
HAL Id: hal-01365556
https://hal.sorbonne-universite.fr/hal-01365556v1

Submitted on 13 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Genetic Control of Differential Acetylation in Diabetic
Rats

Pamela J Kaisaki, Georg W. Otto, Joanna F. Mcgouran, Amine Toubal,
Karène Argoud, Helen Waller-Evans, Clare Finlay, Sophie Calderari,

Marie-Thérèse Bihoreau, Benedikt M Kessler, et al.

To cite this version:
Pamela J Kaisaki, Georg W. Otto, Joanna F. Mcgouran, Amine Toubal, Karène Argoud, et al..
Genetic Control of Differential Acetylation in Diabetic Rats. PLoS ONE, 2014, 9 (4), pp.e94555.
�10.1371/journal.pone.0094555�. �hal-01365556�

https://hal.sorbonne-universite.fr/hal-01365556v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Genetic Control of Differential Acetylation in Diabetic
Rats
Pamela J. Kaisaki1, Georg W. Otto1, Joanna F. McGouran2, Amine Toubal3,4, Karène Argoud1,

Helen Waller-Evans1, Clare Finlay1, Sophie Caldérari3,4, Marie-Thérèse Bihoreau5, Benedikt M. Kessler2,
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Abstract

Post-translational protein modifications such as acetylation have significant regulatory roles in metabolic processes, but
their relationship to both variation in gene expression and DNA sequence is unclear. We address this question in the Goto-
Kakizaki (GK) rat inbred strain, a model of polygenic type 2 diabetes. Expression of the NAD-dependent deacetylase Sirtuin-3
is down-regulated in GK rats compared to normoglycemic Brown Norway (BN) rats. We show first that a promoter SNP
causes down-regulation of Sirtuin-3 expression in GK rats. We then use mass-spectrometry to identify proteome-wide
differential lysine acetylation of putative Sirtuin-3 protein targets in livers of GK and BN rats. These include many proteins in
pathways connected to diabetes and metabolic syndrome. We finally sequence GK and BN liver transcriptomes and find that
mRNA expression of these targets does not differ significantly between GK and BN rats, in contrast to other components of
the same pathways. We conclude that physiological differences between GK and BN rats are mediated by a combination of
differential protein acetylation and gene transcription and that genetic variation can modulate acetylation independently of
expression.
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Introduction

Post-translational modification (PTM) of proteins is one means

by which an organism can alter protein function independently of

transcription and translation. There are over 400 characterised

PTMs, including phosphorylation, acetylation, methylation, ubi-

quitination and SUMOylation. In this study, we focus on protein

acetylation, which is regulated by complex mechanisms involving

families of acetyltransferases and deacetylases. Acetylation of

enzymes may affect their activity, and is a mechanism used by cells

to make metabolic adaptations, possibly through the coordination

of pathways such as glycolysis, gluconeogenesis, citrate cycle, fatty

acid metabolism, urea cycle, and glycogen metabolism [1]. Many

of the essential enzymes required for metabolite processing in liver

are acetylated [2]. As a consequence, variation in protein

acetylation is expected to affect diseases such as diabetes and the

metabolic syndrome (Reaven’s syndrome).

Animal models of diabetes can reveal causal relationships

between altered protein acetylation and impaired glucose homeo-

stasis. The Goto-Kakizaki (GK) rat is an established model of

spontaneous non-obese Type 2 diabetes, which has elevated blood

glucose and peripheral insulin resistance similar to human Type 2

diabetes [3]. The genetic basis of metabolic and hormonal

anomalies in the GK rat has been mapped in crosses between

GK and non-diabetic Brown Norway (BN) rats which identified

quantitative trait loci (QTL) linked to diabetes-related phenotypes

such as glucose intolerance [4]. The GK rat is also a model for the

metabolic syndrome, because it exhibits traits of salt-induced

hypertension, increased adiposity, glucose intolerance, and hyper-

lipidemia [5–8].

Previous genome-wide liver transcriptome analyses in rat strains

[9] identified significantly down-regulated expression of the NAD-

dependent deacetylase sirtuin 3 (Sirt3) in GK compared to BN rats.

Sirtuins influence insulin sensitivity and energy homeostasis and

possibly ageing. There is controversy over their role in ageing [10],

but it is known that they mediate metabolic adaptation to stress

and changes in nutrition [11].

The transcriptional difference between GK and BN was

confirmed in a further microarray study [6] of a congenic rat

strain carrying a large section (170 Mb) of GK chromosome 1

associated with glucose intolerance, where Sirt3 is localised, on a

BN genetic background (1consomic). GK alleles in this region are

associated with lower Sirt3 expression (p = 0.0030). Sirt3 is likely to

affect metabolism and may account for the observed effect because
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it is a key regulator of mitochondrial protein acetylation levels

[12].

Due to the potential importance of differential expression of

Sirt3 between BN and GK rats, we undertook a series of

experiments to first validate and then fine-map the difference in

Sirt3 transcript levels to discover the cause of this variation, and

finally to explore the effects of lower Sirt3 deacetylase activity on

protein acetylation in liver, and determine whether differences in

lysine acetylation of metabolic enzymes sheds light on the

pathophysiology of the GK rat. We identify alterations in liver

protein acetylation and gene transcription that may contribute to

physiological differences between GK and BN rats.

Results

Transcription regulation of Sirt3 in congenic strains of the
GK rat

We performed genome-wide gene expression analysis using

Illumina expression microarrays, on white adipose tissue, kidney,

skeletal muscle, liver and brown adipose tissue (BAT) from BN and

1consomic rats, and found 1.6-fold higher transcript levels of Sirt3

in BAT from BN rats compared to 1consomic rats (p = 6.761025),

and similar results in liver, consistent with our earlier finding

obtained with Affymetrix arrays in liver from the same congenic

and control rats [9]. Sirt3 is the tenth most significantly

differentially expressed gene (DEG) out of 92 DEG in the

1consomic interval in BAT, and twelfth most differentially

expressed gene in liver (out of 100 DEG). The difference in Sirt3

expression appears to be specific to liver and BAT, because it was

not present in white adipose, kidney or skeletal muscle. We

performed qRT-PCR in order to validate these differences in liver

and BAT from BN and 1consomic rats. Expression of Sirt3 was

significantly lower in both tissues from 1consomic compared to BN

(p,0.05) (Figure 1A).

To fine-map this variation, we used qRT-PCR to compare Sirt3

transcription in BAT from three BN.GK congenic strains of rat

chromosome 1 containing either the GK allele of Sirt3 (strains 1h

and 1o) with BN or the BN allele of Sirt3 (strain 1b). Figure 1B,

right, illustrates these congenic strains, and shows that compared

to BN and congenic 1b, Sirt3 expression was lower (p,2.061024)

in strains 1h and 1o. These results confirm that GK alleles nearby

Sirt3 down-regulate its transcription in cis.

