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Abstract We consider a variant of the graph partitioning problem involving knapsack constraints
with Gaussian random coefficients. In this new variant, under this assumption of probability dis-
tribution, the problem can be traditionally formulated as a binary SOCP for which the continuous
relaxation is convex. In this paper, we reformulate the problem as a binary quadratic constrained
program for which the continuous relaxation is not necessarily convex. We propose several lineariza-
tion techniques for latter: the classical linearization proposed by Fortet (Trabajos de Estadistica,
1960, Vol. 11) and the linearization proposed by Sherali and Smith (Optimization Letters, 2007,
Vol. 1). In addition to the basic implementation of the latter, we propose an improvement which
includes, in the computation, constraints coming from the SOCP formulation. Numerical results
show that an improvement of Sherali-Smith’s linearization outperforms largely the binary SOCP
program and the classical linearization when investigated in a branch-and-bound approach.

Keywords Graph Partitioning · Chance Constrained Programming · Central Limit Theorem ·
Second-Order Cone Programming · Mixed-Integer Linear Programming · Branch-and-Bound

1 Introduction

Graph partitioning problem refers to partitioning the set of nodes of a graph in several disjoint node
subsets (or clusters), so that the sum of the weights of the edges whose end-nodes are in different
clusters is minimized. A number of variants of the problem have been investigated in the literature
depending on constraints imposed on the clusters. We consider here the graph partitioning problem
with the knapsack constraints (GPKC) which is defined formally as follows. Given an undirected
graph G = (V,E) with n = |V | and m = |E|. The edges in E are weighted by a vector t ∈ R|E| and
the nodes in V are weighted by a vector w ∈ R|V |. We want to find a partition of V into V1, . . . , Vk
such that:

i . For all 1 ≤ i ≤ k,
∑
v∈Vi

wv ≤W where W is a given constant,
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ii .

k−1∑
i=1

k∑
j=i+1

∑
uv∈E
u∈Vi
v∈Vj

tuv is minimized.

Note that in the above definition, the number k of clusters is not imposed and is a part of the out-
put of the optimization process. The constraints specified in (i) has the structure of the knapsack
constraints as reflected in the acronym GPKC. Variants of this problem have already been consid-
ered by several authors before, e.g. Sørensen [27], Labbé et al. [20], Bonami et al. [5], Goldschmidt
et al. [18]. Besides GPKC, other variants of graph partitioning problem have been investigated
involving additional restrictions. Garey et al. [17], Chopra and Rao [7],[8], Ferreira et al. [14] con-
sider the problem of partitioning a graph into at least (resp: no more than), k clusters with no
size restriction on the clusters. The cut polytope which is associated with partitioning into two
clusters with no size restriction on the clusters is studied by Barahona and Mahjoub [1] and Deza
and Laurent [10],[11].

The stochastic version of GPKC referred to as SGPKC, addressed in the present paper consid-
ers the case when the node weights are uncertain. These weights follow a multivariate Gaussian
distribution with given mean and covariance matrix. Give a probability level ε ∈ [0, 1], the knapsack
constraints in (i) can be formulated as chance constraints of the form P (

∑
v∈Vi

wv ≤ W ) ≥ 1 − ε
for i = 1, . . . , k. This method was introduced in [6] which is one of the standard methods for han-
dling uncertainty in optimization. In the literature, there are some research on stochastic graph
partitioning such as [12] and [2], however the uncertainties in their models impact the edges. The
present paper seems to be the first study on the stochastic version of the node weighted graph
partitioning problem.

Here we investigate SGPKC under the assumption that w follows a multivariate Gaussian
distribution. In the case individual chance constraints and with the probability level ε less than 0.5,
the chance constraints can then be reformulated as binary second order cone constraints (Binary
SOCC) [23]. We discuss an application of the above model relative to partitioning of process
networks and we explain why the assumption of a Gaussian distribution of the weights is reasonable
in this context.

We present a comparison of several alternative techniques for solving SGPKC : -First, we
consider the second-order cone formulation for the chance constraint which reduces the SGPKC
to a binary second-order cone program (Binary SOCP). The CPLEX solver is used to solve this
program. -Second, we consider the quadratic formulation for the chance constraint which handle
SGPKC as a binary quadratic constrained program. Several linearization techniques are discussed
to transform this binary quadratic program into binary linear program. In particular, we consider
the classical linearization technique (Fortet [15]) and the linearization using bilinear forms given
by Sherali-Smith [26]. Note that contrary to the former, the latter uses much fewer additional
variables. Again the CPLEX solver is used for solving the resulting binary linear programs.

