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Abstract. This paper proposes a fuzzy partitioning subspace cluster-
ing algorithm that minimizes a variant of the FCM cost function with a
weighted Euclidean distance and a penalty term. To this aim it consid-
ers the framework of proximal optimization. It establishes the expression
of the proximal operator for the considered cost function and derives
PFSCM, an algorithm combining proximal descent and alternate opti-
mization. Experiments show the relevance of the proposed approach.
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descent

1 Introduction

Subspace clustering [1] is an unsupervised machine learning task that aims at
partitioning data into groups with strong internal similarity and external dissim-
ilarity (just as clustering) while also discovering the best subspaces to represent
these clusters. The identified subspaces are required to be minimal, yet sufficient
to describe the clusters they contain.

The definition of subspace clustering requires the identification of the clusters
and of their subspaces to be simultaneous: indeed, if either clusters or their
subspaces are known beforehand, the problem reduces to finding the subspaces
or correct description of the clusters, respectively. In addition, as opposed to
feature selection, different clusters are most of the time discovered in different
subspaces.

As briefly sketched in Section 2, there exist several families of techniques and
algorithms to solve the subspace clustering problem, as well as various represen-
tations of the subspaces, depending on the intended application of the subspace
clustering.

This paper places itself in the partitioning paradigm in a fuzzy setting and
produces clusters identified by a center. Moreover, it discovers axis-parallel sub-
spaces, which are thus identified by weights on the original data features. An
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Fig. 1. Two clusters, contained in two different planes: c1 in (x, y) and c2 in (x, z).

original cost function formalises these concepts and adds, to a FCM cost func-
tion [3] with weighted Euclidean distance, a penalty term expressing constraints
to identify the relevant subspaces.

As this penalty term is not differentiable, standard optimization techniques
such as alternate optimization are not available. This paper introduces a novel
optimization scheme, exploiting tools from the proximal descent theory [8]. The
utilisation of such techniques is still relatively new in machine learning and in
clustering in particular [9].

This paper proposes an innovative implementation of this theoretical para-
digm in the fuzzy subspace clustering framework. It establishes a theorem giving
the expression of the proximal operator allowing the optimization of the consid-
ered cost function. Finally, it proposes an algorithm, called PFSCM, standing
for Proximal Fuzzy Subspace C-Means, using this result to solve the subspace
clustering problem through the combination of proximal descent and alternate
optimization.

This paper is structured as follows: in Section 2, related works and the sci-
entific context of subspace clustering are summed up. A new cost function is
presented and studied in Section 3. In Section 4, the implementation of proxi-
mal descent is studied to optimize the proposed function, leading to the update
equation from which the PFSCM algorithm is derived. This algorithm is then
experimentally validated in Section 5.

2 Related Works

Subspace clustering [1] can be seen as a combination of clustering and feature
selection tasks, the latter being performed locally for each cluster. It aims at
identifying both a data decomposition into homogeneous and distinct subgroups
and the subspaces in which these clusters are defined. Figure 1 gives an example
of such clusters, contained in axis-parallel subspaces: although the data are 3-
dimensional, cluster c1 actually lives in the plane z = 0 and cluster c2 in the
plane y = 0.

A large number of approaches to the subspace clustering problem have been
explored in machine learning as well as in data mining or computer vision. A list
can be found in [12]. This paper focuses on iterative partitioning techniques. The
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k-subspace algorithm [13] generalises the k-means approach, alternating between
the assignation of points to the clusters and the estimation of subspaces to fit
these clusters. Witten & Tibshirani [14] propose a reformulation of the k-means
minimization problem into a maximization problem with a weighted distance.
An `1-based constraint is added in order to produce sparse weight vectors and
identify the subspaces. Qiu et al. [10] adapt this framework to fuzzy clustering
and compare it to some usual subspace clustering algorithms. Both the crisp and
fuzzy variants of these algorithms heavily modify the original k-means function
to formulate a maximization problem with a `1-regularization term, in order to
identify minimal subspaces.

