and at any time t, no process is aware about its failure state (i.e., processes do not know if and when they have been affected from a Byzantine agent) but it is aware about the time at which mobile Byzantine agents move.

Let us note that when we are considering Mobile Byzantine agents no process is guaranteed to be in the same failure state for ever. Processes, in fact, may change their state between correct and faulty infinitely often. As a consequence, it is fundamental to re-define the notion of correct and faulty process as follows:

Definition 2 (Correct process at time t) A process is said to be correct at time t if (i) it is correctly executing its protocol P and (ii) its state is a valid state at time t. We will denote as Co(t) the set of correct processes at time t while, given a time interval [t, t ′ ], we will denote as Co([t, t ′ ]) the set of all the processes that are correct during the whole interval [t, t ′ ] (i.e., Co(

[t, t ′ ]) = τ ∈ [t,t ′ ] Co(τ )).
Definition 3 (Faulty process at time t) A process is said to be faulty at time t if it is controlled by a mobile Byzantine agent and it is not executing correctly its protocol P (i.e., it is behaving arbitrarily). We will denote as B(t) the set of faulty processes at time t while, given a time interval [t, t ′ ], we will denote as B([t, t ′ ]) the set of all the processes that are faulty during the whole interval [t, t ′ ] (i.e., B([

t, t ′ ]) = τ ∈ [t,t ′ ] B(τ )).
Definition 4 (Cured process at time t) A process is said to be cured at time t if (i) it is correctly executing its protocol P and (ii) its state is not a valid state at time t. We will denote as Cu(t) the set of cured processes at time t while, given a time interval [t, t ′ ], we will denote as Cu([t, t ′ ]) the set of all the processes that are cured during the whole interval

[t, t ′ ] (i.e., Cu([t, t ′ ]) = τ ∈ [t,t ′ ] Cu(τ )).
As in the case of round-based MBF models [START_REF] Banu | An improved byzantine agreement algorithm for synchronous systems with mobile faults[END_REF][START_REF] Franc ¸ois Bonnet | Tight bound on mobile byzantine agreement[END_REF][START_REF] Buhrman | Optimal resiliency against mobile faults[END_REF][START_REF] Garay | Reaching (and maintaining) agreement in the presence of mobile faults[END_REF][START_REF] Sasaki | Mobile byzantine agreement on arbitrary network[END_REF], we assume that any process has access to a tamper-proof memory storing the correct protocol code.

Let us stress that even though at any time t, at most f servers can be controlled by Byzantine agents, during the system life time, all servers may be affected by a Byzantine agent (i.e., none of the servers is guaranteed to be correct forever).

Processes may also suffer from transient failures, i.e., local variables of any process (clients and servers) can be arbitrarily modified [START_REF] Dolev | Self-Stabilization[END_REF]. It is nevertheless assumed that transient failures are quiescent, i.e., there exists a time τ no tr (which is unknown to the processes) after which no new transient failures happens.

Self-Stabilizing Regular Register Specification

A register is a shared variable accessed by a set of processes, i.e. clients, through two operations, namely read() and write(). Informally, the write() operation updates the value stored in the shared variable while the read() obtains the value contained in the variable (i.e. the last written value). In distributed settings, every operation issued on a register is, generally, not instantaneous and it can be characterized by two events occurring at its boundary: an invocation event and a reply event. An operation op is complete if both the invocation event and the reply event occur (i.e. the process executing the operation does not crash between the invocation and the reply). Contrary, an operation op is said to be failed if it is invoked by a process that crashes before the reply event occurs. According to these time instants, it is possible to state when two operations are concurrent with respect to the real time execution. Given two operations op and op ′ , their invocation event times (t B (op) and t B (op ′ )) and their reply event times (t E (op) and t E (op ′ )), we say that op precedes op ′ (op ≺ op ′ ) iff t E (op) < t B (op ′ ). If op does not precede op ′ and op ′ does not precede op, then op and op ′ are concurrent (op||op ′ ). Given a write(v) operation, the value v is said to be written when the operation is complete. We assume that locally any client never performs read() and write() operations concurrently (i.e., for any given client c i , the set of operations executed by c i is totally ordered). We also assume that initially the register stores a default value ⊥ written by a fictional write(⊥) operation happening instantaneously at time t 0 . In case of concurrency while accessing the shared variable, the meaning of last written value becomes ambiguous. Depending on the semantics of the operations, three types of register have been defined by Lamport [START_REF] Lamport | On interprocess communication. part i: Basic formalism[END_REF]: safe, regular and atomic.

In this paper, we consider a Self-Stabilizing Single-Writer/ Multi-Reader (SWMR) regular register, i.e., an extension of Lamport's regular register that considers transitory failures.

The Self-Stabilizing Single-Writer/Multi-Reader (SWMR) register is specified as follow:

• ss -Termination: Any operation invoked on the register by a non-crashed process eventually terminates.

• ss -Validity: There exists a time t stab such that each read() operation invoked at time t > t stab returns the last value written before its invocation, or a value written by a write() operation concurrent with it.

A Self-Stabilizing Regular Register Implementation

In this Section we propose a protocol P reg implementing a self-stabilizing SWMR regular register in the (∆S, CU M ) Mobile Byzantine Failure model. Such an algorithm copes with the (∆S, CU M ) model following the same approach as in [START_REF] Bonomi | Optimal Storage under Unsynchronized Mobile Byzantine Faults[END_REF], which is improved with the bounded timestamps in order to design a selfstabilizing algorithm. We implemented read() and write() operations following the classical quorumbased approach (like in the ABD protocol [START_REF] Attiya | Sharing memory robustly in message-passing systems[END_REF]) and exploiting the synchrony of the system to guarantee their termination. Informally, when the writer client wants to write, it simply propagates the new value to servers that update the value of the register while, when a reader client wants to read, it asks for the current value of the register and waits for replies: after 3δ time "enough"2 replies have been received and a value is selected and returned (the reason why a read() operation lasts for 3δ is explained in the following).

In order to do that, the maintenance() operation must guarantee that there always exists a sufficient number of servers storing a valid value for the register.

