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Abstract—Recent advances in processor manufacturing has led
to integrating tens of cores in a single chip and promise to
integrate many more with the so-called manycore architectures.
Manycore architectures usually integrate many small power
efficient cores, which can be 32-bit cores in order to maximize the
performance per Watt ratio. Providing large physical memory
(e.g. 1 TB) to such architectures thus requires extending the
physical address space (e.g. to 40 bits).

This extended physical space has early been identified as
a problem for 32-bit operating systems as they can normally
support at maximum 4 GB of physical space, and up to 64 GB
with memory extension techniques.

This paper presents a scalable solution which efficiently man-
ages large physical memory. The proposed solution decomposes
the kernel into multiple units, each running in its own space,
without the virtual memory mechanism (directly in physical
mode). User applications, however, continue to run in the virtual
mode. This solution allows the kernel to manage a large physical
memory, while allowing user space applications to access nearly
4 GB of virtual space. It has been successfully implemented in
ALMOS, a UNIX-like operating system, running on the TSAR
manycore architecture, which is a 32-bit virtual 40-bit physical
manycore architecture. Moreover, the first results show that this
approach improves both the scalability and the performance of
the system.

I. INTRODUCTION

Moore’s law suggests that the number of transistors per
core doubles approximately every two years. Until the early
2000s, this increase has been used by designers to improve
the performance of microprocessors by increasing the in-
struction level parallelism (ILP) along with increasing fre-
quency. However, both the ILP and frequency improvements
have reached a limit. The first limit is due to weak ILP in
many commercial applications [6], and the second due to the
power dissipation problem [8]. To overcome this limit and
keep improving the performance of processors, manufacturers
integrate multiple cores into a single processor rather than
trying to improve a single core. Currently, systems containing
tens of cores are a reality and this trend is expected to continue
in order to meet the performance demands. This kind of
processors are called manycore and could contain hundreds
if not thousands of cores. To keep the power consumption
within an affordable envelope, the cores need to be smaller
and simpler as the number of cores is increased [8].
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It is in this context that the TSAR (Tera-Scale ARchitecture)
architecture has been developed [11]. This manycore architec-
ture was designed to integrate up to 1024 cores. It supports
a CC-NUMA (cache coherent - non uniform memory access)
paradigm since its memory is physically distributed on the
chip, and logically shared: any core can transparently access
any memory location, although at different costs. To minimize
the power consumption, TSAR uses small single-issue 32-bit
MIPS cores. To avoid limiting the supported memory to 4 GB,
the physical address space is extended to 40 bits, which allows
the architecture to support up to 1 TB of memory.

In addition to the energy and space efficiency, the use
of 32-bit cores has two main advantages over 64-bit cores.
First, the application memory footprint is minimized, as most
data types are limited to 32-bit: on 64-bit architectures, more
data types are 64-bit wide, like pointers. As a consequence
of this first advantage, the second is that the cache utilization
is improved. The main disadvantage, of course, is the space
limitation for the user applications.

The use of 32-bit cores with an extended address space is
not new to the processor industry. It has been used in many x86
processors and in some ARM processors. However, current
operating systems cannot efficiently support physical address
spaces larger than 64 GB. In practice, this limit is even
smaller to avoid memory pressure on kernel data structures
(see section III). Moreover, current operating systems offer
at maximum 3 GB of virtual address space to applications
although the cores can address up to 4 GB.

To overcome these limits and allow the operating system
to support large extended physical memory while offering
nearly 4 GB of address space to user applications, we designed
a new solution. This solution is based on two principles.
The first consists of structuring the kernel as a distributed
system, composed of several cooperating kernel units, each
one managing a private segment of the total physical address
space. The different kernel units cooperate to present a single
kernel image to user applications. This structuring strategy is
not new since it has been used to improve the scalability [18],
[16], to contain hardware and software faults [10], or to
support heterogeneous architectures [7], [5], [14], yet the
motivation here is new: to support a large physical address
space. The second consists of executing each kernel unit
in physical mode, while running user applications in virtual



mode.
In the rest of the paper, section II presents some background;

section III presents related work; section IV presents the TSAR
architecture with its features that fully address the physical
space; section V presents our solution; section VI presents the
experimental evaluations; finally, section VII concludes and
presents future work.

II. BACKGROUND

In this section we present the hardware and software com-
ponents used to manage memory spaces.

