
HAL Id: hal-01362872
https://hal.sorbonne-universite.fr/hal-01362872

Submitted on 9 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RWT: Suppressing Write-Through Cost When
Coherence is Not Needed

Hao Liu, Clément Dévigne, Lucas Garcia, Quentin L. Meunier, Franck
Wajsbürt, Alain Greiner

To cite this version:
Hao Liu, Clément Dévigne, Lucas Garcia, Quentin L. Meunier, Franck Wajsbürt, et al.. RWT: Sup-
pressing Write-Through Cost When Coherence is Not Needed. 2015 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), Jul 2015, Montpellier, France. pp.434-439, �10.1109/ISVLSI.2015.35�.
�hal-01362872�

https://hal.sorbonne-universite.fr/hal-01362872
https://hal.archives-ouvertes.fr

RWT: Suppressing Write-Through Cost when
Coherence is not Needed

Hao Liu, Clément Dévigne, Lucas Garcia, Quentin Meunier, Franck Wajsbürt, Alain Greiner
Laboratoire d’Informatique de Paris 6 UMR 7606

Université Pierre et Marie Curie UPMC – Sorbonne Universités,
4 Place Jussieu, 75252 Paris Cedex 05 France

Email: lucas.garcia@polytechnique.edu, firstname.lastname@lip6.fr

Abstract—In shared-memory multicore architectures, handling
a write cache operation is more complicated than in single-
processor systems. A cache line may be present in more than one
private L1 cache. Any cache willing to write this line must inform
all the other sharers. Therefore, it is necessary to implement a
cache coherence protocol for multicore architectures.

At present, directory based protocols are popular cache coher-
ence protocols in both industry and academic domains because of
their reduced coherence traffic compared to snooping protocols,
at the expense of an indirection. The write policy – write through
or write back – is crucial in the protocol design.

The write-through policy reduces the bandwidth because it
augments the write traffic in the interconnection network, and
also augments the energy consumption. However, it can efficiently
solve the false sharing problem via write updates. In this
paper, we introduce a new way to reduce the write traffic of
a write-through coherence protocol by combining write-through
coherence with a write-back policy for non coherent lines. The
baseline write-through used as reference is a scalable hybrid
invalidate/update protocol.

Simulation results show that with our enhanced protocol, we
can reduce at least by 50% the write traffic in the interconnection
network, and gain up to 20% performance compared with the
baseline write-through protocol.

Index Terms—System-on-Chip; Many-core Architecture;
Shared Memory Programming; Hardware Cache Coherence;
Network-on-Chip; Write-Through; Write-Back; Released Write-
Through

I. INTRODUCTION

The problem of cache coherence protocols in shared-
memory multicore architectures is still an active domain of
research. Thanks to technology advances, we can put more
and more cores in one single chip [1], making it impossible
to use bus as an interconnect in the architecture. Instead, most
multicore or manycore architectures now use networks-on-
chip (NoC) [2] as interconnect [3], [4]. With a NoC, snooping
coherence can only come at the price of many broadcasts; and
if this approach has been experimented (e.g. in [5]), directory-
based coherence protocols are the most commonly used in
multicore architectures.

One of the most popular cache coherence protocol, the
write-back MESI [6], supports directory based implemen-
tations, like the MOESI protocol in AMD architecture
Opteron [7], and the GOLS protocol in Intel architecture Xeon
Phi [8]. The MESI protocol uses the write-back policy to
avoid propagating writes to the lower levels of cache hierarchy.
However, it can lead to a performance diminution when a write
targets a line not present in the L1 cache: this is because the

write-back policy implements a write allocate policy which
needs to fetch the missing line before performing the write.
During this time, the processor is blocked. On the contrary, a
write-through based protocol always sends the write command
to the lower level of cache hierarchy, and thus is not blocked
in case of miss. However, this increases the write traffic and
consumes more energy than a write-back policy.