Thus, its aim is threefold: (i) ensuring that cured servers get a valid value at the end of maintenance(), (ii) possible concurrent written values are always taken into account by cured servers running maintenance() and (iii) correct servers do not overwrite their correct value with a non-valid one.

Each server s i stores three pairs value, timestamp corresponding to the last three written values and periodically (when Byzantine agents move at every T i = t 0 + i∆, with i ∈ N) executes the maintenance() operation.

The basic idea is to keep separated information that can be trusted (e.g., values received by the writer client or values sent from "enough" processes) from those that are untrusted (e.g., values stored locally that can be compromised) and to decide the current state accordingly.

To this aim, maintenance() makes use of three fundamental set variables: (i) V i stores the knowledge of s i at the beginning of each maintenance() operation and contains the last three values of the register and the corresponding sequence numbers (untrusted information), (ii) V saf e (emptied at the beginning of each the maintenance() operation) is used to collect values selected among those sent through echoes by other servers (trusted information due to the presence of "enough" correct servers) and (iii) W i contains values and the corresponding timestamps concurrently received by the writer (untrusted information as it can be potentially compromised by the Byzantine agent before it leaves the server).

As an example, consider the execution of the i-th maintenance() operation starting at time t 0 + i∆ shown in Figure 1 for the two servers s 0 and s 1 that are respectively correct and cured.

When maintenance() starts, every server s i echoes the relevant information stored locally (i.e., list of pending read() operations and the sets V i and W i ). Such information are then collected by any server s j and can be used (based on the number of occurrence of each pair value, sequence number ) to update the set V saf e . Let us note that, due to the synchrony of the system, after δ time units (i.e., at time t 0 + i∆ + δ), s i collected at least all the values sent by every correct and cured server and it is able to decide and update its local variables. Thus, it selects the values occurring "enough times" (see footnote 2) from echoes, updates V saf e and empties V i .

In Figure 1, it is possible to see that, at time t 0 + i∆ + δ, s 0 basically does not update its information while s 1 is able to update its V saf e set consistently with s 0 using the values gathered through echoes.

However, the maintenance() operation is not yet terminated as it could happen that a write() operation is running concurrently and the concurrently written value may not yet be in V i and in V saf e . In order to manage this case, every time that a value is written, it is also relayed to all servers. In addition, in order to avoid to overwrite values just written with those selected from the maintenance() operation,

s 0 s 1 W 0 V 0 V saf e 0 {0, 1, 2} ∅ ∅ {0, 1, 2} {0, 1, 2} ∅ {0, 1, 2} 3 {0, 1, 2} ∅ {0, 1, 2} {1, 2, 3} ∅ {1, 2, 3} ∅ W 1 V 1 V saf e 1 {7, 8, 9} ∅ 10 {7, 8, 9} {0, 1, 2} 10, 3 3 ∅ {0, 1, 2} {0, 1, 2} ∅ {0, 1, 2} {1, 2, 3} ∅ {1, 2, 3} ∅ echo 0 echo 1 echo echo w (3) w(3) 
echo 0 echo 1 echo echo maintenance() maintenance() maintenance() maintenance() 
t 0 + i∆ t 0 + i∆ + δ t 0 + (i + 1)∆ t 0 + (i + 1)∆ + δ t write() persistence time w(3)
Figure 1: Example of a partial run for a correct server s 0 and a cured server s 1 with ∆ = 2δ. For the sake of simplicity we report only timestamps instead of the pair value, timestamp .

concurrently written values are temporarily stored in W i with an associated timer (i.e., like a time-to-leave) set to 2δ.

The timer is set in such a way that each value in W i remains stored long enough to ensure its propagation to all servers and guarantees that written values will eventually appear in every non-faulty V saf e set (e.g., the value 3 in Figure 1). At the same time, the 2δ period is not long enough to allow mobile Byzantine agents to leverage the propagation of corrupted values to force reader clients to return a bad value (e.g., the value 10 left by the mobile Byzantine agent in W 1 at the beginning of the i-th maintenance() operation). We call the time necessary for a value to be present in V saf e as the write persistence time.

Note that, depending on the relationship between ∆ and δ, it may happen that a maintenance() operation is triggered while the previous one is not yet terminated. This is not an issue as the set V i is updated before the second maintenance() operation starts and W i is the only set that is not reset between the two maintenance() operations and it prevents values to be lost having a time-to-live of 2δ which is enough to propagate it.

Finally, concurrently with the maintenance() and write() operations, servers may need to answer also to clients that are currently reading. In order to preserve the validity of read() operations and in order to cope with possible corrupted values stored by s i just before the mobile Byzantine agent left, s i replies with all the values it is storing (i.e., providing V i , V saf e and W i ). Note that, given the update mechanism of local variables (designed to keep separated trusted information from untrusted ones), there could be a fraction of time where the last written value is removed from W i (as its timer is expired) and it is not yet inserted in V i and in V saf e (as the corresponding propagation message is still traveling -cfr. the red zone in Figure 1). To cope with this issue, the read() operation lasts 3δ time i.e., an extra waiting period is added for the collection of replies to guarantee that values are not lost.

In order to stabilise in a finite and known period and manage transient failures, P reg employs bounded timestamps. It is important to note that timestamps are necessary in the (∆S, CU M ) model as, during the maintenance(), servers must be able to distinguish new and old values in order to guarantee that a new value possibly received by the writer is not overwritten by the maintenance() operation. In the following we will explain why using bounded timestamps guarantees a finite and known stabilisation period.