The numerical results obtained show that the solution technique using Sherali-Smith lineariza-
tion provides better efficiency for SGPKC, than the one using binary SOCP; the latter in turn
outperforms the classical linearization technique. This shows that although the quadratic formula-
tion of chance constraint is not convex when relaxed (contrary to the second-order formulation), it
provides better efficiency as compared with the second-order cone formulation when the variables
are binary and a branch-and-bound procedure has to be applied.

2 Problem statement and Binary SOCP formulation

2.1 Problem formulation

In this section, we propose a 0-1 formulation for SGPKC in which the variables represent the
relations between nodes. We use variables xij for all pairs of nodes (i, j) such that xij = 1 if i and j
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are in the same cluster, and 0 otherwise. We denote En := {(i, j) : i ∈ V, j ∈ V, i < j} the set of all
ordered pairs of nodes and by T := {(i, j, k) : (i, j), (i, k), (j, k) ∈ En} the set of all ordered triples.

In the deterministic case, the version of graph partitioning problem that we study includes all the
the knapsack constraints that express the fact that the total node weight of the cluster containing
u should not exceed W . In this paper, we consider the non-deterministic case where the node
weights w are random variables. To handle this problem using chance constrained programming,
the knapsack constraints are reformulated as chance constraints P (

∑
v∈V xvuwv ≤W ) ≥ 1− ε for

the cluster containing the node u and with the probability level ε. Hereafter it will be assumed
that the probability distribution of node weights is a multivariate Gaussian law with given means
(w̄i)1≤i≤n and covariance matrix (σij)1≤i,j≤n. We therefore reformulate the chance constraints by
the Binary SOCCs as follows. For all clusters i = 1, . . . , n,

n∑
u=1

xuiw̄u + γ

√√√√ n∑
u=1

σuux2ui + 2

n−1∑
u=1

n∑
v=u+1

σuvxuixvi ≤W (1)

where γ = F−1(1− ε), F denoting the cumulative distribution function of N (0, 1) (e.g γ ' 1.685
for ε = 0.05). In the proposed model, the various chance constraints on the various clusters are
considered as individual chance constraints.

Then the resulting model for SGPKC is the following Binary SOCP program :

(I)



min
∑

(i,j)∈E

tij(1− xij)

s. t.: xij + xik ≤ 1 + xjk, ∀(i, j, k) ∈ T
xij + xjk ≤ 1 + xik, ∀(i, j, k) ∈ T
xik + xjk ≤ 1 + xij , ∀(i, j, k) ∈ T
n∑
u=1

xuiw̄u + γ

√√√√ n∑
u=1

σuux2ui + 2

n−1∑
u=1

n∑
v=u+1

σuvxuixvi ≤W i = 1, . . . , n

xuu = 1 u = 1, . . . , n

xij ∈ {0, 1} (i, j) ∈ En

where the triangle constraints guarantee the consistency of the partitions, i.e. if the nodes i, j
belong to the same cluster and so do the nodes i, k then j and k belong to the same cluster.
The number of constraints of (I) is clearly O(n3), and thus polynomial in terms of n. Hence, it
represent a compact 0-1 formulation for the SGPKC. However, [16] shows that the large number of
triangle constraints may lead to a huge computation time for the formulation (I) . The possibility

of reducing the number of triangle constraints for a sparse graph where |E| = m� n(n−1)
2 = |Kn|

has been investigated in [24] where it is shown that only part of the triangle inequalities are needed.

