N
N

N

HAL

open science

Executing secured virtual machines within a manycore
architecture

Clément Dévigne, Jean-Baptiste Bréjon, Quentin L. Meunier, Franck Wajsbiirt

» To cite this version:

Clément Dévigne, Jean-Baptiste Bréjon, Quentin L. Meunier, Franck Wajsbiirt. Executing secured
virtual machines within a manycore architecture.

(NORCAS), Oct 2015, Oslo, Norway. 10.1109/NORCHIP.2015.7364380 . hal-01363066

HAL Id: hal-01363066
https://hal.sorbonne-universite.fr /hal-01363066

Submitted on 9 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

IEEE Nordic Circuits and Systems Conference

https://hal.sorbonne-universite.fr/hal-01363066
https://hal.archives-ouvertes.fr

Executing Secured Virtual Machines within a
Manycore Architecture

Clément Dévigne, Jean-Baptiste Bréjon, Quentin Meunier and Franck Wajsbiirt
Sorbonne Universités UPMC Univ Paris 06, CNRS, LIP6 UMR 7606 4 place Jussieu 75005 Paris
Email: {clement.devigne,jean-baptiste.brejon,quentin.meunier,franck.wajsburt} @lip6.fr

Abstract—Manycore processors are a way to face the always
growing demand in digital data processing. However, by putting
closer distinct and possibly private data, they open security
breaches.

This article presents undergoing work aiming at providing
security guaranties to different users utilizing different cores in
a manycore architecture. The proposed solution is using physical
isolation and a hypervisor with minimum rights, although the
work described in the paper focuses only on hardware mech-
anisms. We present a hardware module providing an address
translation service allowing to fully virtualize operating systems,
while offering advantages compared to a classical memory man-
agement unit within our context. Experiments made on a virtual
prototype shows that our solution has a low time overhead -
typically 3% on average.

I. INTRODUCTION

The computer world is facing an explosion in the amount of
digital data. This data can come from social networks as well
as new uses of mobile computing as communicating objects.
The information contained in this data is valuable either for
commercial purpose, or for economic, environmental or health-
related purposes as well. Clearly, the issue of security for
accessing such information and the protection of personal data
are critical.

By their nature, manycore processors are able to run
multiple applications in parallel and thus allow to process a
large data stream. However, they must be able to guarantee the
security properties for such applications, in particular integrity
and confidentiality.

The TSUNAMY ANR project [1] aims at proposing a
mixed hardware/software solution allowing to execute nu-
merous independant applications, while providing an isolated
execution environment as a response to the confidentiality and
integrity problematics. The choice of a manycore architecture
seems particularly suited to this goal, and the challenges of
the project are to render such an architecture secured. The
baseline manycore architecture used in this project is the
TSAR [2] architecture, which is a manycore architecture with
hardware cache coherence and virtual memory support, but
no particular mechanism for addressing security issues. Our
modified targeted architecture will be called the Tsunamy
architecture.

The proposed architecture can typically be used by servers
(e.g. in the cloud), to which several clients with different needs
can connect and execute their program for processing data. In
such a context, it makes sense that clients are isolated with
more than just the process notion, because a bug exploit in
the Operating System (OS) could lead to data leakage and
corruption between two processes run by two different clients.
In our proposed solution, we make thus the assumption that
each client runs an entire OS.

In this article, the term virtual machine refers to an OS
running on a subset of the architecture, and isolated from other
hardware and software elements. The virtual machines must be
protected against: (1) unauthorized reads of data (confidential-
ity), (2) unauthorized modifications of pieces of data read or
transmitted by the VM (integrity) and (3) information leakage
— data left in memory or hardware components which can be
exploited by another malicious virtual machine.

If our proposed solution mixes hardware and software,
this article focuses on the hardware part. Although the work
presented in this article is still in progress, we believe that this
paper still makes two contributions:

e we propose a light hardware design implementing
virtual machine isolation;

e we demonstrate the feasibility of our solution by
the achievement of a cycle-accurate prototype of the
proposed architecture.

The rest of the document is organized as follows: sec-
tion II gives more details about the context and discusses
related works; section III contains a description of the existing
components upon which this work is based; section IV details
the proposed hardware components; section V presents pre-
liminary simulations results; finally, section VI concludes and
summarizes the remaining work.

II. RELATED WORK AND HYPOTHESIS

Operating system virtualization [3] is a technique which
allows to execute an unmodified OS on a part of an architec-
ture. An hypervisor is generally used to manage the different
virtualized operating systems [4], [5].