Let us note that, in order to stabilise, at least one write() operation must be executed after time τ no tr . However, due to the fact that this operation is the first one after τ no tr , if the domain of timestamps is unbounded (e.g., the domain of natural numbers N as in [START_REF] Bonomi | Tight selfstabilizing mobile byzantine-tolerant atomic register[END_REF][START_REF] Bonomi | Optimal mobile byzantine fault tolerant distributed storage[END_REF][START_REF] Bonomi | Optimal Storage under Unsynchronized Mobile Byzantine Faults[END_REF]), it could happen that the timestamp used by the writer Table 1: Parameters for P Rreg Protocol. is way much smaller than those stored locally by servers. This means that such an operation will be ignored and the same will happen until the writer timestamp will reach those stored by servers making the stabilisation period unknown.

k = ⌈ 3δ ∆ ⌉ n CU M ≥ (2k + 2)f + 1 #reply CU M ≥ 2kf + 1 #echo CU M ≥ kf + 1 ∆ = δ, k = 3 8f + 1 6f + 1 3f + 1 ∆ = 2δ, k = 2 6f + 1 4f + 1 2f + 1 s 0 s 1 s 2 w(3) persistence time w(3) w(4) w(5) (a 
We use timestamps in the domain Z m , with m = 13. Each written value is represented as val, sn where val is the content and sn the corresponding sequence number, sn ∈ Z m = {0, 1, . . . , m -1}. Let us define two operations on such values: addition:

+ m : Z m × Z m → Z m , a + m b = (a + b) (mod m); and subtraction: -m : Z m × Z m → Z m , a -m b = a + m (-b). Note that (-b) is the opposite of b.
That is, the number that added to b gives 0 as result, i.e., b + m (-b) = 0.

Two scenarios are depicted in Figure 2 to characterize how many different values clients and servers may have to manage (and thus uniquely order) at the same time. We consider a sequence of write() operations and then what happens if a read() operation is concurrent with a sequence of write() operations. In the first case, just before the time instant marked as (a) s 0 could be ready to store values 0, 1, 2 and 5 that need to be ordered. In the meantime values 3 and 4 are still echoed. In any case the timestamps range that a server can manage at the same time is from 0 to 5, more in general 6 subsequent timestamps. 3 values are stored in V i and 3 values come from the subsequent write() operations. At time (a), in Figure 2, 3 takes the place of 0, which is discharged. Let us consider the most distant values, 0 and 5. There are two ways to order them, either 0 precedes 5 or 5 precedes 0. But the second one is impossible since in that case there could be 7 timestamps around at the same time. In the second scenario, concurrently to a sequence of write() operations there is a read() operation. In this case we have to consider all values that could be returned to the client. In this case, values from 0 to 7 (thus at most at distance 7) and we notice that the last written value, 3, is always returned. Thus a client may have to order the following values 0, 3, 7. There are three possibilities: (i) 0, 3, 7, (ii) 3, 7, 0, or (iii) 7, 0, 3. In cases (ii) and (iii) we have 0 -13 3 = 10 and 3 -13 7 = 9 respectively, both of them greater than 7. Thus the only possible order the case (i).

The pseudo-code for P reg is shown in Figures 345. Local variables at client c i . Each client c i maintains two sets reply i that is used during the read() operation to collect the three tuples j, v, sn sent back from servers. Additionally, if c i is the writer, it maintains a local sequence number csn that is incremented, respect to the Z 13 arithmetic, each time it invokes a write() operation, which is timestamped with such sequence number.

Local variables at server s i . Each server s i maintains the following local variables:

• V i : a set containing 3 tuples v, sn , where v is a value and sn the corresponding sequence number.

• V saf e i : this set has the same characteristic as V i , and is populated by the function insert(V saf e i , v k , sn k ).

• W i : a set where s i stores values coming directly from the writer, associating to it a timer, v, sn, timer . When the timer expires, the associated value is deleted.

• echo vals i and echo read i : two sets used to collect information propagated through ECHO messages. The former set stores tuple v, sn j whilst the latter set contains identifiers of concurrently reading clients in order to notify cured servers and expedite termination of read() operations.

• pending read i : set variable used to collect identifiers of the clients that are currently reading. Notice, for simplicity we do not explicitly manage the values discharge from such set since it has no impact on the protocol correctness.

In order to simplify the code of the algorithm, let us define the following functions:

• select pairs(echo vals i ): this function takes as input the set echo vals i and returns tuples v, sn , such that there exist at least #echo CU M occurrences in echo vals i of such tuple (ignoring the Timer value, if present).

• insert(V saf e i , v k , sn k ): this function inserts v k , sn k in V saf e according with the incremental order and if there are more than 3 values then the oldest one is discarded. In case it is not possible to establish an unique order among the elements in the set then V saf e i is reset (this may happen due to transient failures).

• select value(reply i ): this function returns the newest pair v, sn occurring at least #reply CU M times in reply i (ignoring the Timer value, if present).

• checkOrderAndTrunc(V saf e i ): this function checks if it is possible to uniquely order the elements in V saf e i with respect to the timestamps. If yes, the 3 newest element are kept, the others are discharged. If it is not possible to uniquely establish an order for each pair of elements then all the elements are discharged.

• checkOrder(V saf e i ): this function checks if it is possible to establish an unique order for each couple of elements in V saf e i . If not, V saf e i is emptied.

• conCut(V i , V saf e i , W i ): this function takes as input three 3 dimension ordered sets and returns another 3 dimension ordered set. The returned set is composed by the concatenation of V saf e i • V i • W i , without duplicates, truncated after the first 3 newest values (with respect to the timestamp). e.g.,

d = 3, V i = { v a , 1 , v b , 2 , v c , 3 } and V saf e i = { v b , 2 , v d , 4 , v f , 5 } and W i = ∅, then the returned set is { v c , 3 , v d , 4 , v f , 5 }.
If is it not possible to establish and order in one of those sets because of transient failures then the result is ⊥.

• checkTimer(W i ): this function removes from W i all the values whose associated timer is 0 or strictly greater than 2δ.

The maintenance() operation. Such operation is executed by servers periodically at any time T i = t 0 + i∆. Each server first stores the content of V saf e i in V i and init() :

(1) trigger maintenance(); checkTimer(W i ); select(echo vals i ); ---------------------------------operation maintenance() executed every T i = t 0 + ∆ i :

(2) checkOrderAndTrunc(V saf e i );

(3) echo vals i ← ∅; V i ← V saf e i ; V saf e ← ∅;

(4) broadcast ECHO(i, V i ∪ W i , pending read i );

(5) wait(δ);