More precisely, let T
′

= {(i, j, k) : i 6= j 6= k ∈ V and at least one of the edges ij, ik and jk ∈ E}.
Then an equivalent reduced integer program formulation for (I) is:
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(Bi− SOCP)



min
∑

(i,j)∈E

tij(1− xij)

s. t.: xij + xik ≤ 1 + xjk, ∀(i, j, k) ∈ T
′

xij + xjk ≤ 1 + xik, ∀(i, j, k) ∈ T
′

xik + xjk ≤ 1 + xij , ∀(i, j, k) ∈ T
′

n∑
u=1

xuiw̄u + γ

√√√√ n∑
u=1

σuux2ui + 2

n−1∑
u=1

n∑
v=u+1

σuvxuixvi ≤W i = 1, . . . , n

xuu = 1 u = 1, . . . , n

xij ∈ {0, 1} (i, j) ∈ En

For a formal proof of the equivalence between (Bi-SOCP) and (I) refer to [24]. It is clear that

|T
′
| ≤ m(n− 2) thus the number of triangle constraints in (Bi-SOCP) is O(mn) instead of O(n3).
We can see that the continuous relaxation of (Bi-SOCP) is a second-order cone program thus it

can be solved using SOCP. SOCP has shown its effectiveness in solving nonlinear convex problem
that include linear and (convex) quadratic programs as special cases. Several efficient primal-
dual interior-point for SOCP have been developed in the last few years which share many of
the features of primal-dual interior-point methods for linear programming (LP). However, the
algorithmic efficiency of SOCP solvers when embedded into a tree search branch-and-bound to
handle Bi-SOCP problem partly remains an open research problem.

2.2 Problem of partitioning process networks and uncertainty of processing time

As a typical example of application of (SGPKC), we can mention a problem arising in the field of
compilation for real-time embedded systems, the task allocation problem in multi-core structures.
The goal is to find a feasible placement of all tasks to processors while respecting their computing
capacity and minimizing the total volume of inter-processor communication. The nodes and edges
are weighted by a positive real number could represent the execution time of the task or the
volume of data exchanged between tasks. In a partition of the nodes of G, each cluster contains
tasks to place in the same processor and it is subject to the type of knapsack constraints that limits
the total duration of the tasks in the cluster by a constant. Known for the one-dimensional and
deterministic case as the Node Capacitated Graph Partitioning problem [14], the stochastic version
of the problem does not seem to have been investigated so far except from a non-parametric and
approximate resolution view point [28].

In this problem, one of the main sources of uncertainties lies in the intrinsic indeterminism of
execution times for computing kernels of intermediate granularity. This indeterminacy is due firstly
to certain characteristics of processor architectures (presence of memories of arbitrators access
caches, etc.) but also, inherently, to the presence of conditional branch structures and dependent
loops input data. The distributions of processing times are often complex, sometimes giving use to
multimodal distributions (due to the presence of data dependent control). However, in spite of the
fact that the Gaussian assumption on the random variables is not verified, the use of multivariate
Gaussian approximation is still reasonable, based on the extended central limit theorem. Indeed
if we assume that for a given u, the number of xvu variables equal to 1 (i.e the cardinality of the
cluster containing u) is sufficiently large (typically more than 30-40), the chance constraints

P (
∑
v∈V

xvuwv ≤W ) ≥ 1− ε ∀u ∈ V
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involve a combination of sufficiently many random variables, which can be approximated as a
normal random variable under some conditions that the means and the variances have to satisfy.
These conditions were introduced in the Lindeberg-Feller theorem [21][13] and its corollary, the
Liapounov’s theorem [22]. This condition was studied for sums of N independent random variables
(Xi)1≤i≤N with means (mi)1≤i≤N and variances (a2i )1≤i≤N . Let s2n =

∑N
i=1 a

2
i then :

lim
N→∞

1

s2n

N∑
i=1

E
[
(Xi −mi)

2
1{|Xi−mi|>εsn}

]
= 0, ∀ε > 0 =⇒

∑N
i=1 (Xi −mi)

sn

P−→ N (0, 1) (2)

Lindeberg’s condition is sufficient, but not in general necessary. However if lim
N→∞

max
i=1,...,N

a2i
s2n
→ 0,

this condition is both sufficient and necessary. For dependent random variables, the central limit
theorem remains valid under conditions investigated in [9]. We have carried out some systematic
experiments showing that, for sum of N multimodal random variables (three modes were considered
in our experiments), good approximations of the Gaussian cdf are obtained as soon as N exceeds
typically 30 to 40.