Closer to the original k-means paradigm, the fuzzy c-means clustering al-
gorithm [3] has been adapted to the context of subspace clustering. Keller &
Klawonn [6] adapt the FCM cost function to use a weighted Euclidean distance.
Denoting (xi)

n
i=1 ∈ Rd the datapoints of dimension d, c the number of clusters,

(uri) ∈ [0,1] for i ∈ {1, . . . , n} and r ∈ {1, . . . , c} the fuzzy membership degree
of xi to cluster Cr, µr ∈ Rd the center of cluster Cr and (wrj) ∈ [0,1] the weight
of dimension j for cluster Cr, they study the following cost function:

JK&K(C,U,W ) =

c∑
r=1

n∑
i=1

umri

d∑
j=1

wvrj(xij − µrj)2 (1)

wherem, v ∈ R are fuzzifiers which can be tuned by the user to specify the level of
fuzziness of the corresponding parameters and C,U,W are respectively the ma-
trices containing the centers (µr), the memberships (uri) and the weights (wrj).
The function is minimized under the following constraints:

– (C1) ∀i ∈ {1, . . . , n},
c∑
r=1

uri = 1 and (C2) ∀r ∈ {1, . . . , c},
n∑
i=1

uri > 0;

– (C3) ∀r ∈ {1, . . . , c},
d∑
j=1

wrj = a 6= 0.

The first two constraints (C1) and (C2) are similar to the FCM ones. Con-
straint (C3) on the weights (wrj), where a is a user-defined parameter, is spe-
cific to the subspace clustering problem and prevents the trivial solution such
that ∀r, ∀j, wrj = 0. The minimization of Equation (1) under these constraints
produces a solution to the fuzzy subspace clustering problem. The computed
weights (wrj) indicate how close the points assigned to Cr are in dimension j.
Figure 1 illustrates the relation between Equation (1) and subspace clustering:
cluster c1 lies in the (x, y) plane. In the z dimension, its points are very close to
its center; therefore, minimizing JK&K amounts to maximizing w1z rather than
w1x and w1y.

Borgelt [4] generalises Keller and Klawonn’s work and proposes to slightly
change the weights, so that the algorithm completely selects dimensions by at-
tributing a null weight to others. He introduces the following cost function,
where the terms umri and wvrj are replaced with general fuzzification functions g
and h [7], which are supposed to be convex and differentiable on the [0,1] interval:
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JB(C,U,W ) =

c∑
r=1

n∑
i=1

h(uri)

d∑
j=1

g(wrj)(xij − µrj)2 (2)

This function is optimized under the same constraints as JK&K . Experimental
results on artificial data show that Borgelt’s algorithm better selects subspaces.

Both Keller & Klawonn and Borgelt functions are differentiable in each pa-
rameter on the considered domains, which allows to retain the technical frame-
work of fuzzy c-means alternate optimization. They derive their algorithms from
the corresponding cost function through the usual Lagrangian technique and
obtain three update equations for parameters C, U and W .

3 Proposed Cost Function for Fuzzy Subspace Clustering

In this section, a new cost function is introduced to model the subspace clustering
problem and a study of its properties is conducted.

3.1 A Weighted Fuzzy c-Means Function

Using the same notations as in Section 2, we propose the following cost function:

J(C,U,W ) =

c∑
r=1

n∑
i=1

umri

d∑
j=1

w2
rj(xij − µrj)2 + γ

c∑
r=1

∣∣ d∑
j=1

(wrj)− α
∣∣ (3)

under the classic FCM constraints (C1) and (C2).

The first term is the same as Keller & Klawonn’s cost function, except for
the weight fuzzifier v which is set to 2, in order to simplify further mathematical
analysis of the function: it corresponds to a FCM cost function with a locally
weighted Euclidean distance.

The second term adds a cost to the function which prevents the sum of the
weights of each cluster Cr from being too far from the user-defined parameter α
which plays the same role as a in Keller & Klawonn’s (C3) constraint: for α 6= 0,
it prevents the trivial solution W = 0. The user-defined parameter γ ∈ R is
used to balance out the two terms: it only needs to be large enough to penalize
trivial solutions. This term can also be interpreted as an “inlined” constraint
that incorporates constraint (C3), which does not need to be optimized through
the particular Lagrangian method, but rather allows the use of new optimization
techniques.