(6) V i ← ∅; ------------------------------------- when ECHO (j, S, pr) is received: (7) for each ( v, sn j ∈ S) (8) 
echo vals i ← echo vals i ∪ v, sn j ; (9) endFor (10) echo read i ← echo read i ∪ pr; ---------------------------------function select(echo vals i ): (11) while(TRUE): [START_REF] Daliot | Self-stabilization of byzantine protocols[END_REF] if select pairs(echo all V saf e i and echo vals i sets are reset. Each server broadcasts an ECHO message with the content of V i , W i and the pending read i set. When there is a value in the echo vals i set that occurs at least #echo CU M times, s i tries to update V saf e i set by invoking insert on the value returned by the select pairs(echo vals i ) function. To conclude, after δ time since the beginning of the operation, the V i set is reset. Informally speaking, during the maintenance() operation V saf e i is filled with safe values, then the content in V i is not longer necessary. Notice that the content of W i is continuously monitored so that expired values are removed.

vals i ) = ⊥; (13) v k , sn k ← select pairs(echo vals i ); (14) insert(V saf e i , v k , sn k ); (15) send REPLY (i, conCut(V i , V saf e i , W i ))) to c j ; (16) endIF (17) endWhile
The write() operation. When the write() operation is invoked, the writer increments csn ← csn + m 1, sends WRITE( v, csn ) to all servers and finally returns after δ time. For each server s i , two cases may occurs, s i delivers WRITE( v, csn ) message when it is not affected by a Byzantine agent or when it is affected by a Byzantine agent. In the first case s i stores v in W i and forwards it to every server sending the ECHO(i, v, csn , pending read i ) message. Such value is further echoed at the beginning of each next maintenance() operation as long as v, csn is in W i or V i , this is true for #echo CU M correct servers. When v, csn operation write(v):

(1) csn ← (csn +m 1);

(2) broadcast WRITE(v, csn);

(3) wait (δ); (4) return write confirmation; occurs #echo CU M times in echo vals i then s i tries to update V saf e i set by invoking insert on the value returned by the select pairs(echo vals i ) function.

when WRITE(v, csn) is received: (5) W i ← W i ∪ v,
The read() operation. At client side, when the read() operation is invoked at client c i , it empties the reply i set and sends to all servers the READ(i) message. Then c i waits 3δ time, while the reply i set is populated with servers replies, and from such set it picks the newest value occurring #echo CU M times invoking select value(reply i ) and returns it. Notice that before returning c i sends to every server the read termination notification, READ ACK(i) message. At server side when s j delivers the READ(i) message, client c i identifier is stored in the pending read j set. Such set is part of the content of ECHO message in every maintenance() operation, which populates the echo read j set, so that cured servers can be aware of the reading clients. Afterwards, s j invokes conCut(V j , V saf e i , W i ) function to prepare the reply message for c i . The result of such function is sent back to c i in the REPLY message. Finally a REPLY message containing just one value is sent when a new value is added in W i and there are clients in the pending read j ∪ echo read j set. When the READ ACK(i) message is delivered from c i then its identifier is removed from the pending read j and echo read j sets.

Correctness proofs

In the following we prove that the protocol defined in Section 4 is correct.

Definition 5 (Faulty servers in the interval I) Let us define as B[t, t + T ] the set of servers that are affected by a Byzantine agent for at least one time unit in the time interval

[t, t + T ]. More formally B[t, t + T ] = τ ∈[t,t+T ] B(τ ). Definition 6 (M ax B(t, t + T )) Let [t, t + T ] be a time interval. The cardinality of B(t, t + T ) is maximum if for any t ′ , t ′ > 0, is it true that | B(t, t + T )| ≥ | B(t ′ , t ′ + T )|. Let M ax B(t, t + T ) be such cardinality. Lemma 1 If ∆ > 0 and T ≥ δ then M ax B(t, t + T ) = (⌈ T ∆ ⌉ + 1)f .
operation read():

(1) reply i ← ∅;

(2) broadcast READ(i);

(3) wait (3δ); (4) v, sn ← select value(reply i );

(5) broadcast READ ACK(i); (6) return v; --------------------when REPLY (j, Vset) is received:

(7) for each( v, sn ∈ Vset) do (8) reply i ← reply i ∪ { v, sn j }; (9) 
endFor when READ (j) is received: (10) pending read i ← pending read i ∪ {j}; [START_REF] Buhrman | Optimal resiliency against mobile faults[END_REF] send REPLY (i, conCut(V i , V saf e i , W i )); (12) broadcast READ FW(j); - -----------------------when READ FW (j) is received: (13) pending read i ← pending read i ∪ {j}; ------------------------when READ ACK (j) is received: (14) pending read i ← pending read i \ {j}; (15) echo read i ← echo read i \ {j}; Proof For simplicity let us consider a single agent ma 1 , then we extend the reasoning to all the f agents. In the [t, t + T ] time interval, with T ≥ δ, ma 1 can affect a different server each ∆ time. It follows that the number of times it may "jump" from a server to another is T ∆ . Thus the affected servers are at most ⌈ T ∆ ⌉ plus the server on which ma 1 is at t. Finally, extending the reasoning to f agents, M ax B(t, t + T ) = (⌈ T ∆ ⌉ + 1)f , concluding the proof. ✷ Lemma 1

In the following we first characterize the correct system behavior, i.e., when the protocol is correctly executed after τ stab (the end of the transient failure and system stabilization). In doing this we assume that it is always possible to establish the correct order among the values that are collected by clients and servers. After we prove that it is always possible to establish an order among those values and finally, we prove that the protocol is self-stabilizing after a finite number of write() operations. Concerning the protocol correctness, the termination property is guaranteed by the way the code is designed, after a fixed period of time all operations terminate. The validity property is proved with the following steps:

1. maintenance() operation works (i.e., at the end of the operation n-f servers store valid values). In particular, for a given value v stored by #echo CU M correct servers at the beginning of the maintenance() operation, there are nf servers that store v after δ time since the beginning of the operation;

2. given a write() operation that writes v at time t and terminates at time t + δ, there is a time t ′ < t + 3δ after which #reply CU M correct servers store v;

3. at the next maintenance() operation after t ′ there are #reply CU Mf = #echo CU M correct servers that store v, for step (1) this value is maintained in the register;

4. the validity property follows considering that the read() operation is long enough to include the t ′ of the last written value in such a way that servers have enough time to reply and after t ′ this value is maintained in the register, step (3), as long as there are no others write() operations. To such purpose we show that V i is big enough to do not be full filled with new values before that the last written value is returned.

Correctness proofs considering t > t stab .