3 Quadratically constrained 0-1 programming reformulation and linearization
techniques

As an alternative to Binary SOCP, we investigate here a quadratic formulation for the (SGPKC). To
achieve this, we only need to replace the SOCCs (1) in (Bi-SOCP) with their equivalent quadratic
forms : 

−2

n−1∑
u=1

n∑
v=u+1

(w̄uw̄v − γ2σuv)xuixvi +
n∑
u=1

(2Ww̄u + γ2σuu − w̄2
u)xui ≤W 2

n∑
u=1

xuiw̄u ≤W
(3)

Since the quadratic formulation is difficult to handle directly, we will consider reformulations
using various linearization techniques. The first technique discussed below is basically the classical
linearization technique [15] and the second one is the linearization technique proposed by Sherali
and Smith [26].

We first simplify (3) by setting :{
quv = 2(w̄uw̄v − γ2σuv)

du = 2Ww̄u + γ2σuu − w̄2
u

(4)

then the quadratic constraint in (3) reads :

n∑
u=1

duxui −
n−1∑
u=1

n∑
v=u+1

quvxuixvi ≤W 2 (5)

3.1 Classical linearization technique

Introducing variable yuvi to represent each product xuixvi then (5) is replaced with :
n∑
u=1

duxui −
n−1∑
u=1

n∑
v=u+1

quvyuvi ≤W 2

max {0, xui + xvi − 1} ≤ yuvi ≤ min {xui, xvi}

(6)
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Using the classical linearization technique, SGPKC can be reformulated as follows :

(CL)



min
∑

(i,j)∈E

tij(1− xij)

s. t.: xij + xik ≤ 1 + xjk, ∀(i, j, k) ∈ T
′

xij + xjk ≤ 1 + xik, ∀(i, j, k) ∈ T
′

xik + xjk ≤ 1 + xij , ∀(i, j, k) ∈ T
′

n∑
u=1

xuiw̄u ≤W i = 1, . . . , n

n∑
u=1

duxui −
n−1∑
u=1

n∑
v=u+1

quvyuvi ≤W 2 i = 1, . . . , n

yuvi ≤ xui ∀u, v, i = 1, . . . , n

yuvi ≤ xvi ∀u, v, i = 1, . . . , n

max {0, xui + xvi − 1} ≤ yuvi ∀u, v, i = 1, . . . , n

xuu = 1 u = 1, . . . , n

xij ∈ {0, 1} (i, j) ∈ En

It can easily be shown that the constraints max {0, xui + xvi − 1} ≤ yuvi is redundant and can be
removed. A drawback of the above formulation (referred to as an ”extended formulation” because
of the introduction of the extra variables yuvi) is the large number of variables and constraints it
requires. Note that in our graph partitioning problem, for a complete graph with n vertices the
quadratic formulations we study already have O(n2) variables and the extended formulation O(n3)
variables and also O(n3) added constraints. This can become rapidly unpractical. In the following
subsection, we discuss an alternative linearization technique requiring fewer additional variables
and additional constraints.

3.2 Sherali-Smith’s linearization technique

This linearization technique has been introduced in [26]. The basic idea underlying this technique
is :

– To transform each quadratic form into a bilinear form using O(n) additional variables: applied
to the quadratic constraint (5), it consists in introducing variable λui to represent each sum
n∑

v=u+1

quvxvi. If a lower bound λminui and an upper bound λmaxui are known for λui then the

quadratic constraint (5) can be rewritten as:


∑n
u=1 duixui −

∑n−1
u=1 xuiλui ≤W

2∑n
v=u+1 quvxvi = λui, ∀u = 1, . . . , n− 1

λminui ≤ λui ≤ λmaxui , ∀u = 1, . . . , n− 1
x ∈ {0, 1}n
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– Linearizing the various bilinear terms resulting from the above transformation: this is done by
introducing a variable zui to represent each product xuiλui :

∑n
u=1 duixui −

∑n−1
u=1 zui ≤W

2∑n
v=u+1 quvxvi = λui, ∀u = 1, . . . , n− 1

λminui xui ≤ zui ≤ λmaxui xui, ∀u = 1, . . . , n− 1

λminui (1− xui) ≤ λui − zui ≤ λmaxui (1− xui) , ∀u = 1, . . . , n− 1
x ∈ {0, 1}n

– We focus our study in the case the node weights are all positives (i.e. wi ≥ 0,∀i ∈ V ). This case
is suitable for most of the applications of SGPKC including the task allocation problem and to
the best of our knowledge, there are no known applications of GPKC with negative node weights.
We assume also that the variances are small compared to the means, so that quv = 2(w̄uw̄v −
γ2σuv) > 0, ∀1 ≤ u < v ≤ n. Consequently, we have λminui = 0. Let us introduce new variables
hui = λui − zui to the model. A brief analysis shows that these variables are nonnegative and
act as slack variables in the contraints

∑n
v=u+1 quvxvi = λui when λui is replaced by hui+ zui.