Identification and functional analysis of Sirt3
polymorphisms in the GK rat

To identify the cis-acting variants affecting Sirt3 transcription,

we compared the sequences of the Sirt3 gene, including its

promoter, in GK and BN in the interval 1:201019865-201045697.

We detected 64 intronic SNPs, 3 intronic insertions, 3 intronic

deletions, one known synonymous coding SNP (rs13449840), and

one SNP in the 59-UTR, which was within the Sirt3 promoter

(1:201044229_C/T). We investigated the consequences of segre-

gating polymorphisms using the Variant Effect Predictor [13])

(Table S1) but no obviously functional coding variants were found.

The 646 bp Sirt3 promoter is bi-directional, and lies between

the transcriptional start site (TSS) of Sirt3 and the TSS of a

neighboring gene encoding the proteasome non-ATPase regula-

tory subunit 13 (Psmd13) (Figure 2A) [14]. Expression of Psmd13

was not altered in liver and BAT of GK and BN rat. The Sirt3

promoter SNP occurs within a predicted binding site for the

estrogen-related receptor response element (ERRE) transcription

factor, which is known to activate Sirt3 transcription in the mouse

[15]. In order to test whether the variant affected function of the

ERRE, we cloned both the BN and GK alleles of the promoter

sequence into luciferase reporter construct pGL3-basic. No

difference in luciferase activity was observed when HEK293T

kidney cells were transfected at two concentrations with the GK

promoter compared to BN control (Figure S1). However, when

transfected into Hep3B hepatocyte cells, luciferase activity driven

by the GK promoter at the higher level of transfection was

significantly less than that of BN (p,0.05) (Figure 2B). We

conclude that the GK promoter variant in Sirt3 is the likely cause

of the cis-regulated transcriptional downregulation of the GK

allele, and that this effect is tissue-specific.

RNA-sequencing
We sequenced mRNA from the liver and BAT of GK and BN

rats, and identified differentially expressed transcripts in each

tissue (Tables S2 and S3). RNA-sequencing re-confirmed that Sirt3

is down-regulated in both BAT (GK 47% lower than BN) and liver

(37% lower) from GK rats compared to BN. KEGG pathway

enrichment analysis was then performed (Tables S4 and S5). In

BAT, the most significantly over-represented pathways that

differentiated GK and BN rats were ‘‘Metabolic pathways’’

Figure 1. Validation of Sirt3 transcript levels. QRT-PCR of Sirt3 levels (A) comparing BN control rat and congenic strain 1consomic (which has GK
chromosome 1 on a BN genetic background), in liver (blue) and BAT (green); (B) left, comparing BAT from BN and three congenic strains, two carrying
GK allele of Sirt3 (1o and 1h), and one with BN allele of Sirt3 (1b); (C) diagram of BN.GK chromosome 1 congenic strains used, with maroon bars
representing region of GK chromosome 1 introgressed onto BN background. (Genomic location of Sirt3 is indicated.) Results are corrected for
expression of housekeeping gene 36B4.
doi:10.1371/journal.pone.0094555.g001
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(p = 3.08610213) and ‘‘Oxidative phosphorylation’’ (p = 1.636
1029). Digestion and absorption of protein and fat are also over-

represented in BAT, as well as fatty acid metabolism and PPAR

signaling pathway. In liver, KEGG analysis again highlights

‘‘Metabolic pathways’’ as the most significantly over-represented

pathway amongst the differentially expressed genes

(p = 8.41610214). Cytochrome P450 metabolism, PPAR signaling

and steroid hormone biosynthesis are among the top five

significantly over-represented pathways in liver. Because Sirt3 is

a target of PPARG-coactivator1-alpha, and therefore involved in

PPAR-gamma signaling, it is not surprising that PPAR signaling is

affected [15].

Proteome-wide analysis of liver protein acetylation
Since Sirt3 is the major deacetylase enzyme in mitochondria, we

reasoned that lower levels of Sirt3 in GK liver would increase

lysine-acetylation of proteins. Therefore, we determined global

liver protein acetylation in GK and BN rats. First, in order to

enrich for acetylated proteins, an equal amount of liver protein

extract from GK and BN rats was digested with trypsin, then

subjected to immunoprecipitation using pan-acetyllysine antibod-

ies. These enriched peptides were analysed by liquid chromatog-

raphy tandem mass spectrometry (LC-MS/MS). The 89 differen-

tially acetylated peptides we identified with .95% confidence are

listed in Table S6, and examples are shown in Figure S2.

Unfortunately, we could not determine global lysine acetylation in

BAT, possibly due to insufficient tissue.

As the measurement of acetylated peptides does not distinguish

between differing levels of protein and differing levels of

acetylation, we used our transcriptomic data to test if the

acetylation differences were correlated with variable gene expres-

sion, which we measured on the level of gene transcription.

Absence of differential gene expression would suggest that

observed acetylation differences are due to differential protein

acetylation. Transcript measurements for each lysine-acetylated

protein are given in Table S6. Transcripts for 28% of the

acetylated proteins are differentially expressed at FDR p,0.05,

but for 91% of the peptides, there is either no change in transcript

level, or it is in the opposite direction to the change in acetylation.

When fold-change of acetylation is plotted against fold-change of

RNA-seq, no correlation is observed (Figure 3). Therefore, most of

the differences measured by mass-spectrometry are likely to be due

to varying acetylation levels rather than amount of protein.

Eighteen genes encoding known acetylated proteins have signif-

icantly different gene expression between BN and GK or

1consomic liver (see Table 1), but none were significantly

differentially acetylated (malate dehydrogenase 1, but not malate

dehydrogenase 2, is differentially acetylated). We do not know

whether the proteins in Table 1 are not acetylated in GK or BN

rat liver, or whether they are acetylated but below our level of

detection.

Most of the differentially acetylated peptides between GK and

BN liver (Table S6, Figure S2), are enzymes in key metabolic

pathways, as listed below. Thirty-six of the 89 proteins listed were

also found to be acetylated in a study of Sirt3-knockout mice,

providing evidence that they are targets of Sirt3 [16]. Note that

proteins annotated ‘‘BN only’’ or ‘‘GK only’’ might still be

acetylated below the level of detection for the experimental

approach used.

(i) Glycolysis and gluconeogenesis. Peptides from glycer-

aldehyde 3-phosphate dehydrogenase (Gapdh) were acetylated

between 2.3- and 2.7-fold more in GK than BN liver. One

acetylated peptide of dihydrolipoamide dehydrogenase (Dld), a

component of pyruvate dehydrogenase complex, is only detected

in GK liver, and another Dld derived peptide is about 10% less

acetylated in GK than BN. Acetylated phosphoglycerate kinase 2

was detected in BN only. Other acetylated proteins with the

KEGG term glycolysis/gluconeogenesis include alcohol dehydro-

genase (Adh), with one peptide 2-fold more acetylated in GK, and

one slightly less in GK than BN, and lactate dehydrogenase, where

an LdhC peptide is acetylated in GK only and an LdhA peptide

acetylated in BN only.