In the following we prove the correctness of the protocol when there are no transient failures, the system is stable and thus timestamp are not bounded, thus it is always possible to uniquely order all values.

Lemma 2 If a client c i invokes a write(v) operation at time t then this operation terminates at time t + δ.

Proof The claim simply follows by considering that a write confirmation event is returned to the writer client c i after δ time, independently of the servers behavior (see lines 3-4, Figure 4).

✷ Lemma 2
Lemma 3 If a client c i invokes a read() operation at time t then this operation terminates at time t + 3δ.

Proof The claim simply follows by considering that a read() returns a value to the client after 3δ time, independently of the behavior of the servers (see lines 3-6, Figure 5).

✷ Lemma 3
Theorem 1 Any operation invoked on the register eventually terminates.

Proof The proof simply follows from Lemma 2 and Lemma 3.

✷ T heorem 1 Lemma 4 (Step 1.) Let v be a value stored at #echo CU M correct servers s j ∈ Co(T i ), v ∈ V j ∀s j ∈ Co(T i ).
Then ∀s c ∈ Cu(T i ) at T i + δ (i.e., at the end of the maintenance()) v is returned by the function select pairs(echo vals i ).

Proof By hypothesis at T i there are #echo CU M correct servers s j storing the same v and running the code in Figure 3. In particular each server broadcasts a ECHO() message with attached the content of V j which contains v (line 4 From the reasoning used in this Lemma, the following Corollary follow.

Corollary 1 Let s i be a non faulty process and v a value in W i . Such value is in W i during at most k -1 sequential maintenance() operations.

Finally, considering that servers reply during a read() operation with values in W i , V i and V saf e i . V saf e i is safe by definition, V i is reset after the first maintenance() operation then it follows that servers can be in a cured state for 2δ time, the time that never written values can be present in W i .

Corollary 2 Protocol P implements a maintenance() operation that implies γ ≤ 2δ.

Lemma 6 Let T c be the time at which s c becomes cured. Each cured server s c can reply back with incorrect message to a READ() message during a period of 2δ time.

Proof The proof directly follows considering that the content of a REPLY() message comes from the V c , V saf ec and W i sets. The first one is filled with the content of V saf ec at the beginning of each maintenance() operation and after δ time is reset (cf. Figure 3, lines 5-6). The second one is emptied at the beginning of each maintenance() operation and the third one keeps its value during k maintenance() operations (cf. Corollary 1). Thus by time T c + 2δ s c cleans all the values that could come from a mobile agent.

✷ Lemma 6

Lemma 7 (Step 2.) Let op W be a write(v) operation invoked by a client c k at time t B (op W ) = t then at time t + 3δ there are at least n -2f ≥ #reply CU M correct servers such that v ∈ V saf e i and is returned by the function concCut().

Proof Due to the communication channel synchrony, the WRITE messages from c k are delivered by servers within the time interval [t, t + δ]; any non faulty server s j executes the correct algorithm code. When s j delivers a WRITE message it stores the value in W j and sets the associated timer to 2δ (line 5, Figure 4). For Lemma 1 in the [t, t+δ] time interval there are maximum 2f Byzantine servers, thus at t + δ v is stored in W j at n -2f ≥ #echo CU M correct servers s j . All those servers broadcast v by time t + δ, so by time t + 2δ there are #echo CU M occurrences of v in echo vals i , each server s i stores v in V saf e i . If a Byzantine agent movement happens before t+2δ, i.e., T i ∈ [t+δ, t+2δ] then at time T i , due to Byzantine agents movements, there are n -3f ≥ #echo CU M correct servers that run the maintenance() operation and broadcast v. Thus at time t + 3δ, for Lemma 4, all correct servers are storing v ∈ V saf e i and by construction v is returned by the function conCut(). We conclude the proof by considering that there are at least n -2f ≥ #reply CU M . ✷ Lemma 7

For simplicity, from now on, given a write() operation op W we call t B (op W ) + 3δ = t wP the persistence time of op W , the time at which there are at least #reply CU M servers s i storing the value written by op W in V saf e i . Lemma 8 (Step 3/1.) Let op W be a write() operation and let v be the written value. If there are no other write() operations, the value written by op W is stored by all correct servers forever (i.e., v is returned invoking the conCut() function).

Proof From Lemma 7 at time t wP there are at least n -2f ≥ #reply CU M correct servers s j that have v in V saf e i . At the next Byzantine agents movement there are n -2ff ≥ #echo CU M correct server storing v in V saf e i , which is moved to V i and broadcast during the maintenance() operation. For Lemma 4, after δ time, all non Byzantine servers are storing v in V saf e i . At the next Byzantine agents movement there are f less correct servers that store v in V saf e i , but those servers are still more than #echo CU M . It follows that cyclically before each agent movement there are f servers more that store v thanks to the maintenance() and f servers that lose v because faulty, but this set of non faulty servers is enough to successfully run the maintenance() operation (cf. Lemma 4)). By hypothesis there are no more write() operations, then v is never overwritten and all correct servers store v forever.

✷ Lemma 8 Lemma 9 (Step 3/2.) Let op W 0 , op W 1 , . . . , op W k-1 , op W k , op W k+1 , .
. . be the sequence of write() operation issued on the regular register. Let us consider a generic op W k , let v be the written value by such operation and let t wP be its persistence time. Then v is in the register (there are #reply CU M correct servers storing it) up to time at least t B W k+3 .

Proof The proof simply follows considering that:

• for Lemma 8 if there are no more write() operation then v, after t wP , is in the register forever;

• any new written value eventually is stored in ordered set V saf e , whose dimension is 3;

• write() operation occur It follows that after 3 write() operations, op W k+1 , op W k+2 , op W k+3 , v is no more stored in the regular register. ✷ Lemma 9

Before to prove the validity property, let us consider how many Byzantine and cured servers can be present during a read() operation that last 3δ. For simplicity, to do that we refer to the scenarios depicted in Figure 6. If k = 3 there can be up to 4f (cf. Lemma 1) Byzantine servers and 2f cured servers. If k = 2 there can be up to 3f Byzantine servers (cf. Lemma 1) and f cured servers. In Figure 6 we depicted the extreme case in which there is a read() operation just after the last write() operation. The line marked as t wP represents the time at which for sure correct servers are storing and thus replies with the last written value (cf. Lemma 7). Notice that when δ = ∆ s 4 has just the time to correctly reply to the client before being affected. Notice that if t wP was concurrent with Byzantine agents movements, then during [t, t + δ] s 4 was still able to reply with the last written value because still present in W i , i.e., the reply message happens before the 2δ timer expiration. In any case there are #reply CU M correct servers that reply with the last written value and the number of those replies is greater than the number of replies coming from cured and Byzantine servers. From those observations the next Corollary follows. From the reasoning used to prove Theorem 2 the next Corollary follows.