A. Physical Page Descriptor

Most modern operating systems manage the physical mem-
ory with the granularity of a page. The size of a page depends
on both the operating system and the hardware. However, most
32-bit operating systems use a 4KB page size. To manage
these pages, the kernel represents each physical page with
a page descriptor data structure. This descriptor holds much
information, like the address of the page and the number of
its users. The size of the descriptor depends on the operating
system, but is typically 32 Bytes.

B. Process Virtual Address Space on 32-bit Architectures

Existing operating systems split the address space in two
parts. The first part is used to map user data, while the
second part maps kernel data. The size of each part depends,
generally, only on the operating system. We find two common
configurations: the first is to give half of the virtual address
space (2 GB) to the user and the other half to the kernel; the
second is to give 3 GB to the user and 1 GB to the kernel.
The problem with this split configuration is that it limits the
address space for both the user and the kernel to 2 (resp. 3) GB
and 2 (resp. 1) GB.

C. Memory Manager Unit

Abbreviated to MMU, this hardware component translates
virtual addresses to physical addresses. The necessary in-
formation for these translations are extracted from software
initialized table, called page table. To avoid accessing memory
at each translation (i.e. at each load/store instruction), the
MMU caches most recently used entries of the page table in
a small cache called TLB (Translation Look-aside Buffer).

On some architectures, the MMU does not access the mem-
ory page table if an entry is not in the TLB. It simply raises
an exception and it is up to the operating system to access the
page table in memory and update the TLB cache. These are
called software-managed TLBs. Analogously, MMUs that fill
the cache transparently to the software are called hardware-
managed TLBs.

In each context switch the TLB is flushed. This is necessary
to avoid reusing entries of the previous context (process)
that stayed in the TLB. However, an optimization can be
used to avoid these costly flushes. It consists of assigning to
each context a unique identifier, called ASID (Address Space
IDentifier). This identifier is stored in the TLB entries each

time they are filled. Thus, the TLB can distinguish between
entries in different contexts, avoiding the need to flush the
TLB. There is also another optimization which avoids flushing
entries that are shared between contexts. This is generally the
case for entries that are part of the kernel virtual address space
since all contexts share the same kernel. This functionality is
generally implemented by adding a bit called the global bit
in the page table entries, which is later cached by the TLB,
that marks the entry as shared. Thus, the TLB can avoid the
unnecessary flushing of such entries.

III. RELATED WORK

A. Processors with Extended Physical Space

There are three brands of industrial 32-bit processor which
use an extended address space. We find this functionality in
the SPARC V8 [17] processor and in many x86 processors,
like the Pentium Pro processors [13]. In these processors
the physical address space is extended to 36-bit, allowing up
to 64 GB of memory. The extra physical space is accessible
(only) through the virtual memory. In the x86 world, this
functionality is called PAE for Physical Address Extension.
We also find this functionality in the ARM-v7 architecture
profile [4]. The address space is extended to 40-bit (similar to
TSAR). This functionality is called LPAE for Large PAE.

B. Software Support for Extended Physical Space

1) Dynamic and Static Mapping: To support the extended
address space, modern monolithic operating systems use a
dynamic mapping technique. It consists of reserving part
of the kernel virtual space to dynamically map the data
in the extended address space. Analogously, the other part,
permanently mapped, of the virtual address space has a static
mapping.

This solution has two limitations. First, the use of a dynamic
mapping is only done on big data with no pointer, like the file
system data cache. The second is that critical kernel structures
which must stay in the static mapping become constrained by
the available space for it, like process descriptors, file system
metadata and more importantly physical page descriptors.
The size of the latter increases with the size of the physical
memory (there is one descriptor per page) while the size of
the static mapping does not increase. For example, with 64 GB
of physical space, the collective size of page descriptors will
reach nearly 512 MB, which leaves little space for the rest of
the kernel structures, supposing that the kernel space is 1 GB.
The system is hardly functional with more physical space.

2) Different Spaces for the Kernel and the User: Another
solution has been suggested in the Linux community to
overcome the limitation of the previous solution [1]. This one
consists of allocating different virtual spaces for the kernel
and the user. This offers to both the kernel and the user a
virtual space of 4 GB. The problem of this solution is that it
requires switching address spaces at each system call, which is
costly on architectures without the ASID functionality, since
the TLB must be flushed before and after every system call.



Even if this cost is not considered, 4 GB of address space for
the kernel is still small compared to 1 TB of memory.