(ii) TCA cycle. Acetylation of aconitate hydrolase (Aco) is 2-

fold higher in GK liver than in BN. Dihydrolipoyllysine-residue

succinyltransferase (Dlst) and one peptide of dihydrolipoamide

dehydrogenase (Dld), which are components of the a-ketoglutarate

dehydrogenase complex in TCA cycle, are only acetylated in GK

liver. Succinyl-CoA synthetase alpha subunit (Suclg1) is 2.6-fold

more acetylated in GK than BN livers. Both succinate dehydro-

genase (Sdh), a known target of Sirt3, and fumarate hydratase, were

only acetylated in GK. Malate dehydrogenase 1 (Mdh1) was only

acetylated in BN liver (this is the cytosolic isoform involved in the

malate-aspartate shuttle). Peptides from different subunits of ATP

synthase in oxidative phosphorylation are also acetylated: ATP

synthase subunit A is only acetylated in GK, ATP synthase subunit

B is acetylated in both GK and BN, and ATP synthase subunit D

is twice as acetylated in GK as BN.

(iii) Pentose phosphate pathway (hexose monophosphate

shunt). Components of this pathway, which is the major source

of NADPH required for anabolic processes, were acetylated. For

example, UDP-glucose 6-dehydrogenase was only acetylated in

Figure 2. Sirt3 promoter variant and luciferase assay. (A) Bidirectional promoter of Sirt3 and Psmd13. One single nucleotide polymorphism
(1:201044229_C/T) was identified when comparing sequence of GK promoter with BN. (B) Luciferase reporter assay results for transfection of
hepatoma cell line. BN or GK allele of Sirt3 promoter was cloned into pGL3-basic vector upstream of luciferase gene, and transfected into Hep3B cells
at two levels, 0.1 and 0.4 ug/well. Results are corrected for transfection efficiency by co-transfection with beta-galactosidase vector, and represent
two-three independent transfections, which were run in triplicate wells.
doi:10.1371/journal.pone.0094555.g002

Differential Acetylation in Diabetic Rats

PLOS ONE | www.plosone.org 3 April 2014 | Volume 9 | Issue 4 | e94555



GK liver. Transketolase (Tkt) was 2.6-fold more acetylated in GK

than BN liver.

(iv) Fatty acid metabolism. These pathways include acetyl-

CoA acyltransferase (Acaa2), an enzyme in fatty acid beta-

oxidation and elongation, which has 2 acetylated peptides that

are only detected in GK liver. One peptide of mitochondrial

acetyl-CoA acetyltransferase Acat1 is more highly acetylated in GK

rat liver than in BN, but other peptides from Acat1 and a peptide

from cytosolic Acat2 are only acetylated in BN liver. Mitochondrial

medium-chain acyl-CoA dehydrogenase (Acadm) and enoyl-CoA

delta isomerase 1 (Eci1) are only acetylated in GK liver. Echs1

(enoyl-CoA hydratase/3-ketoacyl thiolase 1, mitochondrial) is

acetylated about equally in GK and BN. Several peptides of fatty

acid-binding protein, important in fat transport and PPAR

Figure 3. Scatter-plot of log fold-change of lysine acetylation and fold-change of RNA-sequencing. Each point represents one protein/
transcript. y-axis: log2 of fold change in protein acetylation between GK and BN rats. x-axis: log2 of fold-change in mRNA sequence counts between
GK and BN rats.
doi:10.1371/journal.pone.0094555.g003

Table 1. Illumina liver transcripts significantly differentially expressed between GK and BN or 1Consomic strain rats.

Gene Symbol Description
GK/BN log2
fold-change

GK/BN
FDR

1Cons/BN log2
fold-change

1Cons/BN
FDR

Phf20 PHD finger protein 20 0.68 0.0000 20.21 0.146

Asl argininosuccinate lyase 21.40 0.0000 0.15 0.666

Mdh2 malate dehydrogenase 2, NAD (mitochondrial) 0.41 0.0002 20.30 0.027

Spi1 spleen focus forming virus (SFFV) proviral integration oncogene spi1 0.84 0.0003 0.08 0.819

Taf5l TAF5-like RNA polymerase II, p300/CBP-associated factor (PCAF)-associated factor 20.59 0.0005 0.63 0.008

Ncoa1 nuclear receptor coactivator 1 20.42 0.0022 20.10 0.609

Dscc1 defective in sister chromatid cohesion 1 homolog (S. cerevisiae) 0.39 0.0044 0.26 0.152

Ctbp1 C-terminal binding protein 1 0.28 0.0047 20.20 0.145

Pole4 polymerase (DNA-directed), epsilon 4 (p12 subunit) 0.26 0.0071 0.09 0.509

Yeats4 YEATS domain containing 4 0.32 0.0097 20.09 0.621

Kat2a K(lysine) acetyltransferase 2A 0.42 0.0138 0.09 0.745

Gata2 GATA binding protein 2 20.28 0.0188 0.00 0.988

Por P450 (cytochrome) oxidoreductase 20.55 0.0347 0.16 0.695

Mbd3 methyl-CpG binding domain protein 3 0.28 0.0361 0.29 0.119

Bag6 BCL2-associated athanogene 6 20.23 0.0363 0.08 0.606

RGD1563945 similar to mKIAA0215 protein 20.14 0.1694 20.30 0.037

Bmi1 Bmi1 polycomb ring finger oncogene 0.18 0.5394 0.79 0.039

Eid1 EP300 interacting inhibitor of differentiation 1 0.02 0.9189 0.49 0.040

Gene ontology descriptions relating to protein acetylation or deacetylation are shown. Transcripts with False Discovery Rates (FDR),0.05 are in bold.
doi:10.1371/journal.pone.0094555.t001
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signaling, are acetylated, and one of these is 2.7-fold more

acetylated in BN than in GK. Diazepam binding inhibitor (Dbi),

which plays a role in acyl-CoA metabolism and mitochondrial

steroidogenesis, is 1.5-fold more acetylated in BN than GK.

(v) Amino acid metabolism. Lysine ketoglutarate reductase,

in lysine degradation, is only acetylated in GK. Similarly, aspartate

aminotransferase (Got2) is only acetylated in GK, as was choline

dehydrogenase (Chdh) and dimethylglycine dehydrogenase

(Dmgdh), which are involved in glycine, serine and threonine

metabolism, and glutamic-oxaloacetic transaminase 2 (Got2).

Formimidoyltransferase-cyclodeaminase (Ftcd), an enzyme of

histidine and one carbon metabolism, is only acetylated in BN.

Omega-amidase (Nit2), which is involved in alanine, aspartate and

glutamate metabolism, is acetylated 2-fold more in BN than in GK

liver. There are several enzymes involved in amino acid

metabolism that are acetylated, but differ less than 25% in their

acetylation between BN and GK. These include aldehyde

dehydrogenase 9A1 (Aldh9a1), which participates in degradation

of many amino acids; arginase 1, betaine-homocysteine S-

methyltransferase (Bhmt), which functions in methionine, cysteine,

glycine, serine and threonine metabolism, and S-adenosylhomo-

cysteine hydrolase (Ahcy), which is involved in cysteine and

methionine metabolism.

