R. Adalbert and M. P. Coleman, Review: Axon pathology in age-related neurodegenerative disorders, Neuropathology and Applied Neurobiology, vol.25, issue.Pt 5, pp.90-108, 2013.
DOI : 10.1111/j.1365-2990.2012.01308.x

M. C. Raff, A. V. Whitmore, and J. Finn, Axonal Self-Destruction and Neurodegeneration, Science, vol.296, issue.5569, pp.868-871, 2002.
DOI : 10.1126/science.1068613

M. P. Coleman and M. R. Freeman, , and Nmnat, Annual Review of Neuroscience, vol.33, issue.1, pp.245-267, 2010.
DOI : 10.1146/annurev-neuro-060909-153248

T. Araki, Y. Sasaki, and J. Milbrandt, Increased Nuclear NAD Biosynthesis and SIRT1 Activation Prevent Axonal Degeneration, Science, vol.305, issue.5686, pp.1010-1013, 2004.
DOI : 10.1126/science.1098014

E. Babetto, Targeting NMNAT1 to Axons and Synapses Transforms Its Neuroprotective Potency In Vivo, Journal of Neuroscience, vol.30, issue.40, pp.13291-13304, 2010.
DOI : 10.1523/JNEUROSCI.1189-10.2010

O. Donnell, K. C. Vargas, M. E. Sagasti, and A. , WldS and PGC-1?? Regulate Mitochondrial Transport and Oxidation State after Axonal Injury, Journal of Neuroscience, vol.33, issue.37, pp.14778-14790, 2013.
DOI : 10.1523/JNEUROSCI.1331-13.2013

C. Fang, H. Decker, and G. Banker, Axonal transport plays a crucial role in mediating the axon-protective effects of NmNAT, Neurobiology of Disease, vol.68, pp.78-90, 2014.
DOI : 10.1016/j.nbd.2014.04.013

J. Gilley and M. P. Coleman, Endogenous Nmnat2 Is an Essential Survival Factor for Maintenance of Healthy Axons, PLoS Biology, vol.21, issue.1, p.1000300, 2010.
DOI : 10.1371/journal.pbio.1000300.s010

J. Y. Park, Mitochondrial swelling and microtubule depolymerization are associated with energy depletion in axon degeneration, Neuroscience, vol.238, pp.258-269, 2013.
DOI : 10.1016/j.neuroscience.2013.02.033

C. L. Cusack, V. Swahari, W. Hampton-henley, J. Michael-ramsey, and M. Deshmukh, Distinct pathways mediate axon degeneration during apoptosis and axon-specific pruning, Nature Communications, vol.9, p.1876, 2013.
DOI : 10.1038/ncomms2910

Z. Schoenmann, Axonal Degeneration Is Regulated by the Apoptotic Machinery or a NAD+-Sensitive Pathway in Insects and Mammals, Journal of Neuroscience, vol.30, issue.18, pp.6375-6386, 2010.
DOI : 10.1523/JNEUROSCI.0922-10.2010

K. D. Brown, Activation of SIRT3 by the NAD+ Precursor Nicotinamide Riboside Protects from Noise-Induced Hearing Loss, Cell Metabolism, vol.20, issue.6, pp.1059-1068, 2014.
DOI : 10.1016/j.cmet.2014.11.003

S. Magnifico, NAD+ acts on mitochondrial SirT3 to prevent axonal caspase activation and axonal degeneration, The FASEB Journal, vol.27, issue.12, pp.4712-4722, 2013.
DOI : 10.1096/fj.13-229781

K. E. Cosker, M. F. Pazyra-murphy, S. J. Fenstermacher, and R. A. Segal, Target-Derived Neurotrophins Coordinate Transcription and Transport of Bclw to Prevent Axonal Degeneration, Journal of Neuroscience, vol.33, issue.12, pp.5195-5207, 2013.
DOI : 10.1523/JNEUROSCI.3862-12.2013