Corollary 4 When a client c i invokes a read() operation the last written value occurs in reply i at least #reply CU M times.

Theorem 3 Let n be the number of servers emulating the register and let f be the number of Byzantine agents in the (∆S, CU M ) round-free Mobile Byzantine Failure model with no transient failures. Let δ be the upper bound on the communication latencies in the synchronous system. If (i) n ≥ 6f + 1 for ∆ = 2δ and (ii) n ≥ 8f + 1 for ∆ = δ, then P reg implements a SWMR Regular Register in the (∆S, CU M ) round-free Mobile Byzantine Failure model.

Proof The proof simply follows from Theorem 1 and Theorem 2. ✷ T heorem 3

Self-Stabilization correctness proofs

What is left to prove are the necessary conditions for the system to self-stabilize after τ no tr . We first prove that with timestamps in Z 13 it is always possible to uniquely order the values that clients and servers manage at the same time. Then, we prove that when the system is not stable, given the fact the timestamps are bounded, after a finite number of write() operations the system becomes stable.

Lemma 10 During each write() operation op W such that t B (op W ) > τ stab , each non faulty server s i has at most 6 values returned by the function select pairs(echo vals i ) during the same maintenance() operation and it is always possible to uniquely order them.

Proof For sake of simplicity let us consider the scenario depicted in Figure 7, where op W (3), op W (4), op W (5), a sequence of write() operations, occurs (we represent each value with its associated timestamp ∈ Z 13 ). By hypothesis the system is stable t B (op W ) > τ stab , thus each correct server s i has V i = {0, 1, 2} and those values are broadcast at the beginning of the maintenance() operation along with values in W i as long as there are not enough occurrences of those values to be stored in V saf e i and then V i . Considering that:

• from Lemma 7, for each write() operation op W , by time t < t B (op W ) + 3δ the written value is stored in V saf e i ;

• a written value v is removed from W i after 2δ time, so at most by time t B (op W ) + 3δ v / ∈ W i ;

• write() operations are sequential and last δ time (cf. 2)

• V saf e i is a 3 dimension set.

It follows that given a sequence of at least three write() operations op W (3), op W (4), op W (5), before that op W (5) terminates the value written by op W (3) is in V saf e i and 0 has been discharged (cf. Figure 7 then 0 is no more in V i and during this time 1 is overwritten by 3. Generalizing, during each maintenance() operation there are at most the 3 values in V i and values belonging to the last 3 write() operations.

Let us now prove the second part of the statement. Considering that:

• timestamps are generated sequentially;

• during the same maintenance() operation timestamps can span a range of 6 values. Then for each couple of timestamp ts q and ts p returned by select pairs(echo vals i ) during the maintenance() operation, if ts q has been generated before ts p then ts pm ts q ≤ 5. This means that given Z 13 and ts q , ts p there is only one way to order them. If ts p is generated before ts q then ts qm ts p ≥ 7 which is a contradiction with the fact that during the same maintenance() operation timestamps can span a range of 6 values (cf. the "clock" depicted in Figure 7).

✷ Lemma 10

Lemma 11 During each read() operation op R such that t B (op R ) > τ stab , each client c i delivers at most 9 values whose occurrence is #reply CU M and it is always possible to uniquely order them.

Proof For simplicity let us consider the scenario depicted in Figure 8, where the read() operation op R happens after the end of the last write() operations op W (3) and op W (4) but before their persistence time t wP . Moreover op R is concurrent with four subsequent write() operations op W (4), op W (5), op W (6), op W [START_REF] Bonomi | Stabilizing Server-Based Storage in Byzantine Asynchronous Message-Passing Systems[END_REF]. During op W we have the following:

• t wP of op W (3) and op W (4) are after t B (op R );

• for times constraints all the previous write() operations are in V i at each correct servers;

• by hypothesis the system is stable, thus each correct server s i can have V i = {0, 1, 2} (no yet overwritten by op W (3) and op W (4) values);

s 0 s 1 s 2 . . . w (3) 
w(4) w( 5) w( 6) w( 7) w( 8) • for Corollary 4 each correct server replies with the last written value 4;

r() 0 
• if messages are fast enough each correct server can reply with also {5, 6, 7, 8}.

Thus c i has potentially 9 values that occur #reply CU M times. To prove the second part of the statement, consider that for Corollary 4 the last written value is always present. Thus, there can be up to 9 sequential values ts p and the last written value ts ls is in the middle, it follows that the distance between each value ts p and the one in the middle ts ls is such that |ts pm ts lw | ≤ 4 (cf. the "clock" in Figure 8). If follows that for each triple of value there always exist a value in the middle such that there is one only way to order them. For example, let us consider the set {7, 0, 3} it can be ordered in three ways: 7, 0, 3, 3, 7, 0 and 0, 3, 7. In the first two cases 7m 0 > 4 and 7m 0 > 4 respectively, thus the order 0, 3, 7 is the only possible one.

✷ Lemma 11

Lemma 12 Let op W 1 , . . . , op W 10 be a sequence of 10 write() operations, occurring after τ no tr . At time t > t E (op W 10 ) the system is self-stabilized.

Proof For Lemma 4 if there are #echo CU M correct servers storing the same value v then such value is stored by all correct servers after δ time since the beginning of the maintenance() operation. Thus given the first maintenance() operation after τ no tr correct servers are either storing the same values or empty set. If correct servers are storing nothing, then after the end of the first write() operation the system is stable, since for Corollary 4 such a value is returned by the next read() operation.

If V saf e i is not empty then different scenarios may happen.