This work extends currently submitted work on the TSAR
architecture [9]. The coherence protocol used in this archi-
tecture, called DHCCP (Dynamic Hybrid Cache Coherence
Protocol), is a directory-based write-through protocol whose
coherence traffic scales with the number of cores. However,
DHCCP has two main disadvantages:

• First, the high number of writes from L1 caches to L2
caches limits the number of processors per cluster

• Second, these writes induce a high power consumption
Our objective is to reduce this write traffic by modifying

DHCCP, while keeping the advantage of write-through coher-
ence.

To achieve this, we propose a modified version of this
coherence protocol, called RWT for Released Write-Through.
The idea of RWT is to enable coherency only when it is
necessary. This necessity will be determined fully in hardware,
with a per line granularity in the L2 cache. Thus, a coherent
line will use the same version of DHCCP as presented in [10].
However, for lines which have only one copy and thus do not
need coherence, a write-back approach is used. This technique
allows to reduce the traffic related to writes for the majority
of the lines which are present in a single cache, while keeping
a scalable coherence protocol for shared lines. A line can then
be in one of two states:

• Non-coherent write-back
• Coherent write-through

We can notice that the state change can only occur from non-
coherent state to coherent state. The state of a line is reset
when it is evicted from the L2 cache.

The rest of the article is organized as follows: section II
discusses related works; section III presents the mechanism of
RWT; section IV presents the simulation environment and the
experimental results; finally, section V concludes.

II. RELATED WORK

Cache coherence protocols have been studied for a long
time. In traditional multiprocessor systems in which processors

shared a bus, the MESI protocol and its variants have proven
to be the most efficient [11]. However, this problem recently
regained in interest with the arrival of manycore systems,
which replaced buses interconnects with NoCs of varying
topology, offering a higher bandwidth, but a higher latency. A
possible answer to the problem is to use software coherence
and let programmers invalidate shared data when needed [12],
or use different programming paradigms like message passing.
However, it is now more and more accepted that hardware
supported on-chip coherence will be part of future multi-
and manycore chips [13]. Yet, the question of the coherence
protocol remains open, and the write-through strategy could
be an actual answer for manycore systems because of NoCs
characteristics: [14] shows that a write-through invalidate
coherence scheme can perform as well as a write-back MESI
one over a NoC, while being simpler to design; besides, the
commercially available Tilera architecture [4] uses a write-
through protocol between tiles.

Other approaches try to reduce network latency in case of a
write miss. Token Coherence [15], [16] is a technique which
allows to avoid indirection at the L2 level by broadcasting
requests on all the mesh, while detecting race conditions
and guaranteeing correctness by a token mechanism. This
is an optimistic approach using potentially failing requests,
enabling a fast common case. The DicoCMP protocol and its
variants [17], [18] store the sharers in both the L1 and the
L2 caches. The approach used consists in that a requesting
writer L1 cache must send invalidations directly to the other
L1 cache owning a copy instead of the L2 cache (home tile),
at the price of tracking the list of sharers for each line in the
L1 caches.

While these approaches are interesting, they put efforts to
minimize write-miss latency, which is almost non-existing
with write-through protocols, since the latter just need to
propagate writes to the lower level of the memory hierarchy
without blocking the requesting L1 or processor.

[19] presents a mechanism including a policy manager able
to detect when a cache powers up/down, allowing a write-back
policy when a single cache is activated, and a write-through
policy otherwise. While this work uses a hybrid policy like
RWT, it has a cache granularity which does not fit well with
manycore systems. At the opposite, RWT allows several active
caches to access memory in write-back mode, provided the
caches access different pieces of data.

Finally, [20] describes a hybrid technique for cache co-
herence, combining a coherent strategy with a non coherent
one. The main difference with RWT is that this approach is
based on the operating system for detecting that data is shared;
this in turn involves to handle TLB misses by software –
while TSAR allows a hardware handling – and restricts the
strategy granularity to pages, whereas RWT allows a per line
granularity.