In this work, we also aim at integrating an hypervisor, but
with as few rights as possible, in order to reduce the effects of a
possible bug exploit in it. The hypervisor is a trusted software
agent which manages the resource allocation and thus it is
in charge of starting and stopping virtual machines. However,
it does not have the rights to access hardware components
allocated to a virtual machine until its destruction, in particular
L2 caches. The hypervisor itself runs on dedicated cores, and
has a dedicated L2 cache — in the following, we make the
hypothesis that a cluster is dedicated to the hypervisor.

Besides, to enforce isolation between the different virtual
machines, we use physical isolation, guaranteed by the hard-
ware. The price to pay is a lack of flexibility in hardware
resource allocations: a user launching a virtual machine cannot
allocate less than a cluster, and clusters can be physically
isolated by the means of address routing.

Admittedly, this hardware has to be configured by the
hypervisor. However, in our final solution, the hypervisor
won’t be able to access data inside clusters, nor change the

configuration once the primary configuration is made. Indeed,
we intend to make the reconfiguration possible only after
completion of a hardware procedure comprising the deletion
of all memory banks contents.

The technique employed to physically isolate the concur-
rently running virtual machines on the architecture is to add
a third address space, whose addresses are called machine
addresses. The translation mechanism ensures that all the
machine adresses obtained for a virtual machine can only
address targets located inside the cluster allocated to that
virtual machine (with the exception of some peripherals, which
will be discussed later). Traditionally this translation is made
via the MMU inside the first-level cache [6], [7], [8] but it
requires that the hypervisor and the virtual machine share
cores. In our case we do not want that virtual machines share
core or memory bank resources with the hyperviseur (or other
virtual machines). Our translation mechanism operates at the
output of the first-level cache, before the intra-cluster crossbar
and is performed by the means of a hardware component called
Hardware Address Translator (HAT). This module acts as a
wrapper for initiators inside a cluster and plays the same role
as a MMU, but differs in several ways compared to the latter.

First, a MMU generally uses a translation cache (called
TLB) to speed up address translation. This implies a non
negligible hardware overhead, including the logic to manage
the TLB misses, while HATs only need topology information
to perform address translation. Second, the hypervisor must
create the page table for the memory allocated to a virtual
machine and store it into a memory space non accessible by
itself nor any virtual machine. This cannot be done entirely
in software and therefore also requires the introduction of
a specific hardware element. Third, a MMU is necessarily
slower to perform address translation because of the TLB
misses overhead. Finally, the main advantage of a MMU is
that it translates with a page granularity (e.g. 4KB) while a
HAT operates with a coarser granularity (cluster granularity).
The page granularity can be useful when virtual machines
share memory banks, but this is not within our hypothesis to
physically isolate the virtual machines.

In summary, the HAT is a light and fast component
compared to a MMU, whose downside is the translation
granularity, but that does not comes as a problem with our
hypothesis.

III. EXISTING HARDWARE COMPONENTS
A. The TSAR Architecture

Figure 1 shows an overview of the TSAR architecture. It
is a clustered architecture with a 2D mesh topology using a
Network-on-Chip (NoC). The cluster with coordinates (0, 0)
additionnally contains an access to I/O peripherals, and is
called I/O cluster. The TSAR architecture is design to support
up to 16 x 16 clusters.

All clusters contain:

e 4 MIPS cores with their paginated virtual MMU and
their first level caches, split between instructions and
data. The L1 cache coherence is managed entirely in
hardware. Misses in the Translation Lookaside Buffer
(TLB) are also handled by the hardware.

e 1 second level (L2) cache, which is in charge of a
segment of the physical memory address space. In

Figure 1.

The TSAR Architecture with 64 Cores Spread over 16 Clusters

particular, it is responsible for the coherence of the
copies in L1 caches for the lines contained its segment.

e 2 internal peripherals: an interrupt controller including
timer functions (XICU) and a DMA controller. These
peripherals are called replicated peripherals.

e A local crossbar interconnecting these components
with an access to the global network via a router.

The I/O cluster additionally contains:

e A terminal controller (TTY).
e A hard-drive disk controller (IOC).

e A Programmable Interrupt Controller (PIC), able to
convert a hardware interrupt into a software one.

This architecture will be used as a base for our secured
architecture proposal, with substantial modifications in order
to meet the motivated requirements.

IV. HARDWARE MODIFICATIONS TO THE TSAR
ARCHITECTURE

This section presents in details the hardware modifications
proposed by our solution in order to isolate two virtual
machines by the means of hardware.

The translation from physical addresses to machine ad-
dresses is performed by the HAT module, which is configured
once by the hypervisor at the start of an OS and placed behind
each initiator in the architecture — as well cores as replicated
DMA:s.

A machine address outgoing from an HAT can be one of
the followings two types:

e an address targetting a module included in a cluster of
the same virtual machine: memory via the L2 cache
or a replicated peripheral (DMA or XICU); this is the
stardard case, and it will be refered to as an internal
access

e an address targetting a peripheral outside the virtual
machine, namely the disk controller or the TTY This
case will be refered to as an external access.