• case a. If values stored in V saf e i have not an unique order (e.g., ∃ts p , ts q ∈ Z 13 : ts p = ts q ∨ |ts pm ts q | > 5), then at the next maintenance() operation, the function checkOrderAndTrunc(V saf e i ) resets such set. Notice that such reset may happen at the beginning of different maintenance() operations, depending on ∆. For sake of simplicity let us consider Figure 7, 3 can be stored in V saf e 0 during the three different maintenance() operations that occur since the beginning of the write() operation and the point marked as (a), the t wP . In such time interval two other write() operations may occur. But after the point marked as (a) all non Byzantine servers reset their V saf e i set. Thus now, after the end of the next write() operation the system is stable, indeed, for Corollary 4 such value is returned by the next read() operation. Thus in such a case after four write() operations the system is stable;

• case b. If values stored in V saf e i can be uniquely ordered, e.g. V saf e i = {0, 1, 2} then three scenarios may happen;

the next written value does not have an unique order with respect to each value in V saf e i , (e.g., 0, 1, 2, 6, 7) then again the set is reset and case (a.) takes place;

the next written value timestamp is ordered as newest with respect to the values in V saf e i (e.g., 3, 4, 5) and then, at the end of the write() operation, the system is stabilized. Indeed for Corollary 4 such value is returned to the next read() operation;

the next written value is ordered as older with respect to each value in V saf e i and thus is dropped. This happens up to the write() operation that writes a value equal to a value in V saf e i , when this happens V saf e i is reset and after four write() operations the system is stable (cf. case a.). If V saf e i = {0, 1, 2} then in the worst case are needed 6 write() operations, e.g., 8, 9, 10, 11, 12, 0. Then at the next maintenance() operation, when two values associated with 0 are in V saf e i the function checkOrderAndTrunc(V saf e i ) resets such set. Thus, after the end of the next four write() operations the system is stable (cf. case a.), indeed for Corollary 4 such value is returned by the next read() operation. Thus, after 10 write() operations the system is stable.

Considering all those cases, the worst case scenario happens when 10 write() operations are required to stabilise the system. The claim trivially follows generalizing the argumentation for general timestamps in Z 13 . ✷ Lemma 12 Theorem 5 Protocol P Rreg is optimal with respect to the number of replicas.

Proof The proof follows considering that Theorem 4 proved that P Rreg implements a Regular Register with the upper bounds provided in Table 1. Those bounds match the lower bounds proved in Theorem 1 in [START_REF] Bonomi | Optimal Storage under Unsynchronized Mobile Byzantine Faults[END_REF]. In particular such Theorem states that no safe register can be solved if n CU M LB = [2(M ax B(t, t + T r ) + M axCu(t, t + T r ))min CBC(t, t + T r )]f where T r is the upper bound on the read() operation duration. Each term can be computed applying Table 2 [10] considering γ = 2δ (Corollary 2). In particular if ∆ = δ then n CU M LB = [2(4 + 2) -4]f = 8f while if if ∆ = 2δ then n CU M LB = [2(3 + 1) -2]f = 6f , concluding the proof. ✷ T heorem 5

Concluding remarks

This paper proposed a self-stabilizing regular register emulation in a distributed system where both transient failures and mobile Byzantine failures can occur, and where messages and Byzantine agent movements are decoupled. The proposed protocol improves existing works on mobile Byzantine failures [START_REF] Bonomi | Optimal mobile byzantine fault tolerant distributed storage[END_REF][START_REF] Bonomi | Tight selfstabilizing mobile byzantine-tolerant atomic register[END_REF][START_REF] Bonomi | Optimal Storage under Unsynchronized Mobile Byzantine Faults[END_REF] being the first self-stabilizing regular register implementation in a round-free synchronous communication model and to do so it uses bounded timestamps from the Z 13 domain to guarantee finite and known stabilization time. In particular, the convergence time of our solution is upper bounded by T 10write() , where T 10write() is the time needed to execute ten complete write() operations. Contrary to the (∆S, CAM ) model, (∆S, CU M ) model required to design a longer maintenance() operation (that lasts 2δ time). As a side effect, also the read() operation completion time increased and it has a direct impact on the size of the bounded timestamp domain that characterize the stabilization time. However, it is interesting to note that all these improvements have no additional cost with respect to the number of replicas that are necessary to tolerate f mobile Byzantine processes and our solution is optimal with respect to established lower bounds.

An interesting future research direction is to study upper and lower bounds for (i) memory, and (ii) convergence time complexity of self-stabilizing register emulations tolerating mobile Byzantine faults. Nevertheless, interesting is the study of optimal maintenance() solutions.
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 2 Figure 2: Runs for ∆ = δ. The small vertical lines are the points where the maintenance() operations begin. For simplicity we represent values with their timestamp and we consider only correct servers s i that store V i = {0, 1, 2}.
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 3 Figure 3: A M algorithm implementing the maintenance() operation (code for server s i ) in the (∆S, CU M ) model with bounded timestamp.

Figure 4 :

 4 Figure 4: A W algorithms, server side and client side respectively, implementing the write(v) operation in the (∆S, CU M ) model with bounded timestamp.
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 5 Figure 5: A R algorithms, client side and server side respectively, implementing the read() operation in the (∆S, CU M ) model with bounded timestamp.
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 7 Figure 7: Example for ∆ = δ. The small vertical lines are the points where maintenance() operations terminates and begins. Servers are storing V i = {0, 1, 2}, for simplicity we represent values with their timestamp and we consider only correct servers.
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 8 Figure 8: Example for ∆ = δ. The small vertical lines are the points where maintenance() operations terminates and begins. In both cases servers are storing V i = {0, 1, 2}, for simplicity we represent values with their timestamp and we consider only correct servers.