III. PRINCIPLES OF RWT

A. Baseline Write-Through

The write-through coherence protocol DHCCP used as
baseline is based on the following idea: when the number of

copies in L1 caches is below a certain threshold, an explicit
list of the sharers is kept in the L2, while above this threshold,
only the number of copies is known. The explicit copies are
stored in a L2 data structure shared among all lines. Thus,
when the number of copies is low, a multicast update strategy
is used upon receiving a write, whereas when the number of
copies is high, a broadcast invalidation is sent to all L1 caches.
In the following, this protocol is considered as a write-through
coherent protocol and is not fully described, as this article
focuses on the write-back strategy for non coherent lines, and
the coupling with the write-through coherent lines. Finally,
despite the fact that we only considered DHCCP as a baseline,
the principles of RWT could be applied to any directory-based
write-through coherent protocol.

B. Modifying Cleanups to Add a Write-Back Mechanism

In DHCCP, the distributed shared L2 cache directory keeps
coherence information for every cache line, and this requires
the inclusive property of L1 caches in L2 caches. A cleanup
request sent by a L1 cache can happen in two scenarios:

• the line has been evicted spontaneously by the L1 cache
• the L1 cache has received an invalidation request from

L2 cache and responds with a cleanup
The cleanup request does not include any data in DHCCP,

because the L2 cache line is always up to date. In RWT, we
need to keep this inclusive property for non-coherent lines: if
a line is locally modified in a L1 cache and not present in
a L2 cache, a miss in another L1 on this line will result in
an incoherence when the line is then retrieved by the L2. It
implies that when a non-coherent line is evicted from a L2,
the L1 owning the copy must both invalidate its copy and send
the up-to-date values to the L2.

When a L1 cache spontaneously evicts a dirty line or when
it receives an invalidation request targeting a dirty line, the
cleanup needs to be done in parallel with propagating up-to-
date values to the L2. This can a priori be done via three
different ways:

• the L1 can send a write with the new values in parallel
with the cleanup, thus using two different networks (one
for the cleanup and one for the write);

• the L2 can interpret the write with the new values as a
response to its coherence request;

• the L1 can send the new values directly in the response
to the coherence request.

The first solution has the drawback that since the two
transactions use different networks, their order of arrival is
not defined, adding complexity in the protocol. The second
solution can actually not be achieved easily because it actually
presents a risk of deadlock. For these reasons, we decided
to modify the existing cleanup request to include a potential
write-back of dirty lines; this request is called cleanup-data.
For coherent lines and the non-coherent clean lines, we use
the classic cleanup requests as in DHCCP – i.e. without data.

C. Non-Coherent and Coherent States in L1 Caches

The RWT protocol defines two states for a valid cache line:
the non-coherent (NC) state and the coherent (C) state. This

state is determined by the L2 cache, and is sent along with a
miss response to a requesting L1 cache. When a line is fetched
from memory by the L2 cache, the requesting L1 cache obtains
the first copy of this line, and thus is granted NC state.

When a write hit happens in a L1 cache, the strategy used
depend on the line state.

• the write-through policy is chosen for a line in C state.
The L1 cache line is updated and the write is also sent
to the L2 cache.

• the write-back policy is chosen for a line in NC state. The
L1 cache line is locally modified and the lines become
dirty: there is no write sent to the L2 cache.

Because the write-allocate strategy blocks the requesting
processor, write misses in RWT are directly sent to the
corresponding L2 cache. Figure 1 models the decision diagram
associated with the actions taken by a L1 cache upon receiving
a processor request.

Processor
Request

 MISS or HIT

MISS

WRITE READ

HIT

WRITE or READ

Return Data

NCS or CS

Update L1

HIT

MISS

MISS or HIT

Send Miss Read
 Req to L2Send the write

data to L2

CS

Set Dirty

NCS

Update L1
NCS or CS state

Figure 1: Decision Diagram of a L1 Cache upon Receiving a
Processor Request

D. Switching From Non-Coherent to Coherent State
A line in a L2 cache is initially in the NC state, thus there

can be only one copy in a given L1 cache. A key point in
RWT is the detection by the L2 that a line currently in NC
state ought to be in C state. This happens when a L1 cache
requests a copy of (resp. issues a write on) a line which is in
NC state and already has a copy in another L1 (it is possible
that a shared line only has one copy). This triggers the L2
cache to send an invalidation request to the actual owner of the
copy, which responds with a cleanup-data if the line is dirty,
and cleanup otherwise (see Figure 2). When the L2 cache
receives the cleanup, it changes the state for this line from
NC state to C state, thus the L2 cache sends the copy with
the C state information to the L1 cache requesting the line.
Figure 2 illustrates this line state change mechanism in RWT.