A. Internal Accesses

The machine address space is split on the clusters in such
a way that the most significant bits (MSB) define the cluster
coordinates, as this is the case with the TSAR architecture (ex-
cept that addresses are called physical). Thus, the translation
from the physical addresses to machine addresses only consists
in changing the MSB to change the cluster coordinates: this
represents at most 4 bits for 16 clusters. Figure 2 illustrates
how the HAT module works with a four clusters architecture.

8 368 1142 4 |

OFFSET |

Virtual Address

[VPN |

[B 1438 7[4 2 4 |

fpxom | Py | OFFSET |

Physical Address

\
HAT)

LF 148 742 4 |

mx | wmy |

Machine Address

| OFFSET |

Figure 2. Translation from Physical Address to Machine Address for an
Internal Access

The address is sent by a processor in a virtual machine
running on clusters 1 and 3 of the platform. The X size of
the virtual machine is 2 and the Y size is 1. The PxI field
represents the number of bits needed to code the X size of
the virtual machine (in our case just 1 bit is needed). The Pyl
field is the same as PxI for Y size — in our case, O bit.

A processor sends the virtual address 0x83681424 which is
translated by the MMU into the physical address 0xB1487424.
In a virtual machine with 2 clusters, the physical address
starting with OxB is located in the second cluster, containing
the physical address range <0x80000000-0xFFFFFFFF>. In
our example the second cluster of the virtual machine is
the fourth cluster of the platform, with a machine address
range <0xC0000000-0xFFFFFFFF>. Therefore, the HAT will
provide the translation of an address belonging to the second
cluster of the virtual machine to the fourth cluster of the
platform.

B. External Accesses

The hypervisor software is not involved in the accesses
made by virtual machines to peripheral devices. The differen-
tiation between an internal access and an external access is
made via a bit in the physical address. This bit, called the
DEV bit, is the one just after the (x,y) coordinates bits. If
the DEV bit is 1 the HAT acts similarly as a segmentation
mechanism [9], and uses a table to check if the request is
valid. This is the case if the device targeted by the address is
actually allocated to the virtual machine. This device access
table contains several entries, each one containing two pieces
of information:

e the base physical address of the segment associated to
the device;

e the two’s complement of the size in bytes of this
segment.

For simplicity reasons, the IO cluster is chosen as the
cluster running the hypervisor, though it could be any other
cluster.

Figure 3 provides an example of the way the HAT performs
a device access.

0x88100060
PA [Px | PY [Dev] |
Mask Base PA
oxrrFF0000 | =5 AND |—— @)~ 088900000
—> AND | ()
> AND &)
20 | e
> AND €
OXFFFFFFCO | AND ‘(?* 0x88100040
4 JV
OR
ERROR
Figure 3. Translation from Physical Address to Machine Address for an

External Access

The virtual machine of our example is deployed on 4
clusters, so the fields px and py are 2-bit wide. The physical
address 0x88100060 emitted by the processor has therefore
the bit DEV set. This address is then masked with the two’s
complement contained in the table and compared with the
base physical addresses of all devices associated to the virtual
machine. If one comparison is true then the physical address
is valid and the request is sent to the target device. In contrast,
if no comparison is true then an error is raised and returned
to the processor (as a bus error) issuing the request; this error
indicates to the operating system that the processor tried to
access a non-existing address.

C. Peripherals Allocation

The external access mechanism provided by the HAT
allows a virtual machine to access specific channels of the
IOC and TTY. Each channel contains a set of addressable
registers independent from the others. Each channel of the
IOC also contains a hard drive disk (or a partition) comprising
the image of an OS and its filesystem, and the associated
bootloader (refered to as OS instances). All the disk images
will eventually be cyphered with a key specific to the user,
which can in turn be decyphered by a user password and stored
somewhere accessible by the hypervisor. Only one OS instance
can be run at a time, and in our prototype it is selected in the
hypervisor command to launch a new instance.

The association between an instance and the allocated
clusters is used by the hypervisor to configure the PIC: the
interruptions outgoing from a channel are routed to the PIC,
what must trigger software interrupts towards an XICU located
in an allocated cluster, which in turn converts it to a hardware
interrupt. Eventually, the PIC will only be able to send requests
to the XICU peripherals in order to avoid that a corruption in
the hypervisor, which configures the PIC, can result in data
integrity violation via the PIC.

V. PRELIMINARY RESULTS

Currently, we have already been able to run experiments
on a Tsunamy platform including 16 clusters and running 4
operating system instances on a various number of clusters.

The architecture is described in SystemC at the cycle-
accurate level using the SoCLib components library [10]. OS
instances are run via an hypervisor terminal, which also allows
to switch between the displays of all instances.