(vi) Purine and pyrimidine pathway. This includes aden-

osine kinase (Adk) and adenylate kinase (Ak), which are only

acetylated in GK liver. Two peptides of carbamoyl-phosphate

synthetase I (Cps1) are acetylated, one at about equal levels in BN

and GK, and one that is twice as acetylated in BN as compared to

GK. Carbamoyl-phosphate synthetase 2/aspartate transcarbamyl-

ase/dihydroorotase (Cad) is only acetylated in GK. Dihydropyr-

imidinase (Dpy) is very similar, with two acetylation sites detected,

one about equally acetylated and one that is only acetylated in BN

(Table S6).

Thus, as in other studies of protein acetylation, we find a wide

range of metabolic pathways whose enzymes are affected by this

modification. However, as lysine acetylation can either activate or

inhibit an enzyme’s activity, the direction of effect must be

determined empirically for each protein. Therefore, we cannot

predict the overall consequence of differential acetylation for the

majority of these pathways.

However, the citrate (TCA) cycle does contain enzymes for

which the effect of acetylation has been directly determined, and

by combining transcriptomic and proteomic data, we can predict

the effects on this pathway due to acetylation rather than amount

of protein. Additionally, we observe some TCA proteins that are

not acetylated are nonetheless differentially expressed, which can

also affect enzyme activity. Thus, the TCA pathway serves as a

model for integrating the transcriptome and proteome, in order to

give a more complete view of differences between the diabetic GK

and control BN rat liver (Figure 4).

Liver transcription regulation of acetyltransferases and
deacetylases

We also examined transcription patterns of genes encoding

acetyltransferases and deacetylases in our Illumina transcriptomic

data that were identified using Gene Ontology terms. We did so in

order to determine whether the differences that we measured in

lysine acetylation are part of a general trend toward altered

acetylation, or specific to the down-regulation of Sirt3 (Tables 2

and 3). Nineteen acetyltransferases and eleven deacetylases were

significantly differentially expressed between BN and GK, though

the annotation may be incomplete. For instance, Sirt3 was not

originally annotated on the Illumina array as a deacetylase.

Besides Sirt3, there are five other deacetylases that show

significantly lower transcript level in GK than BN livers: MACRO

domain containing 1 (Macrod1), amidohydrolase domain contain-

ing 2 (Amdhd2), and histone deacetylases Hdac3, Hdac5, and Hdac11

(however, the substrates of Macrod1 and Amdhd2 are not proteins).

Deacetylases that are overexpressed in GK (or 1consomic) when

compared to BN are N-deacetylase/N-sulfotransferase (Ndst1),

with target heparan sulfate (a linear polysaccharide), Phosphati-

dylinositol glycan anchor biosynthesis, class L (Pigl), with target N-

acetyl-D-glucosaminylphosphatidylinositol (a glycerophospholi-

pid), arylacetamide deacetylase (Aadac), and ataxin 3 (Atxn3).

Acetyltransferases that are significantly different between BN and

GK include enzymes that acetylate xenobiotics (Nat1, higher in

GK, and Nat2, lower in GK), metabolites (Acat3, Gnpnat1 and Crat,

higher in GK; Gnpat, lower in GK), phospholipid (Lpcat1, lower in

1consomic), and a few where targets are unknown (Taf5l, Nat8,

Nat8b). In certain cases, protein targets of the acetyltransferase

have been identified: Pafah1b1, with targets platelet-activating

factor and Plekhm1, and Sat2, with target eukaryotic initiation

factor 5A, both lower in GK; and Pafah1b3, with target platelet-

activating factor, Phf20, which targets histone; Naa20, which acts

on proteins in cell cycle progression, and Kat2a, with target PGC-1

alpha, which are higher in GK. Macrod1 is functionally related to

Sirt3, because a product of Sirt3 deacetylation reaction, O-acetyl-

ADP-ribose, is a substrate of Macrod1 [17]. Macrod1 is not known to

deacetylate proteins. Besides Sirt3, no other members of the sirtuin

family are differentially expressed in liver (Table 3).

None of the differentially expressed acetyltransferases are in the

chromosome 1 QTL linked to diabetes-related traits. Both acetyl-

Coenzyme A acetyltransferase 3 and lysophosphatidylcholine

acyltransferase 1 map to chromosome 1 but outside of the QTL

region. Of the deacetylases tested for differential transcription,

only Sirt3 and Macrod1 are within the QTL. As noted in Table S6,

40% of the acetylated proteins that we detected were also

identified in a Sirt3-knockout model, and therefore are likely to be

Sirt3 targets [16]. We conclude that, although we observe some

difference in other enzymes affecting acetylation, a significant

fraction of the changes in lysine acetylation are likely to be due to

down-regulation of Sirt3.

Discussion

In this study, we have shown how transcript level and protein

acetylation combine to control protein activity. This integrated,

systems-level approach is crucial for understanding the regulation

of complex phenotypes, including pathophysiological mechanisms

involved in type 2 diabetes and cardiometabolic diseases. In our

data, protein acetylation and gene transcription are independent

of each other (figure 3) and hence have uncorrelated effects.

We identified a SNP in the promoter of Sirt3 that is probably

responsible for the lower expression of Sirt3 in the liver of GK rats,

and for downstream variation in protein acetylation in enzymes

and pathways linked to diabetes and the metabolic syndrome. Sirt3

transcription is strongly activated by PGC-1a in combination with

ERRa in mouse muscle cells and hepatocytes [15]. It also mediates

the influence of PGC-1a on mitochondrial biogenesis and the

production of reactive oxygen species. Mouse knockouts of Sirt3

cause mitochondrial protein hyperacetylation [12]. The effect of

deacetylation by Sirt3 on enzyme activity has been measured

experimentally for 18 proteins [18,19], and for 78% of these, the

deacetylated form has higher activity. Enzymes whose activities

increase upon deacetylation include mitochondrial acetyl-CoA

synthetase (AceCS2), required for producing acetyl-CoA under

ketogenic conditions such as fasting. Sirt3 deacetylation also acti-

vates Complexes I (NDUFA9) and II (succinate dehydrogenase) of
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the electron transport chain, though SDH activity was reported to

be affected only in MEFs and brown adipose tissue, not liver

[10,20]. Sirt32/2 knockout mice have reduced ATP production

[21]. Other enzymes in the TCA cycle affected by deacetylation

include isocitrate dehydrogenase (deacetylation causes higher

activity) [22] and malate dehydrogenase (lower activity) [18]. Sirt3

reduces reactive oxygen species in cells by activating mitochondria

manganese superoxide dismutase 2 [23]. Mitochondrial 3-

hydroxy-3-methylglutaryl CoA synthase 2 (Hmgcs2)[24,25] gluta-

mate dehydrogenase (Gdh) [22], forkhead box O3a (Foxo3a) [24],

Ku70 [25], long chain acyl CoA dehydrogenase (Lcad) [23],

Serine/threonine protein kinase 11 (Stk11, or Lkb1) [26], and

mitochondrial ribosomal protein L10 (Mrpl10) [27], are all

activated when deacetylated by Sirt3. Of these proteins, we detect

acetylation of succinate dehydrogenase and malate dehydrogenase

in our data.