Hence, we can ignore the variables hui’s and the constraints λminui (1− xui) ≤ λui − zui ≤
λmaxui (1− xui) can be removed. In the general case when the node weights may be negative (i.e.
wi ∈ R,∀i ∈ V ), these constraints should not be removed. However, even in this case, the number
of constraints of the problem do not increase asymptotically.

Applying the various transformations above to constraints (5) in the quadratic formulation of
SGPKC, we can reformulate it as follows:

(SS)



min
∑

(i,j)∈E

tij(1− xij)

s. t.: xij + xik ≤ 1 + xjk, ∀(i, j, k) ∈ T
′

xij + xjk ≤ 1 + xik, ∀(i, j, k) ∈ T
′

xik + xjk ≤ 1 + xij , ∀(i, j, k) ∈ T
′

n∑
u=1

xuiw̄u ≤W i = 1, . . . , n

n∑
u=1

duxui −
n−1∑
u=1

zui ≤W 2 i = 1, . . . , n

zui ≤
n∑

v=u+1

quvxvi i, u = 1, . . . , n

0 ≤ zui ≤ λmaxui xui i, u = 1, . . . , n

xuu = 1 u = 1, . . . , n

xij ∈ {0, 1} (i, j) ∈ En

The above formulation (SS) requires fewer variables and constraints when compared with the
classical linearization (CL). For instance, in our problem for a graph with n vertices, the number
of added variables and the number of added constraints are O(n2). However as shown in [26], this
is at the expense of weaker relaxation as compared with the classical linearization technique.

The last unknown parameters in this formulation are the bounds λminui and λmaxui that can be
estimated based on the definition of added variables (zui)1≤i≤n−1. Note that we assumed quv ≥
0, ∀(u, v) therefore λminui = 0. We will consider two estimates for λmaxui in the following, two variants
of the Sherali-Smith reformulation will thus be obtained. In the general case when quv ∈ R, ∀(u, v),
λminui are estimated similarly.
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Simple bounds on λmaxui

Note that since quv ≥ 0, ∀(u, v), we can take

λmaxui =
n∑

v=u+1

quv (7)

It is observed that λmaxui does not depend on i, so at most n values have to be computed. Using
these bounds for λmaxui in (SS), we obtain a first formulation based on Sherali-Smith’s technique.

Improved bounds on λmaxui

The application of of Sherali-Smith technique can be made more efficient if we can obtain a better
estimate of the bounds λmaxui . The idea is the fact that we can get stronger bounds of each sum
n∑

v=u+1

quvxvi by adding valid inequalities in the process of computing them. In our problem, one

of the valid inequalities that can be chosen is the stochastic knapsack constraint (1), whereby the
bounds can be estimated, for all i = 1, . . . , n as :

λmaxui =



max
n∑

v=u+1

quvxv = max
n∑

v=u+1

2(w̄uw̄v − γ2σuv)xv

s. t.:
n∑
v=1

w̄vxv + γ

√√√√ n∑
v=1

σvvx2v + 2

n−1∑
v=1

n∑
v′=v+1

σvv′xvxv′ ≤W

xv ∈ {0, 1} ∀v = 1, . . . , n

(8)

Again λmaxui does not depend on i so at most n problems of the form (8) have to be solved. Using
the improved bounds λmaxui deduced from (8), we obtain the improved Sherali-Smith formulation
(ISS). In addition, we chose the continuous relaxation version of (8) to estimate the bounds λmaxui

because our experiments shows that using the integer formulation (8) would not lead to a significant
improvement in the quality of the bounds.

4 Computational results

In this section, we present computational results for the SGPKC comparing the formulations that
were discussed in the section 4. The formulations are compared in both computation times and
gaps.