S. L. Courchesne, C. Karch, M. F. Pazyra-murphy, and R. A. Segal, Sensory Neuropathy Attributable to Loss of Bcl-w, Journal of Neuroscience, vol.31, issue.5, pp.1624-1634, 2011.
DOI : 10.1523/JNEUROSCI.3347-10.2011

A. Nikolaev, T. Mclaughlin, D. D. O-'leary, and M. Tessier-lavigne, APP binds DR6 to trigger axon pruning and neuron death via distinct caspases, Nature, vol.69, issue.7232, pp.981-989, 2009.
DOI : 10.1038/nature07767

M. Deshmukh, K. Kuida, E. M. Johnson, and . Jr, Release to the Point of Mitochondrial Depolarization, The Journal of Cell Biology, vol.18, issue.1, pp.131-143, 2000.
DOI : 10.1038/sj.cdd.4400440

S. Saxena and P. Caroni, Mechanisms of axon degeneration: From development to disease, Progress in Neurobiology, vol.83, issue.3, pp.174-191, 2007.
DOI : 10.1016/j.pneurobio.2007.07.007

D. J. Simon, Axon Degeneration Gated by Retrograde Activation of Somatic Pro-apoptotic Signaling, Cell, vol.164, issue.5, pp.1031-1045, 2016.
DOI : 10.1016/j.cell.2016.01.032

A. M. Bertholet, Mitochondrial fusion/fission dynamics in neurodegeneration and neuronal plasticity, Neurobiology of Disease, vol.90, pp.3-19, 1038.
DOI : 10.1016/j.nbd.2015.10.011

D. C. Chan, Fusion and Fission: Interlinked Processes Critical for Mitochondrial Health, Annual Review of Genetics, vol.46, issue.1, pp.265-287, 2012.
DOI : 10.1146/annurev-genet-110410-132529

K. Labbe, A. Murley, and J. Nunnari, Determinants and Functions of Mitochondrial Behavior, Annual Review of Cell and Developmental Biology, vol.30, issue.1, pp.357-391, 2014.
DOI : 10.1146/annurev-cellbio-101011-155756

L. Pernas and L. Scorrano, Mito-Morphosis: Mitochondrial Fusion, Fission, and Cristae Remodeling as Key Mediators of Cellular Function, Annual Review of Physiology, vol.78, issue.1, pp.505-531, 2016.
DOI : 10.1146/annurev-physiol-021115-105011

S. Frank, The Role of Dynamin-Related Protein 1, a Mediator of Mitochondrial Fission, in Apoptosis, Developmental Cell, vol.1, issue.4, pp.515-525, 2001.
DOI : 10.1016/S1534-5807(01)00055-7

URL : https://hal.archives-ouvertes.fr/hal-00153696

T. Landes and J. C. Martinou, Mitochondrial outer membrane permeabilization during apoptosis: The role of mitochondrial fission, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1813, issue.4, pp.540-545, 2011.
DOI : 10.1016/j.bbamcr.2011.01.021

D. F. Suen, K. L. Norris, and R. J. Youle, Mitochondrial dynamics and apoptosis, Genes & Development, vol.22, issue.12, pp.1577-1590, 2008.
DOI : 10.1101/gad.1658508

M. J. Lee, J. Y. Kim, K. Suk, and J. H. Park, Identification of the Hypoxia-Inducible Factor 1??-Responsive HGTD-P Gene as a Mediator in the Mitochondrial Apoptotic Pathway, Molecular and Cellular Biology, vol.24, issue.9, pp.3918-3927, 2004.
DOI : 10.1128/MCB.24.9.3918-3927.2004

A. Millet, Loss of functional OPA1 unbalances redox state: implications in dominant optic atrophy pathogenesis, Annals of Clinical and Translational Neurology, vol.136, issue.Pt 2, pp.408-421, 2016.
DOI : 10.1002/acn3.305