The cost function J in Equation (3) thus conveys the idea of finding a solution
to the subspace clustering problem with a relaxed constraint, inspired by `1-
regularization [11].
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3.2 Minimization of the Cost Function

Using the cost function J , solving the subspace clustering problem amounts
to finding the parameters (C∗, U∗,W ∗) that minimize J . This function can be
decomposed as follows:

J(C,U,W ) = F (C,U,W ) + γG(W )

where F (C,U,W ) =

c∑
r=1

n∑
i=1

umri

d∑
j=1

w2
rj(xij − µrj)2

G(W ) =

c∑
r=1

Gr(Wr) =

c∑
r=1

∣∣ d∑
j=1

(wrj)− α
∣∣

The function J verifies several properties of interest, which motivate and
validate the technique used in the next section. First, J is a convex function
of W , as it is the sum of convex functions.

F is differentiable in all three parameters and it can be shown that its gradi-
ent is Lipschitz-continuous for fixed C and U . These properties guarantee good
performances of well-known optimization algorithms, such as gradient descent.

For fixed W , minimizing J under constraints is equivalent to minimizing F .
As for fuzzy c-means, this can be done through alternate optimization. From the
above function and constraints, the two classic update equations for membership
degree and cluster centers are derived:

uri =
d

2
1−m
ri

c∑
s=1

d
2

1−m
si

where d2ri =

d∑
j=1

w2
rj(xij − µrj)2 (4)

and µrj =

n∑
i=1

umri · xij

n∑
i=1

umri

(5)

These two equations are used in the PFSCM algorithm described in Section 4
to update the terms uri and µr in order to find the minimum of J .

Function G is convex but not differentiable in the variable W , which prevents
the derivation of an update term for weight optimization and motivates the use
of proximal descent, proposed in the next section.

4 Proximal Descent for Weight Optimization

As it is not differentiable everywhere, the function J previously defined cannot
be optimized by classic alternate optimization. This section proposes a new al-
gorithm, PFSCM (which stands for Proximal Fuzzy Subspace C-Means), based
on an advanced technique of convex optimization: proximal descent [9].
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In this section, the parameter of interest is the matrix of weights W , while C
and U are fixed. Therefore, J(C,U,W ) is noted J(W ) for the sake of simplicity.

4.1 Proximal Descent

The cost function has the form J(W ) = F (W ) + γG(W ), where both functions
are convex but only F is differentiable and classic optimization techniques thus
cannot be applied. As this general form of function has gained interest in the
machine learning community (for example, when the second function G is a
regularization term), proximal descent has been studied as an alternative to
these techniques [2].

When γ = 0, usual optimization techniques would suggest to seek for the
minimum of F (0 in the particular case of Equation (3)) by iterating some update
equation. For example, gradient descent considers a general equation of the form
W t+1 = W t− η · ∇F (W t), where t is the iteration index and η is a descent step
size. This simple optimization scheme provides an iterative algorithm in order
to minimize any convex function F , starting from any W 0 and iterating until
convergence.

As the function G is not differentiable, its gradient ∇G does not exist for
each W t. Proximal descent enriches gradient descent in the following way:

W t+1 = prox γ
LG

(
W t − 1

L
∇F (W t)

)
(6)

where prox γ
LG

(W ′) = argmin
W

{
1

2
‖W −W ′‖2 +

γ

L
G(W )

}
(7)

where L > 0 is a descent step size, similar to η. That is, in order to solve a
global minimization problem, proximal descent solves a minimization problem
as defined by Equation (7) at each step of the iteration.