By integrating our GK and BN liver transcriptome and

acetylome analyses, we can predict the effects on the TCA cycle

(Figure 4). Malate dehydrogenase 1 (Mdh1), whose activity

increases with acetylation, is only acetylated in BN liver, so BN

Mdh1 activity is predicted to be higher than in GK. Succinate

dehydrogenase (Sdh; Complex II of oxidative phosphorylation) is

only acetylated in GK liver. Since Sdh activity decreases when it is

acetylated, we predict that GK Sdh activity is lower than in BN

[27]. Isocitrate dehydrogenase 2 and fumarate hydratase tran-

scripts are present at lower levels in GK than BN (though the

subunits of a-ketoglutarate dehydrogenase complex are equivocal).

Thus, the combined effect of lysine acetylation and transcript

differences increases flux through the TCA cycle, and which

should be higher in BN than GK liver.

Our results are consistent with a report showing that flux

through Complex II with palmitoylcarnitine substrate is reduced

in GK liver, but not in GK muscle [28]. We observe lower Sirt3

transcript abundance with concomitant increased Sdh acetylation

in liver, but no change of Sirt3 transcription in muscle.

Studies of liver mitochondrial energetics in GK rats have

demonstrated that the GK rat has a low endogenous ATP/ADP

ratio [29], which could be the result of reduced flux through the

TCA cycle. In the liver mitochondrial proteome, phosphopro-

teome and hydroxyproteome of GK rats, [30] suggest that protein

expression is coordinated between the TCA cycle, fatty acid

oxidation and oxidative phosphorylation during the progression

from pre-diabetes to early Type 2 diabetes. Here we show that GK

liver protein acetylation provides another layer post-translational

control of enzyme activity. It is important to note that acetylation

patterns in tissues other than liver are likely to be different [31].

We find that DNA variation in the Sirt3 promoter may

contribute to impaired glucose homeostasis in the GK model of

type 2 diabetes. Diabetes in the GK rat is a complex, multifactorial

disease, caused by susceptibility alleles isolated from an outbred

Figure 4. Lysine acetylation and mRNA expression in components of TCA cycle. Green arrow pointing up (next to malate dehydrogenase)
indicates acetylation causes increase in enzyme activity. Red arrow pointing down (next to isocitrate dehydrogenase and succinate dehydrogenase)
refers to decrease in enzyme activity with acetylation.
doi:10.1371/journal.pone.0094555.g004

Differential Acetylation in Diabetic Rats

PLOS ONE | www.plosone.org 6 April 2014 | Volume 9 | Issue 4 | e94555



T
a

b
le

2
.

A
ce

ty
lt

ra
n

sf
e

ra
se

s
in

th
e

ra
t

liv
e

r
tr

an
sc

ri
p

to
m

e
.

S
y

m
b

o
l

D
e

sc
ri

p
ti

o
n

Il
lu

m
in

a
m

ic
ro

a
rr

a
y

R
N

A
-s

e
q

u
e

n
ci

n
g

G
K

/B
N

lo
g

2
fo

ld
-c

h
a

n
g

e
G

K
/B

N
F

D
R

1
C

o
n

s/
B

N
lo

g
2

fo
ld

-c
h

a
n

g
e

1
C

o
n

s/
B

N
F

D
R

G
K

/B
N

lo
g

2
fo

ld
-c

h
a

n
g

e
G

K
/B

N
F

D
R

P
a

fa
h

1b
1

p
la

te
le

t-
ac

ti
va

ti
n

g
fa

ct
o

r
ac

e
ty

lh
yd

ro
la

se
1

b
1

2
1

.6
9

1
.5

4
E

-0
9

0
.1

3
0

.5
8

9
5

0
1

Sa
t2

sp
e

rm
id

in
e

/s
p

e
rm

in
e

N
1

-a
ce

ty
lt

ra
n

sf
e

ra
se

2
2

1
.3

9
2

.3
2

E
-0

9
2

0
.2

4
0

.1
9

5
1

2
0

.5
1

0
.1

2
7

A
ca

t3
ac

e
ty

l-
C

o
e

n
zy

m
e

A
ac

e
ty

lt
ra

n
sf

e
ra

se
3

2
.0

0
1

.5
0

E
-0

7
2

0
.0

2
0

.9
6

4
0

0
.7

5
0

.0
0

4
4

P
h

f2
0

P
H

D
fi

n
g

e
r

p
ro

te
in

2
0

0
.6

8
1

.7
3

E
-0

6
2

0
.2

1
0

.1
4

5
7

2
0

.3
2

0
.1

7
1

9
8

N
a

t8
N

-a
ce

ty
lt

ra
n

sf
e

ra
se

8
2

.0
4

3
.4

2
E

-0
6

0
.6

2
0

.1
7

8
7

n
f*

n
f

N
a

t1
N

-a
ce

ty
lt

ra
n

sf
e

ra
se

1
1

.6
0

8
.0

5
E

-0
6

0
.4

7
0

.2
3

6
0

n
f

n
f

N
a

t2
N

-a
ce

ty
lt

ra
n

sf
e

ra
se

2
2

0
.5

8
0

.0
0

0
2

0
.0

7
0

.7
6

5
4

0
.3

5
0

.1
4

6
1

P
a

fa
h

1b
3

p
la

te
le

t-
ac

ti
va

ti
n

g
fa

ct
o

r
ac

e
ty

lh
yd

ro
la

se
1

b
3

0
.6

1
0

.0
0

0
5

0
.1

4
0

.5
3

9
8

0
.2

1
0

.8
6

5
8

Ta
f5

l
T

A
F5

-l
ik

e
R

N
A

p
o

ly
m

e
ra

se
II

2
0

.5
9

0
.0

0
0

5
0

.6
3

0
.0

0
7

6
2

1
.0

7
8

.8
7

E
-0

7

G
n

p
a

t
g

ly
ce

ro
n

e
p

h
o

sp
h

at
e

O
-a

cy
lt

ra
n

sf
e

ra
se

2
0

.2
9

0
.0

0
1

7
2

0
.1

2
0

.3
4

4
2

2
0

.2
9

0
.2

8
8

1

N
co

a
1

n
u

cl
e

ar
re

ce
p

to
r

co
ac

ti
va

to
r

1
2

0
.4

2
0

.0
0

2
2

2
0

.1
0

0
.6

0
8

7
0

.0
3

0
.9

7
1

1

G
n

p
n

a
t1

g
lu

co
sa

m
in

e
-p

h
o

sp
h

at
e

N
-a

ce
ty

lt
ra

n
sf

e
ra

se
1

0
.3

6
0

.0
0

3
7

0
.0

6
0

.7
4

6
5

0
.2

4
0

.2
6

7
7

N
a

a
20

N
(a

lp
h

a)
-a

ce
ty

lt
ra

n
sf

e
ra

se
2

0
0

.2
7

0
.0

0
3

9
0

.0
2

0
.8

8
7

5
n

f
n

f

K
a

t2
a

K
(l

ys
in

e
)