3) Address Windowing Extension: To allow user applica-
tions to access more than their address space (2 or 3 GB),
Windows defines the AWE (Address Windowing Extension)
API [15]. This API allows the user application to implements
a dynamic mapping strategy to access more memory than their
virtual space. To use this API, a user application first allocates
physical memory, then maps it into part of its virtual space.
When the access to the data is no longer needed, the physical
memory can be unmapped. In addition to its complexity, the
default of this solution is that it requires modifying user
applications.

Another solution for user applications to access more mem-
ory will be to use the file system. This solution consists of
storing the data on a file. This data can be accessed either
using the read/write system calls or the mmap system call. For
the latter, the user application must use a dynamic mapping
strategy. This is similar to the previous solution, but using a
POSIX compliant system call.

4) Micro-kernel based operating system: We are unaware
of any solution used to support extended physical space in
a micro-kernel based operating system. Using the dynamic
mapping technique in such operating system may be more
costly as the modification of address space must be requested
from the memory server through message passing.

IV. TERA-SCALE ARCHITECTURE (TSAR)
The TSAR [11] architecture is composed of clusters. Fig-

ure 1 presents this architecture with 4x4 clusters. Each cluster
contains four cores with their private first-level cache (L1),
a shared second level cache (L2) and an interrupt controller
(XICU). Each L2 cache maps a different segment of the
external memory (RAM). All segments have the same size.
Outside the processor chip, we find the external peripherals.
The main three are the TTY (text output), the IOC (block de-
vice) and the IOPIC (interrupt controller). This last peripheral
transforms wired interrupts to memory writes. These memory
writes are generally programed to point to mailboxes of the
XICU. Mailboxes are XICU registers that, when written to,
interrupt one of the cores of a cluster. Thus, the couples of the
IOPIC and the XICU components can be used to transform an
external peripheral wired interrupts to a core wired interrupt.

A. Physical Space Segmentation

The 40 bits of a physical address are split into two parts.
The first part (bits 32 to 39) encodes the cluster number.
Each cluster is represented by an (x,y) coordinate, x being
the abscissa on the chip plane, and y being the ordinate. This
part is called the extended address. The second part (bits 0 to
31) allows access to the components of a cluster (L2 or XICU).
This part is called the local address. With this encoding, the
physical space grows linearly with the number of clusters.

B. Means for Accessing the Physical Space

In TSAR, each core can access the 40-bit physical address
space:

1) in virtual mode, using the MMU component. This mode
can be used to translate 32-bit virtual addresses to 40-
bit physical addresses. The used MMU component has a
hardware managed TLB. To avoid flushing kernel entries
between context switches, this MMU implements the
global bit. Moreover, the coherence between the TLB
content and the software defined page tables, is ensured
by the hardware. This hardware coherence is absent
in modern industrial processors, where it is up to the
software to flush the TLB entries when the page table
is modified.

2) in physical mode, using the IEA/DEA registers. When
the MMU is deactivated, these 8-bit wide registers
extend 32-bit physical addresses to 40-bit. The IEA
register extends all addresses used to fetch instructions
from memory. The DEA register extends all addresses
of data load/store instructions. At reset, both registers
are initialized to zero. Their content is not erased be-
tween two accesses, thus the same extension can be
used for multiple accesses. The virtual memory can
be deactivated for either the data load/store or for
fetching instructions with no additional cost, in a single
instruction.
For the kernel to access data using this mode, it first
needs to set the appropriate extended address in the DEA
register, then executes the usual 32-bit load/store instruc-
tions. The processor will then extend all 32-bit addresses
with the content of the DEA register, as long as the
MMU is off for data accesses. A similar procedure may
be used to fetch instructions using physical addresses.
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Fig. 1. A TSAR architecture with 4x4 clusters. The right block describes the
content of a cluster. The top block describes some external peripherals.

V. PRINCIPLES OF THE SOLUTION

Our solution was implemented in ALMOS [2], [3], a UNIX-
like operating system. This operating system was concurrently
developed with the TSAR architecture to efficiently exploit
manycore architectures.

Until recently, this operating system was developed in an
early version of TSAR which had a 32-bit physical address
space. With the full development of the TSAR architecture it
was necessary to add support for the extended address space.