Proximal descent can be understood as a technique of separating the descent
in two phases: first for the function F , then for G. Such a descent scheme is also
known as the “forward-backward” algorithm. In order to solve Equation (7),
proximal descent approximates F around the current point of the iterative de-
scent, W t:

argmin
W

{
F (W t) +

〈
∇F (W t),W −W t

〉
+ γG(W ) +

L

2
‖W −W t‖2

}
= argmin

W

{
1

2

∥∥W − (W t − 1

L
∇F (W t))

∥∥2 +
γ

L
G(W )

}
Here again, if γ = 0, this problem has a simple solution: gradient descent

scheme W t+1 = W t − 1
L∇F (W t), hence the scheme given in Equation (6).

The key ingredient to efficiently implement the descent scheme defined by
Equation (6) is the notion of proximal operator: it provides a closed-form ex-
pression to the optimization problem defined by Equation (7), which is often
counter-intuitive, yet simple to implement.
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4.2 Efficient Weight Optimization with Proximal Operators

We establish in the following theorem a proximal operator for the penalty term
G(W ) = γ

∑c
r=1

∣∣∑d
j=1(wrj)−α

∣∣. Let K be the vector (1, 1, . . . 1) ∈ R1×d, such

that K ·Kᵀ
= d.

Theorem 1. Let Gr(Wr) = |
∑d
j=1(wrj)− α| and L ∈ R.

prox γ
LGr

(Wr) = Wr +
1

d
K

ᵀ ·
(
α+ proxγd

L |·|
(K ·Wr − α)−K ·Wr

)
(8)

where proxλ|·|(x) = sign(x) max(|x| − λ, 0).

Moreover, prox γ
LG

(W ) =
(

prox γ
LGr

(Wr)
)
r=1...c

∈ Rd×c.

Proof. The proof uses results from [5] and [9]. First, Gr(Wr) = φ(K ·Wr) where
φ(x) = |x−α|. Using the translation and semi-orthogonal linear transform prop-
erties [5]:

proxGr (Wr) = Wr +
1

d
K

ᵀ ·
(

proxφ(K ·Wr)−K ·Wr)

= Wr +
1

d
K

ᵀ ·
(
α+ proxd|·|(K ·Wr − α)−K ·Wr)

Hence the expression of prox γ
LGr

by the postcomposition property [9]. Finally,

prox γ
LG

is computed using the separable sum property of proximal operators [9].
ut

Equation (8) gives the expression of a proximal operator for the G function
which can be used to efficiently implement the scheme defined in Equation (6)
to update the current estimation of W .

As for gradient descent, the choice of L matters for the actual convergence
of the descent, as well as for its speed. We observe that setting L = trace(H−1)
yields good results, where H is the Hessian matrix of F (as a function of W ).
As F is simple enough, H is a diagonal matrix and does not depend on W .

4.3 A Fuzzy Subspace Algorithm: PFSCM

Using the previous mathematical results, we propose the PFSCM algorithm for
fuzzy subspace clustering (see Algorithm 1). PFSCM combines alternate opti-
mization of k-means-style algorithms for differentiable parameters with proximal
descent for the optimization of the weights.

Initialization is a typical issue of k-means-like algorithms. In this paper, initial
centers are randomly chosen and each cluster receives uniform weights for all
dimension. As most partitioning algorithms, the number c of clusters to identify
must be set by the user, as well as constants γ > 0 and α > 0.
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Data: X: data matrix
Parameters: c,γ,α: numbers;
Variables: µ, U, W: arrays;

Wlast: array
Initialization: Wr ← (1, 1, . . . 1) for each Cr;

µ← random centers
Output: µ, U, W
repeat

repeat
Update U according to Equation (4);
Update µ according to Equation (5)

until convergence(µ, U);
repeat

Update W according to Equation (7)
until convergence(W);
Wlast ←− W

until convergence(Wlast);
Update U and µ one last time.

Algorithm 1: The proximal fuzzy subspace clustering PFSCM algorithm

The algorithm then iterates the update of all three parameters U , µ and W ,
much like alternate optimization in k-means algorithm. It consists of two al-
ternate inner loops: the regular parameters µ and U are optimized separately
from W , which requires the special optimization procedure described in the pre-
vious subsection. Parameters µ and U are optimized one last time at the end
of the algorithm, in order to guarantee that the result takes the final computed
weights into account.