ac
e

ty
lt

ra
n

sf
e

ra
se

2
A

0
.4

2
0

.0
1

3
8

0
.0

9
0

.7
4

5
3

0
.4

8
0

.1
0

1

C
ra

t
ca

rn
it

in
e

O
-a

ce
ty

lt
ra

n
sf

e
ra

se
0

.5
0

0
.0

3
0

5
2

0
.0

6
0

.8
8

0
0

1
.0

6
1

.4
6

E
-1

1

Lp
ca

t1
ly

so
p

h
o

sp
h

at
id

yl
ch

o
lin

e
ac

yl
tr

an
sf

e
ra

se
1

0
.0

6
0

.6
1

9
2

2
0

.4
3

0
.0

1
4

6
2

0
.3

4
0

.5
3

3

N
a

t8
b

N
-a

ce
ty

lt
ra

n
sf

e
ra

se
8

B
0

.1
4

0
.1

7
5

1
2

0
.3

0
0

.0
3

7
3

2
0

.2
3

0
.7

1
0

7

Lp
ca

t3
Ly

so
p

h
o

sp
h

o
lip

id
ac

yl
tr

an
sf

e
ra

se
5

n
f

n
f

n
f

n
f

0
.5

1
0

.0
0

4
7

P
h

f1
5

p
ro

te
in

Ja
d

e
-2

n
f

n
f

n
f

n
f

0
.7

7
0

.0
0

4
3

Sh
o

w
n

ar
e

tr
an

sc
ri

p
ts

d
if

fe
re

n
ti

al
ly

e
xp

re
ss

e
d

b
e

tw
e

e
n

B
N

an
d

G
K

o
r

1
co

n
so

m
ic

st
ra

in
s.

Fa
ls

e
D

is
co

ve
ry

R
at

e
s

(F
D

R
),

0
.0

5
ar

e
in

b
o

ld
.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

0
9

4
5

5
5

.t
0

0
2

Differential Acetylation in Diabetic Rats

PLOS ONE | www.plosone.org 7 April 2014 | Volume 9 | Issue 4 | e94555



T
a

b
le

3
.

Li
ve

r
d

e
ac

e
ty

la
se

s
in

th
e

ra
t

liv
e

r
tr

an
sc

ri
p

to
m

e
.

S
y

m
b

o
l

D
e

sc
ri

p
ti

o
n

Il
lu

m
in

a
m

ic
ro

a
rr

a
y

R
N

A
-s

e
q

u
e

n
ci

n
g

G
K

/B
N

lo
g

2
fo

ld
-c

h
a

n
g

e
G

K
/B

N
a

d
ju

st
e

d
p

-v
a

lu
e

1
C

o
n

s/
B

N
lo

g
2

fo
ld

-c
h

a
n

g
e

1
C

o
n

s/
B

N
F

D
R

G
K

/B
N

lo
g

2
fo

ld
-c

h
a

n
g

e
G

K
/B

N
F

D
R

N
d

st
1

N
-d

e
ac

e
ty

la
se

/N
-s

u
lf

o
tr

an
sf

e
ra

se
1

0
.6

7
8

.2
6

E
-0

5
0

.0
5

6
0

.8
2

2
8

2
0

.0
4

0
.9

2
1

1

P
ig

l
p

h
o

sp
h

at
id

yl
in

o
si

to
l

g
ly

ca
n

an
ch

o
r

b
io

sy
n

th
e

si
s

L
0

.4
2

0
.0

0
0

1
2

0
.2

1
4

0
.1

0
7

7
n

f*
n

f

H
d

a
c5

h
is

to
n

e
d

e
ac

e
ty

la
se

5
2

0
.7

5
0

.0
0

0
7

0
.0

4
3

0
.9

0
9

6
0

.1
3

0
.6

4
5

2

M
a

cr
o

d
1

M
A

C
R

O
d

o
m

ai
n

co
n

ta
in

in
g

1
2

0
.4

9
0

.0
0

0
8

0
.2

8
6

0
.1

2
3

5
2

0
.5

6
0

.0
0

1
8

A
m

d
h

d
2

am
id

o
h

yd
ro

la
se

d
o

m
ai

n
co

n
ta

in
in

g
2

2
0

.3
6

0
.0

0
2

0
.0

3
3

0
.8

6
9

6
2

0
.9

7
0

.0
0

0
1

H
d

a
c1

1
h

is
to

n
e

d
e

ac
e

ty
la

se
1

1
2

0
.5

9
0

.0
0

6
5

2
0

.1
8

2
0

.5
6

4
3

2
0

.5
2

0
.1

0
6

1

A
a

d
a

c
ar

yl
ac

e
ta

m
id

e
d

e
ac

e
ty

la
se

0
.3

8
0

.0
2

2
8

0
.4

3
4

0
.0

6
2

8
2

0
.4

9
0

.0
7

3
7

H
d

a
c3

h
is

to
n

e
d

e
ac

e
ty

la
se

3
2

0
.2

2
0

.0
3

4
5

0
.1

4
5

0
.3

3
4

1
n

f
n

f

A
tx

n
3

at
ax

in
3

0
.2

0
.1

1
7

0
.5

9
4

0
.0

0
3

3
0

.4
2

0
.0

6
7

2

A
tx

n
1

at
ax

in
1

n
f

n
f

n
f

n
f

0
.9

3
0

.0
0

0
1

Si
rt

1
si

rt
u

in
1

0
.1

6
0

.3
3

3
1

2
0

.0
8

6
0

.7
4

5
2

0
.1

4
0

.7
6

4
3

Si
rt

2
si

rt
u

in
2

V
V

V
V

2
0

.1
9

0
.4

8
6

3

Si
rt

3
si

rt
u

in
3

2
0

.7
4

2
.6

6
E

-0
6

2
0

.9
2

8
1

.3
4

E
-0

5
2

0
.6

6
0

.0
0

0
8

Si
rt

4
si

rt
u

in
4

2
0

.1
5

0
.1

6
8

4
0

.0
6

3
0

.7
1

8
3

2
0

.4
4

0
.3

7
5

1

Si
rt

5
si

rt
u

in
5

0
.1

2
0

.3
0

4
6

0
.0

7
7

0
.6

7
0

4
0

.1
0

.8
2

2
4

Si
rt

6
si

rt
u

in
6

0
.1

0
.2

4
3

3
0

.1
2

9
0

.2
7

4
9

0
.0

9
0

.8
9

0
5

Si
rt

7
si

rt
u

in
7

2
0

.0
8

0
.4

4
3

7
2

0
.0

5
2

0
.7

5
4

9
0

.3
1

0
.3

5
5

3

Sh
o

w
n

ar
e

tr
an

sc
ri

p
ts

d
if

fe
re

n
ti

al
ly

e
xp

re
ss

e
d

b
e

tw
e

e
n

B
N

an
d

G
K

o
r

1
co

n
so

m
ic

st
ra

in
s.