A. First Approach

To introduce support for 40 bits physical addresses, we first
tried to use a solution inspired from commercial UNIX/Linux
or Windows operating systems. We used the virtual mode,
with static mapping to access the kernel code and some of the
kernel data, while using physical mode to access kernel data
that may not fit in the virtual space. In contrast with existing
operating systems, our goal was to exploit the physical mode
of TSAR to access not only simple data with no pointer such
as the file system data cache but also complex data structures,
such as the page descriptors.

However, implementing this solution was difficult. This is
due to the fact that once a structure is placed in physical space,
all the code handling this structure needs to be carefully anal-
ysed to use specific functions when dereferencing a physical
pointer. These functions increase the cost for accessing the
memory since they add to each physical access three additional
instructions: two instructions to activate/deactivate the virtual
memory and one to set the extended address in the DEA
register. This problem is particularly difficult knowing that
most accesses need to be done in physical mode since the
virtual space represents only one thousandth of the physical
space. For these reasons this solution was abandoned.

B. Proposed Solution

From the failure of the first solution, two guidelines were
developed:

i) Only one address space must be used: the physical address
space as it allows access to all the memory space; ii) The
necessity to change the value of the extended registers must be
kept minimal to avoid increasing the cost of memory accesses.

This solution restructures the kernel as a distributed system,
where we have a complete independent kernel units in each
cluster.

Each unit runs directly in physical mode. Both extended
address registers are set to point to the local cluster: cores of
cluster 0x00 have both extended address registers set to 0x00;
cores of cluster 0x10 have both register set to 0x10, etc. (see
Figure 1). Thus, all local accesses do not require changing the
value of the extended registers.

Remote data accesses are done by temporally changing the
value of the DEA register; there is no need to change the
IEA register, since the kernel code is replicated in all the
clusters. To further keep minimal remote accesses, almost
all inter-cluster communications are done using a message
passing service, implemented as RPCs (Remote Procedure
Calls). Thus, all kernel subsystems are free of remote accesses.
Only the message passing service uses them to post messages.
However, for performance reasons, remote accesses are also
used to move big data between clusters. This optimization
avoids redundant copies of the same data. We call this opti-
mization the direct copy functionality. It is for example used
in file I/O operations (such as read()/write()) to copy the data
of a file placed in the first cluster to the user buffer located in
a second cluster.

This structuring allows the kernel to handle all the physical
space of the TSAR architecture. Indeed, since each kernel
unit handles the 4 GB of physical space local to a cluster,
the aggregate space handled by all the units corresponds to
the amount of physical space in the architecture.

Structuring a shared memory operating system as a dis-
tributed system is not new to the operating system world.
We find many systems which use this type of structure with
different motivations, like [18], [10], [7], [19], [5], [14], [16].
However, all past works sustain the scalability of this kernel
structure. This is a second motivation for our solution since
one of the most important goals of ALMOS is to ensure
scalable performance.

Yet, we are not aware of any modern operating system
which uses physical accesses at the kernel level while using
virtual addresses for user space applications. This hybrid
solution offers 4 GB of virtual address space to the user,
with the exception of one page which is reserved for the
kernel. This page maps the first instructions of the kernel
entry code which deactivates/reactivates the virtual memory
when entering/exiting the kernel code. Another case which
must be handled is the transfer of data between the kernel
and user space, which is necessary for system calls when the
data cannot fit into the registers. To solve this problem, two
solutions were considered. The first is to find the physical
address of each page of the user buffer and then copy the data
per page. The second is to activate temporarily, in the kernel,
the data virtual space to access user data. Currently, we use
both solutions. The first is used when a user buffer needs to be
accessed directly from a remote cluster, typically for I/O file
operations (see above paragraph). The second is used when a
thread executing in the kernel needs to copy kernel data to its
own user space buffer. A deeper study needs to be done to
compare the two solutions.

Using physical addressing in the kernel presents two per-
formance advantages. The first is that the kernel accesses
perform better since no physical to virtual memory translation
is necessary. The second is that user applicatons also perform
better since the TLB is not shared with the kernel. The only
real disadvantage that we found until now is the hardness to
find kernel bugs which modify kernel code or read only data.
When the kernel runs in virtual mode, this type of bug is easily
detected since the virtual memory protection can be used to
control the access type.

C. Implementation

Implementing the proposed solution was aided by the
fact that ALMOS was internally organized in clusters.
For example, all remote memory allocations must be explicitly
requested, making it easy to track remote structures and thus
remote memory accesses. However, restructuring the operating
system required many small sparse changes in almost all sub-
systems of the kernel: the memory manager, the file systems
and the process manager.