The convergence criteria are defined as the distance between the current and
the previous values of the parameters being optimized. In particular, convergence
for (µ,U) is defined as ‖µt − µt+1‖2 < ε ∨ ‖Ut − Ut+1‖2 < ε.

PFSCM outputs U , C and W . In order to exploit the result of the algorithm,
it may be of interest to extract the dimension associated to each cluster. To that
aim we propose to post-process the matrix W using an additional parameter
cut to cut out the irrelevant dimensions in a simple fashion: a dimension j for a
cluster Cr is considered relevant if wrj > cut.

5 Experimental Study

The proposed PFSCM algorithm has been tested on artificial data in order to
study its ability to correctly identify centers of non-circular clusters, as well as
the dimensions that are relevant to describe the clusters. The results show the
effectiveness of PFSCM in detecting the clusters and their subspaces. Moreover,
PFSCM is compared to Keller & Klawonn’s algorithm [6] and shows to provide
a better estimation of the dimensionality of the subspaces.
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Fig. 2. Clustering example in two dimensions

Red cluster Yellow cluster Green cluster Blue cluster
w1 w2 w1 w2 w1 w2 w1 w2

Weights 0.528 0.472 0.063 0.937 0.027 0.973 0.964 0.036

Table 1. Computed weights for the example given in Figure 2. Column w1 (resp. w2)
denotes the weight associated to the x-axis (resp. y-axis).

5.1 Illustrative Example

This subsection presents an illustrative experiment in d = 2 dimensions, similar
to the example given in Keller & Klawonn [6] and graphically represented in Fig-
ure 2: four clusters are generated, one of them (the top red one in Figure 2) being
circular while the others have a very low variance in one dimension. PFSCM is
run with c = 4, m = 2, α = 1 and γ = 1000.

In Figure 2 the points are colored according to the cluster Cr for which uri
is maximum and Table 1 presents the weights computed for each dimension and
cluster. It can be observed that PFSCM correctly identifies the desired clusters
and their dimensions: the two weights (w1, w2) found for the circular cluster are
similar, whereas the horizontal (respectively vertical) clusters verify w2 � w1

(respectively w1 � w2).

It is worth noting that, for this specific instance, some points close to the
blue cluster are assigned to one of the horizontal clusters, as it minimizes the
cost function. This kind of inliers is frequent in subspace clustering problems,
and naturally leads to the use of fuzzy membership values (uri). In a similar
fashion, moving the vertical cluster towards the center of the whole figure leads
to the “stealing” of some points of the red cluster by the blue one. However,
it can be observed that the identified dimensions for the circular cluster stay
relatively stable (both wrj > cut = 0.2), failing to recognize a non-flat cluster
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only 4 times out of 100 in the specific situation where all generated centers are
vertically aligned.

5.2 Experimental Protocol

Considered Data In order to validate PFSCM, the previous experiment is
generalized to higher dimensions, more precisely to artificial data of dimension
d ∈ {5, 7, 9, 11, 13, 15}. For each experiment, k = 4 centers c1, . . . , c4 are gener-
ated randomly in the hypercube [−3,3]d with a minimum (Euclidean) distance
of 0.3 between the centers. Then, dr dimensions j1, . . . jdr are randomly picked,
with dr randomly chosen between 1 and d− 3. Dimensions j1, · · · , jdr are there-
after called the “relevant dimensions” for cluster Cr.

For each cluster, 100 points are generated according to a Gaussian distri-
bution, with variance v < 0.1 for dimensions j1, . . . , jdr and v ∈ [0.5,0.9] for
other dimensions. The generated points in cluster r in dimension j thus fol-
low Xr ∼ N (cr, vj).

Algorithm Parameters Keller & Klawonn’s algorithm is initialized with FCM
centers and uses m = v = 2, a = 1 and c = 4. PFSCM is ran with m = 2,
α = 1, γ = 1000 and c = 4. Both algorithms use the same convergence criterion,
with ε = 10−4.

The parameter cut is set to 1
2d , which is a simple rule of thumb to identify the

dimensions selected as relevant by the algorithms in each considered dimension d.