For a given number of vertices n and number of edges m, we generate five instances by picking
edges uniformly at random until the number of edges reaches m. The edge weights t and the
means of node weights w̄ are drawn independently and uniformly from the interval [1, 1000], the
covariance matrix σ of node weights is generated as diagonally dominant matrix where each point
σii ∀i = 1, . . . , n in the diagonal is drawn independently and uniformly from the interval [1, 20%w̄i].
For each instance, we calibrate the upper bounds of knapsack constraints W in order to ensure
that the generated instances will be not ”easy” to solved. To achieve this, we used METIS [19]
to estimate the solution with the number of clusters k = 4 (or 6, 8, 12) that we call the initial
partition, we then do 1000 perturbations of this partition. The resulting bounds on W were then
chosen so that only 10% of these partitions are satisfied. Finally the probability level ε was chosen
to be 0.05 (= 5%), a fairly standard value in practice.
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All experiments are run on a machine with Intel Core i7-3630QM 2.40GHz processors and 16
GiB of RAM. The solver CPLEX 12.6 is used to solve respectively (Bi-SOCP), (CL), (SS) and (ISS)
and to ensure that comparisons will not be biased we switch off CPLEX pre-solve. All computation
times are in CPU seconds and the computation times are subject to a time limit of 7200 seconds.

Table 1 Comparison of the various solution techniques. Nopt indicates that the exact optimal solution
could not be found within the imposed time limit (7200s). In such cases, the value of the relative residual
gap is shown in parenthesis.

Instances Bi-SOCP CL SS ISS

types n,m CPU GAP CPU GAP CPU GAP CPU GAP
(Nodes) (Nodes) (Nodes) (Nodes)

SP 25, 40 4.3 16.2 12.6 17.0 4.4 18.3 2.2 18.3
(6) (11) (22) (15)

SP 30, 50 30.8 11.4 100.9 13.1 27.5 15.6 15.6 15.6
(17) (142) (366) (254)

SP 35, 60 40.4 10.5 177.3 15.4 43.5 15.9 29.3 15.9
(32) (336) (829) (599)

SP 40, 65 126.3 9.8 513.4 11.3 122.4 12.7 63.8 12.7
(59) (573) (1136) (729)

SP 45, 75 665.2 13.2 1539 14.6 595.0 17.2 336.5 17.2
(88) (612) (1387) (874)

SP 50, 80 862.8 9.1 2238 10.4 978.7 13.3 517.2 13.3
(117) (935) (1843) (1311)

SP 60, 90 3127 10.6 Nopt 12.3 1844 16.5 699.3 16.5
(156) (6.8%) (1033) (2552) (1566)

SP 80, 130 Nopt 12.7 Nopt 14.8 Nopt 17.3 5273 17.3
(2.4%) (187) (7.3%) (1426) (2.8%) (3136) (3629)

PG 30, 47 105.4 13.2 256.8 14.6 97.2 15.3 41.1 15.3
(49) (395) (866) (542)

PG 40, 66 583.4 12.6 1727 14.1 556.2 15.0 236.5 15.0
(74) (528) (1344) (836)

PG 50, 85 2193 11.4 Nopt 12.8 2386 13.8 827.7 13.8
(125) (3.7%) (1057) (2546) (1888)

PG 60, 104 Nopt 13.2 Nopt 14.4 6216 15.8 2397 15.8
(0.2%) (146) (5.6%) (1791) (4728) (3352)

PG 70, 123 Nopt 12.0 Nopt 12.2 Nopt 14.7 6163 14.7
(2.4%) (168) (7.1%) (2032) (3.2%) (4759) (5292)

TG 30, 60 359.2 14.9 1044 15.2 332.7 18.8 154.3 18.8
(68) (539) (1353) (877)

TG 40, 80 989.5 12.2 5268 13.2 937.2 15.4 443.4 15.4
(128) (572) (1736) (1255)

TG 50, 100 5453 14.3 Nopt 16.7 4829 18.3 1537.3 18.3
(183) (6.9%) (1682) (3357) (2172)

TG 60, 120 Nopt 13.8 Nopt 14.2 Nopt 16.5 5234 16.5
(3.7%) (175) (8.6%) (1843) (3.2%) (3776) (4275)

(55) (474) (973) (666)
RG 25, 150 442.3 15.0 945.2 16.2 489.1 17.1 226.4 17.1

(72) (553) (1296) (924)
RG 30, 200 Nopt 15.5 Nopt 16.1 7111 17.9 3123 17.9

(0.2%) (127) (4.1%) (1183) (6421) (4318)
RG 40, 120 3612 13.2 Nopt 14.8 3828 16.4 1805 16.4