Fa
ls

e
D

is
co

ve
ry

R
at

e
s

(F
D

R
),

0
.0

5
ar

e
in

b
o

ld
(V

:
V

ar
ia

n
t

in
p

ro
b

e
).

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

0
9

4
5

5
5

.t
0

0
3

Differential Acetylation in Diabetic Rats

PLOS ONE | www.plosone.org 8 April 2014 | Volume 9 | Issue 4 | e94555



Wistar stock upon selection of glucose intolerant animals. The

polygenic threshold model for complex dichotomous conditions is

therefore likely to apply [32]. Under this model, contributing

factors accumulate until a threshold is reached, leading to descent

into disease. Other rat strains may have reduced Sirt3 deacetylase

activity, but are below the threshold required to move into the

disease state.

Our data also provide insights into the relationship between

glucose intolerance and ageing. Wistar-related rat strains have

shorter lifespans than BN rats [33]. Though there is some

controversy about the role of sirtuins in ageing, they do mediate

metabolic adaptation to stress and changes in nutrition [1] which

affect ageing, and higher levels of Sirt3 in BN rat may contribute to

its longer lifespan. Furthermore, higher Sirt3 in BN rat liver may

contribute to its resistance to the metabolic syndrome. Knockdown

of Sirt3 in the BN rat and measurement of its effects on metabolism

and longevity, could test this hypothesis.

Materials and Methods

Animals
GK, BN and congenic rat strains were provided from our

breeding colony at Biomedical Services, University of Oxford.

Rats were housed in groups of five per cage, with free access to

water and standard laboratory chow pellets (B&K Universal Ltd.,

Grimston, Aldbrough, Hull) and were maintained on a 12-h light-

dark cycle, at a room temperature of 21uC with a relative humidity

of 55610%. Tissues were collected from 7–8 month old animals

that were fasted overnight and killed by a rising concentration of

CO2. The tissue was flash-frozen and stored in a 280uC freezer

until protein or RNA isolation was performed. Records of the

breeding colony were kept using a FilemakerPro database [34].

Animal procedures were approved by the ethical review panel of

the University of Oxford and UK Home Office project licence

PPL 30/2918.

RNA preparation
Liver and brown adipose tissue (BAT) were taken from six each

of GK, BN.GK1consomic, and Brown Norway (BN control) male

rats and flash-frozen in liquid nitrogen. Tissue samples were

similarly taken from male BN.GK congenics derived for different

sections of GK rat chromosome 1 (four each of strains BN.GK1b,

1h, 1o) (Figure 1B, right).

Total RNA was isolated from frozen tissues using either the

RNeasyH kit (Qiagen, Crawley, UK), or Trizol reagent (Invitrogen

Life Technologies, Paisley, UK). Briefly, for RNeasy kit, frozen

tissue samples were homogenized in QIAzol Lysis Reagent using a

Qiagen TissueLyser. Following phase separation after addition of

chloroform, total RNA was purified using a spin technology

according to the manufacturer’s guidelines and eluted in RNase-

free water. RNA was isolated from some tissues using Trizol

reagent according to manufacturer’s protocol. RNA concentra-

tions were determined using a NanoDrop spectrophotometer and

RNA quality, purity and integrity were assessed using an Agilent

2100 Bioanalyser (Agilent Technologies, Waldbronn, Germany).

Illumina Bead Array hybridization and scanning
Gene transcription profiling for the BN, GK, and chromosome

1 congenic strains was performed using SentrixH BeadChip

RatRef-12 v1 Whole-Genome Gene Expression Arrays (Illumina

Inc., San Diego, California, USA).

Double-stranded cDNA and purified biotin-labeled cRNA were

synthesized from 300 ng high quality total RNA using the

IlluminaH TotalPrep RNA Amplification Kit (Ambion Inc.,

Austin, Texas, USA). cRNA concentrations were determined

using a NanoDrop spectrophotometer whilst cRNA quality and

integrity were assessed using an Agilent 2100 Bioanalyser (Agilent

Technologies, Waldbronn, Germany). Hybridizations onto Sen-

trixH BeadChip RatRef-12 v1 Arrays were carried out using

750 ng of each biotinylated cRNA in a 58uC hybridization oven

for 18 hours. Following washing and staining with Streptavidin-

Cy3, the BeadChip Arrays were scanned on the IlluminaH
BeadArray Reader (Illumina Inc., San Diego, USA). Resulting

data were then preliminarily analysed using the IlluminaH
BeadStudio Application software before undergoing comprehen-

sive statistical analysis.

Microarray experiments were compliant with MIAME (Mini-

mum Information About a Microarray Experiment) and both

protocol details and raw data have been deposited in ArrayExpress

(http://www.ebi.ac.uk/arrayexpress/) under the accession num-

ber E-MTAB-1048.

Statistical analysis of Illumina microarray data and Gene
Ontology annotation

Microarray data were imported and normalized using normexp

[35]. Batch effects on expression values, as revealed by a principal

component analysis, were dealt with by using the array identifier

as additive covariant in the linear model. Differentially expressed

genes were identified by comparing the 1consomic strain or GK

with the BN strain. A linear model was fitted using the software

LIMMA. Genes were tested for differential expression using a

moderated t-statistic. Multiple testing correction of p-values was

carried out using the false discovery rate [36].

Quantitative real-time PCR
Total RNA was treated with Turbo DNA-free DNase kit, for

removal of genomic DNA (Ambion Inc., Austin, Texas, USA).

First-strand cDNA synthesis was performed using Superscript III

First-strand Synthesis Supermix for qRT-PCR (Invitrogen, Pais-

ley, UK). Assays were performed on a Rotor-Gene 3000 system

(Corbett Research, Milton, UK) using the QuantiTect SYBR

Green PCR kit (Qiagen Ltd., Crawley, UK), with PCR primers as

listed in Table S1. Analysis was performed using the standard

curve method (Rotor-Gene Software 5.0.47; Corbett Research,

Milton, UK). Gene expression was normalized against the

expression of either actin or acidic ribosomal phosphoprotein P0

(36B4). Experiments were performed in triplicate with samples

prepared from 4–6 animals per group. Statistical significance was

determined by the two-tailed independent sample t-test or

univariate ANOVA, when testing more than two groups.