L1 Cache L2 Cache L1 Cache

Read(x)

Rsp(x) & NCS
Read(x)

Invalidate(x)

Cleanup-data(x)

Rsp(x) & CSRead(x)

Rsp(x) & CS

Write(x)

Write(x)

x : Miss

x : NCS

x : Invalid

x : CS

x : CS

x : Miss

Time

#copies(x) = 1
NCS

#copies(x) = 1
NCS → CS

#copies(x) = 2
CS

Write
(x)

Figure 2: Line State Change Mechanism: From Non-Coherent
State (NCS) to Coherent State (CS), for a Line Named x

RWT does not allow a line in C state to be switched back in
NC state: the rationale behind this is that even if the number
of copies goes back down to one, there is a high probability
that another cache will access it in the near future since this
line contains shared data. Of course, when a line is evicted
from a L2 and then fetched back from memory, its status is
reset to NC state. Thus, this line lives in C state until it is
evicted from the L2 cache.

To avoid an unnecessary switch overhead for shared cache
lines containing instructions – which are almost never modi-
fied – RWT has been implemented only for the data part of
the L1 cache.

IV. EVALUATION

A. Architecture

We implemented our proposed RWT cache coherence proto-
col at the cycle-accurate level, by modifying the models of L1
and L2 caches of the original TSAR components. The TSAR
model is written using a library of cycle-accurate components
called SoCLib [21], which uses the SystemC standard [22].

Figure 3 shows an overview of the TSAR architecture. It
is a clustered architecture with a 2D mesh topology using a
network-on-chip. Each cluster contains 4 Mips cores, a shared
L2 cache, and a local crossbar connected to the router. There
are separate networks for direct requests (reads and writes)
and coherence requests in order to avoid deadlocks. Table I
shows the configuration parameters for the TSAR architecture.

0

1

1 2 4 8 16 32 64
FFT

0

1

1 2 4 8 16 32 64
Convol

0

1

1 2 4 8 16 32 64
LU

0

1

1 2 4 8 16 32 64
Kmeans

0

1

1 2 4 8 16 32 64
Radix

0

1

1 2 4 8 16 32 64

DHCCP

Histogram

DHCCP DHCCP

DHCCP DHCCP DHCCP

No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e
Fo

r R
W

T

No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e
Fo

r R
W

T

No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e
Fo

r R
W

T
No

rm
al

iz
ed

 E
xe

cu
tio

n

Ti

m
e

Fo
r R

W
T

No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e
Fo

r R
W

T

No
rm

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e
Fo

r R
W

T

Figure 4: Execution Times (in cycles) for RWT Normalized w.r.t. Times with DHCCP

Mips

DMA XICUL2 Cache Router

I D

Local Interconnect

I D I D I D

Mips Mips Mips

Figure 3: Overview of the Clustered TSAR Architecture used
for Implementing RWT

Table I: Hardware Main Characteristics

Mesh Size up to 4 × 4 clusters

L1 Cache Sets (I & D) 64

L1 Cache Words (I & D) 16

L1 Cache Ways (I & D) 4

L2 Cache Sets 256

L2 Cache Words 16

L2 Cache Ways 16

TLB Sets (I & D) 8

TLB Ways (I & D) 8

B. Applications

Applications used for evaluations are FFT and LU from
the Splash-2 suite [23], Histogram and Kmeans from the
Phoenix-2 benchmark suite [24], and Convol, which is an
image filtering program performing a convolution filter in X
and Y directions. Table II shows the configuration for each
application.