R. Sugioka, S. Shimizu, and Y. Tsujimoto, Fzo1, a Protein Involved in Mitochondrial Fusion, Inhibits Apoptosis, Journal of Biological Chemistry, vol.279, issue.50, pp.52726-52734, 2004.
DOI : 10.1074/jbc.M408910200

H. Chiang, Mitochondrial fission augments capsaicin-induced axonal degeneration, Acta Neuropathologica, vol.36, issue.5, pp.81-96, 2015.
DOI : 10.1007/s00401-014-1354-3

J. Grohm, Inhibition of Drp1 provides neuroprotection in vitro and in vivo, Cell Death and Differentiation, vol.1792, issue.9, pp.1446-1458, 2012.
DOI : 10.1161/01.STR.0000125855.17686.6d

A. Misko, S. Jiang, I. Wegorzewska, J. Milbrandt, and R. H. Baloh, Mitofusin 2 Is Necessary for Transport of Axonal Mitochondria and Interacts with the Miro/Milton Complex, Journal of Neuroscience, vol.30, issue.12, pp.4232-4240, 2010.
DOI : 10.1523/JNEUROSCI.6248-09.2010

A. L. Misko, Y. Sasaki, E. Tuck, J. Milbrandt, and R. H. Baloh, Mitofusin2 Mutations Disrupt Axonal Mitochondrial Positioning and Promote Axon Degeneration, Journal of Neuroscience, vol.32, issue.12, pp.4145-4155, 2012.
DOI : 10.1523/JNEUROSCI.6338-11.2012

A. Berthet, Loss of Mitochondrial Fission Depletes Axonal Mitochondria in Midbrain Dopamine Neurons, Journal of Neuroscience, vol.34, issue.43, pp.14304-14317, 2014.
DOI : 10.1523/JNEUROSCI.0930-14.2014

A. M. Bertholet, OPA1 loss of function affects in vitro neuronal maturation, Brain, vol.136, issue.5, pp.1518-1533, 2013.
DOI : 10.1093/brain/awt060

U. Shirendeb, Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington's disease: implications for selective neuronal damage, Human Molecular Genetics, vol.20, issue.7, pp.1438-1455, 2011.
DOI : 10.1093/hmg/ddr024

H. Wong, RCAN1 overexpression promotes age-dependent mitochondrial dysregulation related to neurodegeneration in Alzheimer???s disease, Acta Neuropathologica, vol.59, issue.Suppl 1, pp.829-843, 2015.
DOI : 10.1007/s00401-015-1499-8

X. Guo, Inhibition of mitochondrial fragmentation diminishes Huntington???s disease???associated neurodegeneration, Journal of Clinical Investigation, vol.123, issue.12, pp.5371-5388, 2013.
DOI : 10.1172/JCI70911DS1

I. Nikic, A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis, Nature Medicine, vol.14, issue.4, pp.495-499, 2011.
DOI : 10.1016/S0165-5728(00)00360-X

M. Szelechowski, A viral peptide that targets mitochondria protects against neuronal degeneration in models of Parkinson???s disease, Nature Communications, vol.18, p.5181, 2014.
DOI : 10.1006/neur.1996.0041

A. Olichon, Effects of OPA1 mutations on mitochondrial morphology and apoptosis: Relevance to ADOA pathogenesis, Journal of Cellular Physiology, vol.36, issue.257, pp.423-430, 2007.
DOI : 10.1002/jcp.20950

URL : https://hal.archives-ouvertes.fr/inserm-00164120

D. Kilinc, Wallerian-Like Degeneration of Central Neurons After Synchronized and Geometrically Registered Mass Axotomy in a Three-Compartmental Microfluidic Chip, Neurotoxicity Research, vol.39, issue.2, pp.149-161, 2010.
DOI : 10.1007/s12640-010-9152-8