Quality Criteria Both algorithms are evaluated on three metrics in order
to qualify their results and their ability to discover the desired clusters and
subspaces, and their dimensions.

First, let δ =
∑4
r=1‖µr−cr‖2 be the sum of the Euclidean distances between

the generated centers and the computed ones (µr): this metric is a standard
quality criterion for evaluating the produced clusters. A low value means that
the computed centers are close to the original ones.

We also consider θ defined as the percentage of clusters for which all relevant
dimensions are correctly identified by the algorithm: the relevant dimensions are
correctly identified if wrj > cut⇔ j ∈ {j1, · · · jdr}.

Finally, for the clusters for which the relevant dimensions have been correctly
identified, let the weight ratio φ = ω1

ωjdr
where ω1 is the largest computed weight

and ωjdr the smallest computed weight for the relevant dimensions. This met-
ric computes the distortion of the cluster between the relevant dimensions, as
estimated by both algorithms.

5.3 Experimental Results

The results of the experiment are presented in Table 2 in the form of the means
and standard deviations of the three criteria, computed over 100 runs of each
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d δ φ θ
Mean SD Mean SD %

PFSCM

5 0.90 0.67 2.51 1.41 76
7 0.98 0.81 3.08 1.72 79
9 0.90 0.50 3.96 2.09 80
11 0.88 0.33 4.35 2.01 83
13 0.97 0.40 4.78 1.99 83
15 0.90 0.10 5.22 1.84 91

K&K

5 1.27 1.03 2.61 1.78 43
7 1.55 1.38 3.12 2.29 39
9 1.39 1.18 4.05 3.01 31
11 1.26 0.90 4.50 3.48 28
13 1.42 1.29 4.68 3.60 25
15 1.21 1.06 8.05 3.27 10

Table 2. Comparison between PFSCM and Keller & Klawonn’s algorithm

algorithm. Both algorithms sometimes produce bad results, identifying centers
too far from the generated ones, which distort the means and standard deviations
of the previous metrics. Such outliers (less than 2% of the runs) have been cleaned
out of the results.

It can be observed that PFSCM correctly identifies the generated centers (as
shown by δ), and produces stable results in each dimension, as shown by the low
standard deviation. Moreover the algorithm, along with the proposed cut ratio
cut = 1

2d , performs well in selecting the relevant dimensions of the subspaces (as
shown by θ). Finally, the weights ratio φ is relatively stable when the number of
dimensions increases.

Keller & Klawonn’s algorithm correctly identifies the centers (cr) and the
difference with PFSCM is not meaningful. However it appears to miss out some
relevant dimensions of the generated subspaces. This is a general feature of the
algorithm, which can be seen in [6] as well: although the most relevant dimension
is almost always identified, Keller & Klawonn’s algorithm gives a much smaller
weight to the other relevant dimensions, which is also shown by the larger mean
for φ. This feature can be modulated by tuning the value of the fuzzifier v, but
then this modification affects the weights of each dimension, including the most
relevant one.

In summary, PFSCM identifies the same clusters as Keller & Klawonn’s al-
gorithm, but produces a better estimation of the dimensions of the subspaces.
It is also more regular when the dimension d increases.

6 Conclusion and Future Works

This paper introduces a new approach to solve the fuzzy subspace clustering
problem with a cost function involving non-differentiable terms. Advanced opti-
mization techniques are explored, which replace the standard update equations
of fuzzy c-means-like algorithms.



12 Proximal Optimization for Fuzzy Subspace Clustering

Experiments on synthetic data show the relevance of the proposed approach,
that appears to correctly identify all the relevant dimensions and not more,
whereas Keller & Klawonn’s algorithm tends to underestimate the number of
relevant dimensions. This provides more information about the importance of
each dimension for the subspaces and clusters.

Future works will aim at generalizing this approach around the same key
ideas: a differentiable function matching the specification of the problem and one
or several penalty functions, expressing constraints on the shape of the solution.
The introduction of regularization terms for parameters other than W will also
be studied. Finally, more efficient descent schemes will be considered, in order
to speed up the descent.
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