We describe the implementation by following the four main
steps of the development process. For the purpose of this
paper, some parts are briefly described.

1) Replicating Independent Kernels: This step consists of
replicating, in each cluster, independent kernel units that do
not communicate between them: memory cannot be remotely
allocated, processes and threads cannot migrate across clusters,
and the file system stack is replicated (this is safe since the
file system is read-only, otherwise the disk content can become
incoherent).

Running kernel units directly in physical space requires
three main modifications, two of which have been discussed
in section V : deactivating/reactivating the virtual mode when
entering/exiting the kernel and the handling of data transfer
between user and kernel spaces. The last modification is
done in the kernel boot code which constructs the virtual
space. This latter is modified to map only one page for
entering/exiting the kernel, to deactivate the virtual mode, and
to set the DEA and IEA registers to point to the local cluster.
The rest of the kernel works as if the virtual memory was
active and statically mapping the space of the local cluster.

Access to external peripherals is synchronized by hardware
dependent code, which uses locks placed in the first cluster.
The routing of the IOPIC interrupts to one of the cores is
dynamically programed at each lock acquisition. This allows
the interrupt to be treated locally to the core which requested
a peripheral service.

2) Establishing Communication Channels: A static inter-
cluster communication mechanism was established between
cores using a per cluster circular buffer (Figure 2).
These buffers are used only to receive message requests. The
accesses to these buffers are synchronized with a lock-free
mechanism, similar to [5]. The response messages are sent
using a buffer allocated by the sender. Finally, all the message
passing complexity, such as the pre-allocation of the response
buffer, is encapsulated by an RPC mechanism.

K_1

K_0 K_2

K_3

Fig. 2. An example of the new ALMOS structure on a 2x2 cluster architecture.

a) RPC Types: There are two types of RPC: blockable
and non-blockable. Blockable RPCs can sleep, while non-
blockable RPCs cannot sleep. The first type requires that the
RPC must be treated in a separate context (i.e. by a dedicated
thread), in order to avoid unnecessary halting of user or kernel
threads. The second type can be executed in any context, which
avoids the cost of the context switch. Currently, all RPCs are

treated as blockable. Eventually, it will be better to treat non-
blockable RPCs separately, thus saving the cost of a context
switch.

b) Notification Mechanism: In a way similar to previous
work [5], [7], the notification mechanism is hybrid, and uses
both polling and IPIs (Inter-Processor Interrupts). When there
is at least one core (i.e. thread) of a cluster executing kernel
code, no IPI is sent, and it is up to the cores of the cluster to
poll the circular buffer to check for incoming messages; this
polling is done each time a core releases a lock. If all cores
are executing in user space, an IPI is sent to notify one of
the cores. The goal of this strategy is to avoid useless context
switches when executing in kernel space while minimizing the
latency when executing in user space.

c) Deadlock Avoidance: Since blockable RPCs can send
other RPCs, it is important to ensure that there is no deadlock.

Our deadlock avoidance strategy is based on two properties.
First, it must always be possible to send a response to a sender.
This property is met since the response buffer is pre-allocated
by the sender. Second, it must always be possible to treat
an RPC request. Our implementation meets this property by
(1) periodically checking for incoming messages and by (2)
dynamically creating threads to handle incoming messages.
Incoming messages are treated by specialized kernel threads,
called handlers. There is one pool of handlers per core.
The pool has initially only two handlers. New handlers are
created only when a handling thread is going to block and the
pool is empty. If a new thread cannot be created, the message
is still treated by a special thread which sends back an error
code indicating the lack of memory.

3) Unifying the File System Stack: The file system stack
is composed of two layers. The first layer, called VFS (for
Virtual File System), abstracts the difference between file
systems of the second layer. It also caches in memory both
the metadata, composed of inodes and dentrys, and the data
of the file system, called data cache. An inode contains all the
information relative to a file or directory, such as the size of the
file. The only exception is the name of the file or directory.
This latter is contained in the dentry structure. The second
layer implement functions that are specific to a file system.
The current implementation supports two pseudo-file systems
(devfs and sysfs) and one disk file system (FAT).

This stack is distributed per inode, across the clusters.
To keep this distribution uniform, the placement is decided
by a hash function. The goal of this distribution is to avoid
potential bottlenecks that may arise if the stack was placed
in one cluster. The dentrys are placed in the same cluster as
the inode (directory) to which they belong. The pages of the
data cache are also placed in the same cluster as the inode to
which they belong.