  Lemma 5 Let s i be a correct server running the maintenance() operation at time T i , then if v is returned by the function select pairs(echo vals i ) there exist a write() operation that wrote such value.Proof Let us suppose that select pairs(echo vals i ) returns v ′ and there no exist a write(v ′ ). This means that s i collects in echo vals i at least #echo CU M occurrences of v ′ coming from cured and Byzantine servers. Let us consider a cured server s c running the maintenance() operation at time T c . At the beginning of the maintenance() operation s c broadcasts values contained in V i and W i (Figure3, line 4). V i is reset at each operation with the content of V saf e i which is reset at each maintenance() operation (line 3). It follows that s c broadcasts non valid values contained in V i only during the maintenance() operation run at T c . Contrarily, values in W i , depending on k, are broadcast only at T c or also at T c+1 . Let us consider two cases: k = 2 and k = 3. case k = 2: In this case since ∆ = 2δ and the maximum value of the timer associated to a value is 2δ, thus each cured server s c broadcasts a non valid value contained in W i only during the first maintenance() operation. So, during each maintenance() operation there are f Byzantine servers and f cured servers, those are not enough to send #echo CU M = 2f + 1 occurrences of v ′ . For Lemma 4 this is the necessary condition to return v ′ invoking select pairs(echo vals i ), leading to a contradiction. case k = 3: ∆ = δ and the maximum value of the timer associated to a value is 2δ, thus each cured server s c broadcasts a non valid value contained in W

). Messages sent by #echo CU M correct servers are delivered by s c and stored in echo vals c . The communication channels are synchronous, thus by time T i+δ function select pairs(echo vals c ) returns v.

✷ Lemma 4 i during the two subsequent maintenance() operations. Summing up, during each maintenance() operation at time T i there are f Byzantine servers, f cured servers and f servers that were cured during the previous operation. Those servers are not enough to send #echo CU M = 3f + 1 occurrences of v ′ , for Lemma 4 this is the necessary condition to return v ′ invoking select pairs(echo vals i ), leading to a contradiction and concluding the proof.

✷ Lemma 5

  In the first scenario ∆ = 2δ and in the second one is ∆ = δ. In red the period during which servers are faulty and in yellow the period during which servers are in a cured state. Blue arrows are the correct replies sent back by correct servers. Let c i be a client that invokes a read() operation that lasts 3δ time. During such time, the number of replies coming from correct servers is strictly greater than the number of replies coming from Byzantine and cured servers. Any read() operation returns the last value written before its invocation, or a value written by a write() operation concurrent with it.Proof Let us consider a read() operation op R . We are interested in the time interval [t B (op R ), t B (op R )+δ]. The operation lasts 3δ, thus reply messages sent by correct servers within t B (op R ) + 2δ are delivered by the reading client. During [t, t + 2δ] time interval there are at least #reply CU M correct servers that have the time to deliver the read request and reply (cf. Corollary 3). We have to prove that what those correct servers reply with is a valid value. There are two cases, op R is concurrent with some write() operations or not.op R is not concurrent with any write() operation. Let op W be the last write() operation such that t E (op W ) ≤ t B (op R ) and let v be the last written value. For Lemma 8 after the write persistence time t wP there are at least #reply CU M correct servers storing v (i.e., v ∈ conCut(V i , V saf e i , W i ). Since t B (op R ) + 2δ ≥ t C w, then there are #reply CU M correct servers replying with v. So the last written value is returned.op R is concurrent with some write() operation. Let us consider the time interval[t B (op R ), t B (op R ) + 2δ].In such time there can be at most three sequential write() operations op W 1 , op W 2 , op W 3 . Let op W 0 be the last write operation before op R . In the extreme case in which those operations happen one after the other we have the following situation. t E (op W 0 < t B (op R )) and the write persistence time of op W 0 , t wP 0 < t B (op W 0 ) + 3δ < t B (op R ) + 2δ < t B (op W 3 ). Basically, the value written by op W 0 is overwritten in V i by the value written op W 3 , but not before t B (op R )+2δ, thus all correct servers have the time to reply with the last written value. Notice that the concurrently written values may be returned if the WRITE() and REPLY() messages are fast enough to be delivered before the end of the read() operation. To conclude, for Lemma 6 Byzantine and cured servers can no force correct servers to store and thus to reply with a never written value. Only cured and Byzantine servers can reply with non valid values. As we stated, if k = 2 there are up to 4f non correct servers. If k = 3 there are 6f non correct servers. In both cases the threshold #reply CU M is higher than the occurrences of non valid values that a reader can deliver. Mobile agents can not force the reader to read another or older value and even if an older values has #reply CU M occurrences the one with the highest sequence number is chosen.✷ T heorem 2
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	Figure 6: Corollary 3 Theorem 2 (Step 4.)		

  the point marked by (a)), i.e. t E (op W (5) > t B (op w (3)+3δ). It follows if op W (6) occurs such that t B (op

W (6)) = t E (op(W (5)))

Table 2 :

 2 Values for a general read() operation that terminates after 3δ time[START_REF] Bonomi | Optimal Storage under Unsynchronized Mobile Byzantine Faults[END_REF]. Let n be the number of servers emulating the register and let f be the number of Byzantine agents in the (∆S, CU M ) round-free Mobile Byzantine Failure model. Let δ be the upper bound on the communication latencies in the synchronous system. If (i) n ≥ 6f + 1 for ∆ = 2δ and (ii) n ≥ 8f + 1 for ∆ = δ, then P reg implements a Self-Stabilizing SWMR Regular Register in the (∆S, CU M ) round-free Mobile Byzantine Failure model.Proof The proof simply follows from Theorem 3 and Lemma 12.✷ T heorem 4

		M ax B(t, t + 3δ)	M axCu(t)	M axSil(t, t + 3δ)
	(∆S, CU M )	⌈ 3δ ∆ ⌉ + 1	R(⌈ min CBC(t, t + 3δ) 3δ-ǫ-⌈ 3δ ∆ ⌉∆+γ ∆ ⌉)	⌈	γ+δ-ǫ-⌈ 3δ ∆ ⌉∆ ∆	⌉
	(∆S, CU M ) ⌈ 3δ-ǫ-δ ∆	⌉ + R(⌈ 3δ ∆ ⌉ -⌈ γ+δ ∆ ⌉) + (M axCu(t) -M axSil(t, t + 3δ))
	Theorem 4					

The (∆S, CU M ) model abstracts distributed systems subjected to proactive rejuvenation[START_REF] Sousa | Highly available intrusion-tolerant services with proactive-reactive recovery[END_REF] where processes have no self-diagnosis capability.

The exact number of replies is provided in Table1depending on the relationship between ∆ and δ.