Sequencing of the Sirt3 gene and promoter cloning
Polymorphism information comparing GK and BN for the region

containing Sirt3 and the flanking 59 and 39 sequence was obtained

by comparing our genome sequence of the GK rat (Kaisaki,

unpublished) with the BN reference sequence. BN-GK SNPs in the

region of chr1:201019865-201045697 were submitted for analysis to

the online tool at Ensembl, Variant effect predictor (http://www.

ensembl.org/info/docs/variation/vep/index.html, [13]).

For cloning, the Sirt3 promoter region (RGSC3.4,

chr1:201,043,757-201,044,402) was amplified with the primers

Sirt3-promoter-F (59-ACACAAATACCAGGCAGTCG-39) and

Sirt3-promoter-R (59-ACCGTTGACAGCTTATCTGC-39) from

genomic DNA of either GK or BN rats, using proofreading

enzyme Phusion High Fidelity PCR mix (New England Biolabs,

Hitchin, UK), and ligated first into PCRII-TOPO vector

(Invitrogen, Paisley, UK) with Roche Rapid Ligation kit, and
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then subcloned into pGL3-basic Luciferase Reporter vector

(Promega, Southampton, UK). Clones were sequenced to confirm

there were no PCR errors.

Cell transfection and luciferase assay
HEP3B hepatoma and HEK293T cells were plated in 24-well

plates at 2.56104 cells/well, and transfected the next day using

Fugene 6, following manufacturer protocols (Roche Molecular

Biochemicals, Burgess Hill, UK). Two different concentrations of

pGL3-promoter plasmid were transfected, and pCMV-LacZ was co-

transfected in all cells (pCMV-LacZ was kindly provided by J.

Braganca and S. Bhattacharya). Luciferase activity was measured

using Promega Luciferase Assay System (Promega, Southampton,

UK), and read on a Labsystems Luminoskan Ascent microplate

luminometer (Thermo Fisher Scientific, Loughborough, UK).

Activity of b-galactosidase was assayed by measuring cleavage of

the substrate o-nitrophenyl-b-D-galactoside (ONPG) [37]. Two to

three independent transfection experiments were run, each time in

triplicate wells, and results are corrected for transfection efficiency by

expressing data as the ratio of luciferase to b-galactosidase activity.

Analysis of acetylated proteome
Protein extraction and trypsin digest. Detection of protein

acetylation was previously shown to be more optimal when the

enrichment step as performed at the peptide level [31,38]. Liver

tissue was homogenised in Lysis buffer, consisting of 50 mM Tris-

HCl, pH 7.4, 0.5% NP-40 substitute, 150 mM NaCl, 20 mM

MgCl2, 10 mM trichostatin A, 10 mM nicotinamide, 50 mM

butyric acid, and protease inhibitor cocktail (Pierce, Cramlington,

UK), using a Tissuelyser at 20 mHz for 3 min (Qiagen Ltd.,

Crawley, UK). Samples were rotated in a cold room for 30 min,

sonicated, and centrifuged 13000 rpm for 20 min at 4uC to

remove solids. Protein concentration was measured (Pierce BCA

protein assay kit, Perbio Science UK, Ltd, Cramlington, UK), and

30 mg of protein from each sample was methanol-chloroform

extracted [39]. The pellet was resuspended in 6 M urea in 0.1 M

Tris, pH 7.8 by vortexing and sonicating. The proteins were

reduced in 10 mM DTT, alkylated with 40 mM iodoacetamide,

and reduced again in 40 mM DTT. Urea concentration was

reduced to 0.7 M by diluting with water, then trypsin was added in

a 1:50 ratio (i.e. 60 mg trypsin for 30 mg protein), and incubated at

37uC overnight. Samples were desalted using Sep-pak C18

cartridges (Waters Ltd, Elstree, UK), then evaporated to dryness

in a speed-vac.

Immunoprecipitation of acetylated peptides. Pellets were

resuspended in RIPA buffer (50 mM Tris, pH 7.4, 150 mM NaCl,

1% NP-40 substitute (Sigma-Aldrich, Gillingham, UK), 0.25%

Na-deoxycholate, 1 mM EDTA), then diluted in NET buffer

(50 mM Tris, pH 7.4, 5 mM EDTA, 150 mM NaCl). The tryptic

peptides were cleared of non-specifically binding peptides by

incubating with Protein A-dynabeads (Invitrogen, Paisley, UK).

Immunoprecipitation was performed using a mixture of mouse

monoclonal and rabbit polyclonal pan-acetyllysine antibodies

(NEB Cell Signalling Technology, Hitchin, UK) conjugated to

Protein A-dynabeads in NET buffer. Beads were washed three

times with NET buffer, transferred to a fresh tube, and eluted

twice with ice-cold 100 ml elution buffer (100 mM glycine,

pH 2.5). Eluates were desalted using Supel-Tips C18 micropipette

tips (‘‘zip-tips’’, Sigma-Aldrich, Gillingham, UK), and evaporated

to dryness in a speed-vac.

LC-MS/MS Mass-spectrometric analysis. The analysis of

digested immunoprecipitated material was performed by LC-MS/

MS using an orbitrap Velos (Thermo) coupled to a nano-UPLC

system (NanoAcquity, Waters) using a reversed phase

75 mm6250 mm C18 column as described [39]. MS/MS spectra

were searched against the NCBInr Rodentia database

(v2012.07.08, 18970916 sequences) using the Mascot search

engine v2.3.01, allowing two missed cleavage and 20 ppm/

0.5 Da mass deviations in MS/MSMS, respectively. Carbamido-

methylation of cysteine was a fixed modification. Oxidation of

methionine, and acetylation of lysine were used as variable

modifications. Acetylated peptides were identified on a Mowse

score probability based scoring algorithm with a .95% confidence

of identification. Acetylated lysine residues were detected as

+42.01 Da mass tags and MS/MS spectra required at least four

consecutive b or y ions. Representative MS/MS spectra of acetyl-

lysine containing peptides are shown in Figure S2, and the peptide

scores for each acetylated peptide observed in either the GK or

BN samples were compared for an indication of a change in

relative abundance (Table S6).

RNA-sequencing
RNA-sequencing was performed according to standard operat-

ing procedures by the High-Throughput Genomics Group at the

Wellcome Trust Centre for Human Genetics. Briefly, mRNA was

selected from the total RNA, then fragmented and converted to

cDNA. The cDNA was end-repaired, A-tailed and adapter-ligated

before amplification and size selection. The prepared libraries

were multiplexed and quality controlled before 51-nt paired end

sequencing on an Illumina HiSeq2000 next generation sequencing

machine.

Sequencing reads were mapped to the rat reference genome

(RGSC3.4, Ensembl release 69) using tophat version 2.0.6 [40].

Bam files were filtered using samtools version 0.1.17 [41],

removing alignments with MAPQ ,15. Filtered Bam files were

sorted and duplicates were removed using samtools. Differential

expression was detected with edgeR [42]. Significant enrichment

of KEGG pathways was analysed with goseq [43].
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