As an example, Figure 3 presents the placement of the
different file system structures on a 2x2 cluster architecture.

Accessing a file or directory that is local to a kernel unit
is done directly as in a classical monolithic kernels, with the
usual synchronization techniques : locks, reference counters,
etc. Accessing remote structures requires the use of RPCs.
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Fig. 3. Example of the possible placement of the file system structures. Inodes
are represented by dotted boxes. Dentrys are represented by boxes with stripes.
The remaining two structures represent the pages of the data cache belonging
to the corresponding inode.

This placement strategy is similar to the one used in
Hare [12], although the latter uses a per unit local cache, which
caches recently accessed metadata. This optimization is useful
to improve the performance of the path lookup operation, to
avoid sending an RPC for each path component.

4) Migrating Processes across Clusters: Processes are mi-
grated at the execution of an exec-like system call (in UNIX
systems, this system call loads a new executable file into a
process). This choice limits the data to be transferred across
clusters. The main argument sent to the remote cluster is the
path to the executable file.

Placement Strategy: The current implementation uses a
per cluster round robin strategy. This strategy uses a per cluster
counter. This counter is incremented each time a process is
placed. It is the value of this counter, modulo the number of
cores, which specifies the target core.

In addition to this strategy, user applications can explicitly
specify a core in which a process is to be placed.

5) Remaining steps: Two more steps are yet to be imple-
mented: the support for thread migration and the support for a
general process migration service (i.e. independent of exec-like
system calls). These two steps will allow ALMOS to execute
highly parallel applications. In the current implementation,
both threads and processes of the same application are bound
to one cluster.

D. Portability

Restructuring the kernel as a distributed system does not
necessarily depend on the use of physical accesses, it can use
the virtual space. In this case, each kernel units virtual space
statically maps the space local to a cluster except for few
pages. These pages will be used to implement the message
passing service. Such a solution allows the kernel to handle
approximately 1 GB of memory per cluster without using the
dynamic mapping technique. This size can be further increased
by increasing the decomposition of the kernel. For example,
to handle all the available memory in the case of TSAR using
the virtual memory, we can set one kernel unit per core rather
than per cluster. This allows the kernel to handle 4 GB of
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physical space per cluster, considering that we have four cores
per cluster. However, increasing the decomposition increases
the memory footprint of the kernel as more data are replicated.

The direct copy functionality can also be implemented with-
out using the DEA register of TSAR. It can be implemented
using the dynamic mapping technique, or an architecture
specific mechanism, e.g. using a DMA peripheral to copy the
data.

VI. EXPERIMENTAL EVALUATIONS

In these preliminary evaluations, we try to answer four
questions: i) What is the cost of sending a simple RPC? ii)
How does the new structure of ALMOS scale when accessing a
shared resource? We restrict this question to a shared resource
since both kernel structures (monolithic and multikernel) can
handle the scalability of private resources. iii) How does the
new structure affect the performance when accessing private
remote resources? We restrict this question to remote resources
since the performance for accessing local resources should be
similar to both kernel structures. iv) How much do we gain
in performance for executing the kernel directly in physical
space? The goal of this question is to evaluate the number of
TLB misses.

To answer these questions, we conduct three experiments.
These experiments are applied to the old version of ALMOS as
well as the new multikernel ALMOS, which we call ALMOS-
MK.

All the experiments are done using the Cycle-Accurate-Bit-
Accurate (CABA) SystemC [9] TSAR simulator. Although, an
FPGA implementation exists, the simulator allows us to reach
a higher number of clusters/cores.

A. Message Passing Cost

Figure 4 presents the average time for passing a message
to a remote cluster. This message has one argument and one
return value. The sent argument is an integer. The return value
is the incrementation of the argument. As we can see, the cost
of passing such messages lays around 3,500 cycles and varies
little when the number of clusters is increased. Although these
results were obtained after many optimizations, we believe that
they can still be improved.
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B. Performance Scalability

This experiment measures the average time for accessing a
single file in read only. We choose to experiment on files, since
they are the only memory objects which are shared between
processes across clusters. We restrict access to read only to
avoid disk accesses, which may bias the results. Indeed, read
accesses do not require disk accesses once the file is cached
in memory. In this experiment, the number of cores varies
between 8 (2 clusters) to 128 (32 clusters). There is one
process per core. Each process reads 256 times a portion of
a file composed of 128 bytes. To synchronize the start of the
processes, we use a barrier. This barrier is implemented using
a file which is used as a shared memory buffer. This buffer
contains a bitmap of N bits, where N is the number of cores.
At the initialization, all bits are reset. Each time a process
reaches the barrier, it sets the bit corresponding to the core
on which it executes. Once all bits are set, processes start
executing the read operations.