D. Paul, A ???dry and wet hybrid??? lithography technique for multilevel replication templates: Applications to microfluidic neuron culture and two-phase global mixing, Biomicrofluidics, vol.5, issue.2, p.24102, 2011.
DOI : 10.1063/1.3569946

A. Cassidy-stone, Chemical Inhibition of the Mitochondrial Division Dynamin Reveals Its Role in Bax/Bak-Dependent Mitochondrial Outer Membrane Permeabilization, Developmental Cell, vol.14, issue.2, pp.193-204, 2008.
DOI : 10.1016/j.devcel.2007.11.019

L. L. Lackner and J. Nunnari, Small Molecule Inhibitors of Mitochondrial Division: Tools that Translate Basic Biological Research into Medicine, Chemistry & Biology, vol.17, issue.6, pp.578-583, 2010.
DOI : 10.1016/j.chembiol.2010.05.016

A. M. Bertholet, Mitochondrial fusion/fission dynamics in neurodegeneration and neuronal plasticity, Neurobiology of Disease, vol.90, 2015.
DOI : 10.1016/j.nbd.2015.10.011

A. Olichon, Loss of OPA1 Perturbates the Mitochondrial Inner Membrane Structure and Integrity, Leading to Cytochrome c Release and Apoptosis, Journal of Biological Chemistry, vol.278, issue.10, pp.7743-7746, 2003.
DOI : 10.1074/jbc.C200677200

N. R. Agarwal, N. Maurya, J. S. Pawar, and I. Ghosh, A combined approach against tumorigenesis using glucose deprivation and mitochondrial complex 1 inhibition by rotenone, Cell Biology International, vol.293, issue.1, pp.821-831, 2016.
DOI : 10.1002/cbin.10619

G. Han, J. P. Wood, G. Chidlow, T. Mammone, and R. J. Casson, Mechanisms of Neuroprotection by Glucose in Rat Retinal Cell Cultures Subjected to Respiratory Inhibition, Investigative Opthalmology & Visual Science, vol.54, issue.12, pp.7567-7577, 2013.
DOI : 10.1167/iovs.13-12200

A. Lannuzel, The mitochondrial complex i inhibitor annonacin is toxic to mesencephalic dopaminergic neurons by impairment of energy metabolism, Neuroscience, vol.121, issue.2, pp.287-296, 2003.
DOI : 10.1016/S0306-4522(03)00441-X

I. Marey-semper, M. Gelman, and M. Levi-strauss, A selective toxicity toward cultured mesencephalic dopaminergic neurons is induced by the synergistic effects of energetic metabolism impairment and NMDA receptor activation, J Neurosci, vol.15, pp.5912-5918, 1995.

C. Frezza, OPA1 Controls Apoptotic Cristae Remodeling Independently from Mitochondrial Fusion, Cell, vol.126, issue.1, pp.177-189, 2006.
DOI : 10.1016/j.cell.2006.06.025

T. Landes, The BH3-only Bnip3 binds to the dynamin Opa1 to promote mitochondrial fragmentation and apoptosis by distinct mechanisms, EMBO reports, vol.283, issue.6, pp.459-465, 2010.
DOI : 10.1038/embor.2010.50

URL : https://hal.archives-ouvertes.fr/hal-00482874

M. P. Mattson, J. Partin, and J. G. Begley, Amyloid ??-peptide induces apoptosis-related events in synapses and dendrites, Brain Research, vol.807, issue.1-2, pp.167-176, 1998.
DOI : 10.1016/S0006-8993(98)00763-X

R. Yamaguchi, Opa1-Mediated Cristae Opening Is Bax/Bak and BH3 Dependent, Required for Apoptosis, and Independent of Bak Oligomerization, Molecular Cell, vol.31, issue.4, pp.557-569, 2008.
DOI : 10.1016/j.molcel.2008.07.010