2
}E I 1 proc
E I 4 procs
ZE _ 1.5 | I 8 procs
= & [16 procs
g § [32 procs
z
£ 3 1
5 E
S E
E Z
ez
g 05
-]
3
=
)

Kmeans FFT

Figure 4. Execution Times for Tsunamy Normalized w.r.t. Times with Tsar

A. Applications

Applications used for evaluations are FFT from the Splash-
2 suite [11], Histogram and Kmeans from the Phoenix-2
benchmark suite [12], and Convol, which is an image filtering
program performing a 2-dimensional convolution filter. Table I
shows the configuration for each application.

Table . APPLICATIONS PARAMETERS
Application | Input Data
Histogram 25 MB image (3,408 x 2,556)
Convol 1,024 x 1,024 image

FFT 2™% Complex Points
Kmeans 10,000 points

All these benchmarks have been run over an operating
system called ALMOS [13], which is developed in our labo-
ratory. It is an UNIX-like research OS dedicated to manycore
architectures.

B. Results

Figure 4 shows the execution time with Tsunamy for the
4 considered benchmarks. These times are normalized per
number of cores and per application w.r.t. times on TSAR.

For Kmeans, FFT and Convol benchmarks, Tsunamy has
an average overhead performances of 3%. Results on His-
togram can be explained by the nature of the application, in
the sense that all the input data come from the hard drive disk
and the loading phase is predominant in this application — more
than 50% of the execution time. All the virtual machines need
to access their disk at the same time. As the disk controller has
only one initiator port on the network it becomes a bottleneck
during multiple access from several virtual machines.

VI. CONCLUSION

This article presented the hardware part of a mixed hard-
ware/software solution allowing to execute physically isolated
virtual machines comprising an unmodified operating system
on a manycore architecture. It uses a third address space
inducing a light hardware overhead for all initiators, and a
very low time overhead — typically 3%.

Undergoing and future work deal with the specification and
implementation of the procedure required to stop a running
virtual machine.

Convol Histogram

Applications

ACKNOWLEDGMENTS

The work presented in this paper was realized in the
frame of the TSUNAMY project number ANR-13-INSE-
0002-02 supported by the French Agence Nationale de la
Recherche [14].

REFERENCES

[1] LIP6, Lab-STICC, LabHC and CEA-LIST, “Hardware and soft-
ware managemenT of data SecUrity iN A ManY-core platform,”
https://www.tsunamy.fr.

[2] LIP6 and BULL, “TSAR (Tera-Scale Architecture),” https://www-
soc.lip6.fr/trac/tsar.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” ACM
SIGOPS Operating Systems Review, vol. 37, no. 5, pp. 164-177, 2003.

[4] C. Dall and J. Nieh, “Kvm/arm: The design and implementation of
the linux arm hypervisor,” in Proceedings of the 19th international
conference on Architectural support for programming languages and
operating systems. ACM, 2014, pp. 333-348.

[5] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm: the
linux virtual machine monitor,” in Proceedings of the Linux Symposium,
vol. 1, 2007, pp. 225-230.

[6] S. Jin, J. Ahn, S. Cha, and J. Huh, “Architectural support for secure
virtualization under a vulnerable hypervisor,” in Proceedings of the 44th
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO-44. New York, NY, USA: ACM, 2011, pp. 272-283.

[7]1 S.Jin and J. Huh, “Secure mmu: Architectural support for memory iso-
lation among virtual machines,” in Dependable Systems and Networks
Workshops (DSN-W), 2011 IEEE/IFIP 41st International Conference
on, June 2011, pp. 217-222.

[8] G. Neiger, A. Santoni, F. Leung, D. Rodgers, and R. Uhlig, “Intel
virtualization technology: Hardware support for efficient processor
virtualization.” Intel Technology Journal, vol. 10, pp. 167 — 177, 2006.

[9] J. Ahn, S. Jin, and J. Huh, “Fast two-level address translation for
virtualized systems.”

[10] LIP6, “SoCLib : an open platform for virtual prototyping of MP-SoC,”
http://www.soclib.fr.

[11] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: Characterization and methodological consider-
ations,” in Proceedings of the 22nd Annual International Symposium
on Computer Architecture. New York: ACM Press, 1995, pp. 24-37.

[12] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis,
“Evaluating mapreduce for multi-core and multiprocessor systems,” in
High Performance Computer Architecture, 2007. HPCA 2007. IEEE
13th International Symposium on. 1EEE, 2007, pp. 13-24.

[13] LIP6, “Advanced Locality Management
http://www.almos.fr.

Operating ~ System,”

[14] A. N. de la Recherche, http://www.agence-nationale-recherche.fr.