All these benchmarks have been run over an operating
system called GietVM, which is developed in our laboratory
and supports the physical placement of software objects via

virtual memory. We used this feature to spread data physically
in clusters, trying to improve the locality of data accesses when
possible.

Table II: Applications Parameters

Application Input Data
Histogram 25 MB image (3408 x 2556)

Convol 1024 x 1024 image

Radix 262,144 keys (default)

FFT 218 Complex Points

LU 512 × 512 elements

Kmeans 10,000 points

C. Measurements

Other experiments currently in review have shown the
scalability of DHCCP up to 64 cores, both in performance and
coherence traffic. Therefore, these experiments focus more on
the comparison between RWT and DHCCP.

We compared the performance of RWT relatively to
DHCCP, as well as the traffic in the interconnection networks,
for reads, writes, and coherence requests. Precisely, the mea-
sures used to evaluate our two protocols are:

• Execution time: the execution times correspond to the
parallel phase of each application.
Execution time = timestamp of the last thread finishing
the parallel phase - timestamp of first thread starting the
parallel phase

• Traffic: in L2 caches, we implemented several counters
to measure the cost of each type of request. This cost is
a product between a number of flits and a distance, and
is defined as follows:
– For requests going from a L1 cache to its local L2

cache, we define that the cost is equal to the number
of flits, because there is only one access in the local

0

0.2

0.4

0.6

0.8

1

1 4 8 16 32 64 1 4 8 16 32 64 1 4 8 16 32 64 1 4 8 16 32 64 1 4 8 16 32 64 1 4 8 16 32 64

C
oh

er
en

ce
 C

os
t a

nd
 D

ir
ec

t R
eq

ue
st

s
C

os
t,

N
or

m
al

iz
ed

 p
er

 A
pp

lic
at

io
n

fo
r e

ac
h

N
um

be
r o

f C
or

es

FFT Convol LU Kmeans Radix Histogram

Total Read Cost
Total Write Cost
Coherence cost

Figure 5: Comparison of Read, Write and Coherence Cost between DHCCP (Left Bar) and RWT (Right Bar), Normalized
w.r.t. DHCCP total cost

crossbar.
Local cost = Nflits x 1

– For requests going from a L1 cache to a remote L2
cache, the cost includes 2 accesses to the local crossbar
(an access from the local crossbar to the router and
another access from the router to the local crossbar)
and the hops for propagating the request from a router
to another.
Remote cost = Nflits x (Nhops + 2)

The rationale behind the cost is that it should be closely
related to the energy consumption, and therefore be as
low as possible.

D. Results

Figure 4 shows the execution time with RWT for the
6 considered benchmarks. These times are normalized per
number of cores and per application w.r.t. times on DHCCP.

For 5 out of the 6 benchmarks, RWT either has identical
performances of improves them, up to 20%. Results on Convol
can be explained by the nature of the application, in the
sense that all the internal image buffers – 5 in total – are
constituted by lines shared by different writers only (then later
read by a single reader). Thus, when DHCCP only propagates
writes to memory, RWT adds a coherence overhead since each
line is first sent in non-coherent mode, then has its status
switched to coherent, inducing a non-negligible overhead. Yet,
for most applications, this case remains rare enough so that
this overhead is largely balanced by RWT’s overall gain.

Figure 5 shows the cost of Reads, Writes, and coherence
for both RWT and DHCCP. Results are displayed normalized
w.r.t. the sum of the costs for DHCCP. We can observe that all
applications benefit from RWT’s decrease in writes, and that
the write cost is entirely removed in 4 of the 6 applications.
This results in low or very low overall costs for all applications
compared to DHCCP. Also, if the deletion of writes in RWT
translates into a small increase in the coherence traffic (since
for non-coherent lines, data is propagated in memory via
cleanup-data requests), we can notice that the overhead in

RWT’s coherence cost is negligible compared to the write cost
it allowed to suppress.