(196) (3.3%) (974) (3689) (3150)
RG 50, 120 Nopt 14.7 Nopt 15.6 Nopt 17.2 6006 17.2

(2.3%) (188) (8.6%) (2158) (2.6%) (4523) (5298)
RG 60, 100 Nopt 16.2 Nopt 17.2 Nopt 19.4 6419 19.4

(3.8%) (209) (9.9%) (1542) (3.6%) (4175) (4941)
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In Table 4 we report the results obtained with (Bi-SOCP), (CL), (SS) and (ISS). In our ex-
periments, each instance belongs to one of four graph types: series-parallel graph (SP), planar grid
graph (PG), toroidal grid graph (TG) and random graph (RG). Series-parallel graphs are highly
sparse while random graphs are denser graphs with m ≈ (4 to 8)×n. As for each value of n,m, we
have five instances, the first column of each technique in this table report the average CPU time to
obtain the solution, the second column of each technique report the average gaps at root node. For
the (ISS), the CPU time to calculate the bounds is included in the total CPU time to obtain the
solution. For a specific technique and for the instances that this technique guarantee a solution, we
note the CPU time as ”Nopt” and we indicate the residual gap in parenthesis.

As can be seen from Table 1, (ISS) has the highest performance while (CL) is the least effi-
cient technique in term of computation times. We can arrange the order of effectiveness of these
techniques as (ISS)�(SS)�(Bi-SOCP)�(CL).

The main observations which arise from the results are the following :

– As discussed above, the (CL) technique does not perform well for large instances due to a large
number of added variables and added constraints. We report the solution times for (CL) are
worse by a factor of 2 to 4 than those of (Bi-SOCP).

– For the small instances, (SS) does not outperform (Bi-SOCP). However for the larger instances,
(SS) is slightly faster than (Bi-SOCP) in spite of the fact that the number of nodes in the search
tree for (Bi-SOCP) is quite reduced. A possible explanation of this is that : a) the computational
effort required for solving each node is significant, and b) SOCP solvers do not enjoy the same
warm-starting capabilities as simplex-based LP solvers.

– (ISS) clearly dominates the other techniques as we can see in the table, it is faster by a factor
of 1.5 to 3 than (SS) in term of solution times.

– There are also instances for which CPLEX is not even capable to solve (Bi-SOCP) and (CL),
but succeeds to find optimal integer solution with (SS) and (ISS). With (ISS) we can solve larger
instances, e.g, (n = 80) for series-parallel graphs, (n = 70) for planar grid graphs, (n = 60) for
toroidal grid graphs and (n = 60) for random graphs.

– We also report the average gaps at the root node for each solution technique. Since (CL), (SS)
and (ISS) may be considered as relaxations of (Bi-SOCP), the latter provides the best gaps.
Another observation is that although improved bounds for λmax have been used in (ISS), the
gaps at root node have not changed. However the number of nodes in the tree search is reduced
in most cases, leading to the reduction of CPU times.

Finally, Table 2 shows the impact of computing the improved bounds for λmaxui on total CPU times
for (ISS). The computation times of the bounds reported in the third column are very small as
compared to the total solution times of (ISS), while the average improvement on the bounds is
quite significant.

Table 2 Computation times of the bounds λmaxui by (8)

n,m CPU Percentage(%) average improvement
of total CPU on bounds(%)

25, 55 0 0 40
30, 70 0.1 0.7 39
35, 80 0.2 0.6 43
40, 75 0.4 0.7 36
45, 95 0.6 0.6 48
50, 80 0.8 0.5 45
60, 90 1.0 0.2 50
80, 130 1.8 0 43
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5 Conclusion

In this paper, a stochastic version of the node weighted graph partitioning problem has been
investigated. Practical application in the context of partitioning process network problem has been
discussed. It has been shown that transforming an initial SOCP based formulation into quadratic
constraints and applying some linearization techniques can be more efficient than solving the usual
binary SOCP formulation. As a possible direction for future investigations, it would be interesting
to check whether the same type of conclusion can be drawn for other combinatorial optimization
problems e.g featuring knapsack constraints with random coefficients.
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