Figure 5 presents the results of this experiment for both
ALMOS and ALMOS-MK. As we can see, starting from 64
cores, the performance gap becomes very important. Both op-
erating systems use the same synchronization mechanism
to access the file: a read-write lock. The difference is that
ALMOS-MK restrains the number of processes contending for
the lock to four, i.e. the number of cores per cluster. All other
processes access the file through the message passing service.
This experiment clearly shows the scalability of ALMOS-MK
when accessing shared resources.

C. Remote Access Performance

In this experiment, we measure the cost of migrating a
process from the first cluster to the last cluster of the platform.
The number of clusters varies from 1 (4 cores) to 64 (256
cores). We use more clusters in this experiment because the
gap of performance appears only at 32 clusters.

Figure 6 presents the results of this experiment. As we can
see, ALMOS-MK handles better the NUMA effect of the ar-
chitecture. This is explained by the fact that, in ALMOS-MK,
all accesses are local, except when passing messages.
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D. TLB Performance

To measure the impact of physical addressing on the TLB
misses, we introduced instrumentation counters in the virtual
prototype of the TSAR architecture. Only the counters of
active cores (not idle) are taken into account.

Figures 7 and 8 show the total number of TLB misses for
the two previous experiments: the parallel read and the process
migration experiments.

For both experiments, the results of ALMOS-MK are better
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since the TLB are used only by the user space. This exclusive
use of the TLB by user applications avoids both types of
misses: capacity misses and conflict misses. The first since the
user has more space to store recent translations. The second
since there is no conflict with kernel cached translations.

Moreover, the resulting difference is clearer in the first
experiment. This is due to two reasons. The first reason is
that the first experiment is longer than the second leading
to the appearance of more misses, considering that the miss
frequency is constant over time. The second is that the amount
of data accessed is more important in the first experiment.
These data increase with the number of cores, while in the
second the number of accesses is constant, and most cores are
idle.

These results also explain why the cost of remote commu-
nication of ALMOS-MK, around three thousand cycles per
RPC, does not affect its performance. This is because the cost
of the RPCs is compensated by the decrease of TLB misses.

VII. CONCLUSION AND FUTURE WORK

Memory management is the central problem of many-
core architectures. More cores require more memory. It is
therefore necessary to manage a physical space well beyond
4 GB, meaning physical addresses much larger than 32-bit.
However, to integrate hundreds of cores in a chip, it is
necessary to minimize energy consumption by reducing the
footprint of each core. It is also necessary to save the cache
space in order to reduce the miss rate, thus reducing accesses
to external memory. For these two reasons, 32-bit cores can
be a better choice than 64-bit cores.

In this paper, we have shown that it is possible for the
operating system to efficiently manage a 40-bit address space
with 32-bit cores. Our solution decomposes the kernel into
multiple kernel units, each handling the space of a cluster.
This allows us to exploit as much memory as the number
of clusters. Each unit runs directly in physical space, and
communication between units is ensured by a message passing
service. This decomposition of the kernel is transparent to user
space applications, except for the larger virtual space that they
can access: nearly 4 GB.

To run directly in physical space, the solution depends on
the TSAR architecture physical address space. However, the
solution can still be implemented using the virtual space,
but with a smaller user virtual space. Moreover, the physical
address space of the TSAR architecture is simple enough to
be implemented in other architectures.

The solution is evaluated using three experiments. The first
one characterizes the cost of an RPC to 3500 cycles, whatever
the number of cores. The second analyzes the scalability of the
system when accessing a shared resource. The third analyzes
the performance for migrating a process. These experiments
were done on the same operating system (ALMOS) but with
and without our solution. The results show a good scalability
of the system, good performance and good handling of the
NUMA effect.

This work is still in progress, and future work includes
incorporating more services, such as the thread migration
service. However, it is enough to demonstrate the feasibility of
using 32-bit cores to handle large physical space on manycore
processors.
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