The rationale behind RWT is that lines do not change their
state often: either they are private to a processor, which is
the most common case, or they are shared once and then
stay in the L2 cache long enough so that the switch cost is
amortized. Private lines typically contain stack variables, but
also many shared variables which are actually distributed per
thread. Writes on private lines are either buffered in case of hit
– which is the best case –, or propagated in case of miss – like
for the write-through. To confirm that line state switches are
rare events, we measured the percentage of reads and writes
resulting in a line state change. Figure 6 shows the results
for the same configurations as before: we can observe that
this percentages for reads barely exceeds 3% for LU, while
remaining very low for other applications: less than 1% in
most cases. Write misses triggering a line state change are
negligible. This results confirm our hypothesis that line state
changes are rare and explain the good results of RWT.

These encouraging results lead us to consider integrating
RWT as the main coherence protocol in the TSAR architec-
ture.

E. Hardware Overhead
RWT adds little hardware overhead compared to DHCCP.

In fact, the number of per-line bits of metadata is unchanged
in the L1 cache, while it is only increased by 1 in the L2 cache
for storing the NC or C state. The major overhead comes from
the fact that RWT requires a cleanup FIFO in the L1 cache
which contains a full cache line (64 bytes), whereas it is not
necessary in DHCCP as cleanup cannot contain data. This
overhead still remains negligible, meaning that RWT manages
to reuse most of DHCCP hardware efficiently.

V. CONCLUSION

In this paper, we proposed a new hybrid hardware cache
coherence protocol called RWT, which allows to reduce the
write traffic while not degrading the performances of a scalable
write-through coherence protocol. RWT mixes a non-coherent

0%

1%

2%

3%

4%

5%

1 4 8 16 32 64 1 4 8 16 32 64 1 4 8 16 32 64 1 4 8 16 32 64 1 4 8 16 32 64 1 4 8 16 32 64

Pe
rc

en
ta

ge
 o

f R
ea

ds
 a

nd
 W

ri
te

s
T

ri
gg

er
in

g
a

L
in

e
St

at
e

C
ha

ng
e

fo
r a

ll
A

pp
lic

at
io

ns
 fo

r 1
 to

 6
4

C
or

es

FFT Convol LU Kmeans Radix Histogram

Percentage of Reads trig. a state change
Percentage of Writes trig. a state change

Figure 6: Percentage of Read Requests (Left) and Write Requests (Right) Triggering a Line State Change from NC State to
C State

write-back strategy for non-shared lines, and a write-through
coherent strategy for shared lines, the choice being made
entirely in hardware.

Our results show that it reduces more than 50% of write
traffic in average, while reducing execution time by 5% in
average compared to the baseline protocol DHCCP. Further
experiments need to be done on a larger set of applications, and
for platforms containing more than a hundred cores. Indeed,
RWT targets manycore platforms like the TSAR architecture.
Yet, we are confident the significant reduction in cost brought
by RWT will continue as the number of cores grows. Future
work also include the implementation of some optimizations in
RWT, especially the line replacement policy in the L2 cache,
as we can take advantage of the small eviction overhead of
non-coherent lines to favor eviction of such lines over coherent
ones.

REFERENCES

[1] J. M. Rabaey, “Scaling the power wall: Revisiting the low-power design
rules,” Keynote speech at SoC, vol. 7, 2007.

[2] G. De Micheli and L. Benini, Networks on chips: technology and tools.
Academic Press, 2006.

[3] G. Kurian, J. E. Miller, J. Psota, J. Eastep, J. Liu, J. Michel, L. C.
Kimerling, and A. Agarwal, “Atac: a 1000-core cache-coherent processor
with on-chip optical network,” in Proceedings of the 19th international
conference on Parallel architectures and compilation techniques. ACM,
2010, pp. 477–488.

[4] C. Ramey, “Tile-gx100 manycore processor: Acceleration interfaces and
architecture,” Tilera Corporation, 2011.

[5] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl,
D. Jenkins, H. Wilson, N. Borkar, G. Schrom et al., “A 48-core ia-
32 message-passing processor with dvfs in 45nm cmos,” in Solid-State
Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE
International. IEEE, 2010, pp. 108–109.