M. Germain, J. P. Mathai, H. M. Mcbride, and G. C. Shore, Endoplasmic reticulum BIK initiates DRP1-regulated remodelling of mitochondrial cristae during apoptosis, The EMBO Journal, vol.162, issue.8, pp.1546-1556, 2005.
DOI : 10.1038/sj.emboj.7600592

M. Picard, O. S. Shirihai, B. J. Gentil, and Y. Burelle, Mitochondrial morphology transitions and functions: implications for retrograde signaling?, AJP: Regulatory, Integrative and Comparative Physiology, vol.304, issue.6, pp.393-406, 2013.
DOI : 10.1152/ajpregu.00584.2012

D. Naon and L. Scorrano, At the right distance: ER-mitochondria juxtaposition in cell life and death, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1843, issue.10, pp.2184-2194, 2014.
DOI : 10.1016/j.bbamcr.2014.05.011

M. Liesa and O. S. Shirihai, Mitochondrial Dynamics in the Regulation of Nutrient Utilization and Energy Expenditure, Cell Metabolism, vol.17, issue.4, pp.491-506, 2013.
DOI : 10.1016/j.cmet.2013.03.002

B. Westermann, Bioenergetic role of mitochondrial fusion and fission, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1817, issue.10, 2011.
DOI : 10.1016/j.bbabio.2012.02.033

A. J. Molina, Mitochondrial Networking Protects ??-Cells From Nutrient-Induced Apoptosis, Diabetes, vol.58, issue.10, pp.2303-2315, 2009.
DOI : 10.2337/db07-1781

W. T. Harkcom, NAD+ and SIRT3 control microtubule dynamics and reduce susceptibility to antimicrotubule agents, Proceedings of the National Academy of Sciences, vol.111, issue.24, pp.2443-2452, 2014.
DOI : 10.1073/pnas.1404269111

U. P. Shirendeb, Mutant huntingtin's interaction with mitochondrial protein Drp1 impairs mitochondrial biogenesis and causes defective axonal transport and synaptic degeneration in Huntington's disease, Human Molecular Genetics, vol.21, issue.2, pp.406-420, 2012.
DOI : 10.1093/hmg/ddr475

F. A. Court and M. P. Coleman, Mitochondria as a central sensor for axonal degenerative stimuli, Trends in Neurosciences, vol.35, issue.6, pp.364-372, 2012.
DOI : 10.1016/j.tins.2012.04.001

L. Lartigue, An intracellular wave of cytochrome c propagates and precedes Bax redistribution during apoptosis, Journal of Cell Science, vol.121, issue.21, pp.3515-3523, 2008.
DOI : 10.1242/jcs.029587

URL : https://hal.archives-ouvertes.fr/hal-00329939

C. Garcia-perez, Bid-induced mitochondrial membrane permeabilization waves propagated by local reactive oxygen species (ROS) signaling, Proceedings of the National Academy of Sciences, vol.109, issue.12, pp.4497-4502, 2012.
DOI : 10.1073/pnas.1118244109

H. J. Huber, M. A. Laussmann, J. H. Prehn, and M. Rehm, Diffusion is capable of translating anisotropic apoptosis initiation into a homogeneous execution of cell death, BMC Systems Biology, vol.4, issue.1, p.9, 2010.
DOI : 10.1186/1752-0509-4-9

S. F. Jacob, M. L. Wurstle, M. E. Delgado, and M. Rehm, An Analysis of the Truncated Bid- and ROS-dependent Spatial Propagation of Mitochondrial Permeabilization Waves during Apoptosis, Journal of Biological Chemistry, vol.291, issue.9, pp.4603-4613, 2016.
DOI : 10.1074/jbc.M115.689109

K. Herrup, Reimagining Alzheimer's Disease--An Age-Based Hypothesis, Journal of Neuroscience, vol.30, issue.50, pp.16755-16762, 2010.
DOI : 10.1523/JNEUROSCI.4521-10.2010