[6] M. S. Papamarcos and J. H. Patel, “A low-overhead coherence solution
for multiprocessors with private cache memories,” ACM SIGARCH
Computer Architecture News, vol. 12, no. 3, pp. 348–354, 1984.

[7] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and B. Hughes,
“Cache hierarchy and memory subsystem of the amd opteron processor,”
IEEE micro, vol. 30, no. 2, pp. 16–29, 2010.

[8] S. R. Garea and T. Hoefler, “Modelling communications in cache
coherent systems,” Technical Report, 2013.

[9] TSAR: Tera-Scale Multiprocessor ARchitecture, Available: https://www-
soc.lip6.fr/trac/tsar, 2009.

[10] Y. Gao, “Generic cache controller for a massively parallel manycore ar-
chitecture using coherent shared memory,” Ph.D. dissertation, Université
Pierre et Marie Curie (UPMC), 2011.

[11] M. Loghi, M. Poncino, and L. Benini, “Cache coherence tradeoffs in
shared-memory mpsocs,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 5, no. 2, pp. 383–407, 2006.

[12] X. Zhou, H. Chen, S. Luo, Y. Gao, S. Yan, W. Liu, B. Lewis,
and B. Saha, “A case for software managed coherence in manycore
processors,” in Poster on 2nd USENIX Workshop on Hot Topics in
Parallelism HotPar10, 2010.

[13] M. M. Martin, M. D. Hill, and D. J. Sorin, “Why on-chip cache
coherence is here to stay,” Communications of the ACM, vol. 55, no. 7,
pp. 78–89, 2012.

[14] P. Guironnet de Massas and F. Pétrot, “Comparison of memory write
policies for noc based multicore cache coherent systems,” in Design,
Automation and Test in Europe (DATE). IEEE, 2008, pp. 997–1002.

[15] M. M. Martin, M. D. Hill, and D. A. Wood, “Token coherence:
decoupling performance and correctness,” in Computer Architecture,
2003. Proceedings. 30th Annual International Symposium on. IEEE,
2003, pp. 182–193.

[16] M. R. Marty, J. D. Bingham, M. D. Hill, A. J. Hu, M. M. Martin, and
D. A. Wood, “Improving multiple-cmp systems using token coherence,”
in High-Performance Computer Architecture, 2005. HPCA-11. 11th
International Symposium on. IEEE, 2005, pp. 328–339.

[17] A. Ros, M. E. Acacio, and J. M. Garcı́a, “A direct coherence protocol
for many-core chip multiprocessors,” Parallel and Distributed Systems,
IEEE Transactions on, vol. 21, no. 12, pp. 1779–1792, 2010.

[18] A. Ros, M. E. Acacio, and J. M. Garcıa, “Cache coherence protocols
for many-core cmps,” Parallel and Distributed Computing, 2010.

[19] P. Sassone, C. Koob, D. Vantrease, S. Venkumahanti, and L. Codrescu,
“Hybrid write-through/write-back cache policy managers, and related
systems and methods,” Jul. 18 2013, uS Patent App. 13/470,643.
[Online]. Available: http://www.google.com/patents/US20130185511

[20] B. A. Cuesta, A. Ros, M. E. Gómez, A. Robles, and J. F. Duato, “In-
creasing the effectiveness of directory caches by deactivating coherence
for private memory blocks,” in ACM SIGARCH Computer Architecture
News, vol. 39, no. 3. ACM, 2011, pp. 93–104.

[21] The Soclib Consortium, SoCLib: an open platform for virtual prototyp-
ing of multi-processors system on chip, Available: http://www.soclib.fr,
2008.

[22] SystemC Reference Manual, Synopsys Inc., http://www.systemc.org.
[23] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The

SPLASH-2 programs: Characterization and methodological considera-
tions,” in Proceedings of the 22nd Annual International Symposium on
Computer Architecture. New York: ACM Press, 1995, pp. 24–37.

[24] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis,
“Evaluating mapreduce for multi-core and multiprocessor systems,” in
High Performance Computer Architecture, 2007. HPCA 2007. IEEE 13th
International Symposium on. IEEE, 2007, pp. 13–24.

