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Abstract

The brain response to auditory novelty comprises two main EEG components: an early mismatch negativity and a late P300.
Whereas the former has been proposed to reflect a prediction error, the latter is often associated with working memory
updating. Interestingly, these two proposals predict fundamentally different dynamics: prediction errors are thought to
propagate serially through several distinct brain areas, while working memory supposes that activity is sustained over time
within a stable set of brain areas. Here we test this temporal dissociation by showing how the generalization of brain activity
patterns across time can characterize the dynamics of the underlying neural processes. This method is applied to
magnetoencephalography (MEG) recordings acquired from healthy participants who were presented with two types of
auditory novelty. Following our predictions, the results show that the mismatch evoked by a local novelty leads to the
sequential recruitment of distinct and short-lived patterns of brain activity. In sharp contrast, the global novelty evoked by
an unexpected sequence of five sounds elicits a sustained state of brain activity that lasts for several hundreds of
milliseconds. The present results highlight how MEG combined with multivariate pattern analyses can characterize the
dynamics of human cortical processes.
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Introduction

When faced with an unexpected sensory event, the brain must

perform two major computations: i) identify the most probable

reason for the novelty and ii) determine whether this novel

information is relevant to future decisions. Indeed, when

comparing the brain response elicited by expected sounds

(‘‘standard’’) and unexpected sounds (‘‘deviant’’), two radically

different electroenphalography (EEG) components are observed:

the mismatch negativity (MMN), peaking over centro-anterior

EEG sites between ,100 and 150 ms [1], and the P300 over

centro-posterior electrodes [2]. The MMN is primarily generated

within superior temporal areas [3–6], whereas the P300 involves

distributed areas of the frontal, parietal and temporal lobes [7,8].

The MMN and P300 are also functionally dissociable. The MMN

is robust to instructions, subjects’ attention, and the subjects’ state

of consciousness [4,5,7,9–15]. Conversely, the full-scale P300 is

highly sensitive to whether or not subjects consciously detect the

novelty [7,8,11]. Finally, whereas any low-level novelty in pitch,

duration, or identity triggers an MMN [1,4], the P300 requires the

violation of relevant rules constructed over several seconds

[7,11,15,16].

The two EEG components may thus reflect two different

computations: the P300 is thought to index a working memory

update, passing relevant information to the next trial [8,17,18],

whereas the MMN would reflect a prediction error signal

[4,19,20], elicited whenever an incoming stimulus differs from its

internally generated prediction [21–23].

In previous studies, we have used fMRI [7], EEG [7,9–11,15],

MEG [11,15] and intracranial recordings [7,11] to identify the

location (e.g. ‘‘Which brain areas generate the MMN?’’) and the

timing (e.g. ‘‘When is the MMN peaking?’’) of these different brain

responses. A slightly different question relates to their dynamical

structure. Crucially, working memory and predictive coding imply

fundamentally different dynamics: predictive coding stipulates that

errors propagate through a series of different areas until the

appropriate internal model cancels the prediction error [21–23],

while working memory implies an active maintenance of

information in a stable activity pattern. In other words, the
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MMN is predicted to reflect a fast serial process whereas the P300

should reflect a slow and stable activation.

Here, we put these predictions to a test using magnetoenceph-

alography (MEG) recordings and multivariate decoding. To

characterize the two predicted dynamic patterns, a multivariate

pattern classifier was first trained to discriminate standard from

deviant trials at each time sample. Subsequently, their ability to

generalize to new time samples was examined. A temporal

generalization matrix that can distinguish two types of dynamics is

thus obtained (Figure 1). This approach was applied to two

different violations of auditory regularities originally designed to

isolate the MMN and the P300 components (Figure 2) [7].

Methods

Procedure, Material & Apparatus
The Local-Global experimental design [7] enables the compar-

ison of effects engendered by physically identical but contextually

different auditory stimuli (Figure 2). Subjects were repeatedly

presented to five-sound sequences which were either composed of

five identical sounds (xxxxx, ‘‘local standard’’, LS), or four

identical sounds followed by a deviant one (xxxxY, ‘‘local

deviant’’, LD). Trials were presented in two types of blocks, both

composed of frequent (‘‘global standard’’, GS) and rare trials

(‘‘global deviant’’, GD) pseudo randomly distributed at least one

and at most six global-standard trials apart. In block type 1, 80%

of the trials were local standard (LSGS), and 20% were local

deviant (LDGD). In block type 2, 80% of the trials were local

deviant (LDGS), and the remaining trials were local standard

(LSGD). This 262 design thus allows dissociating the effect elicited

by a local violation (local standard – local deviant) or by a global

violation (global standard – global deviant) (Figure 2). Each block

was preceded by a ,30 s habituation phase during which only

global standard trials were presented. Habituation trials and trials

following a global deviant trial were excluded from the analyses,

which were thus based on a total of 780 trials. Other, ‘‘omission’’

trials, that are the focus of a previous study [15], were excluded

from the present analyses. Further methodological details can be

found in [11,15].

Each recording session comprised 14 blocks (780 trials) of

,3.5 minutes duration. Nine healthy volunteers (Age M = 25

years old, SD = 4.7 years, 5 females) were asked to pay attention to

the auditory stimuli while keeping their eyes opened and fixated at

a central cross. Note that unlike Bekinschtein et al. [7]’s original

design, subjects were not asked to count the global deviant trials.

All subjects gave written informed consent to participate to this

study, which was approved by the local Ethics Committee (Comité

de protection des personnes ‘‘Ile-de-France VII’’, hôpital de

Bicêtre, 78 rue du Général-Leclerc, 94270 Le Kremlin-Bicêtre).

Traditional analyses (topography, sources, etc.) have been partially

reported in [11,15].

Signal space separation (SSS, [24]) was applied to suppress

external magnetic interference, interpolate noisy MEG sensors

and realign MEG data into a subject-specific head position with

Maxfilter software application (Elekta NeuromagH). This reference

head position was determined from head position measurements

acquired at the beginning of each recording session. Eye blink and

cardiac artifacts were corrected separately for each type of channel

(gradiometer and magnetometers) using signal space projection

(SSP, [25]). All signals were digitally low-pass filtered at 40 Hz and

down-sampled to 256 Hz. Trials were then segmented from

2800 ms to 700 ms after the critical stimulus onset, and were

corrected for baseline over a 200 ms window before the onset of

the first of the five sounds. Trials with large artifacts remaining

after correction for ocular and cardiac artifacts were identified

manually and excluded from the present analyses.

Contrasts and classes
Two types of classifications were attempted (Figure 2): (1) local

standard (n = 390) versus local deviant trials (n = 390); (2) global

standard (n = 600) versus global deviant trials (n = 180). Both of

these analyses contrast trials that are evenly distributed across

blocks and are therefore free of potential block-design artifacts

[26].

Multivariate pattern analysis (MVPA)
Multivariate pattern analyses (MVPA) were implemented to

systematically track the dynamics of neural processes recorded

with MEG. Our method is based on the common principle that

Figure 1. Detecting two types of brain dynamics by assessing
the ability of multivariate pattern classifiers to generalize
across time. The temporal generalization method can characterize the
dynamics of neural activity. (left) When the stimulus evokes a serial
chain of brain activations, ‘‘diagonal classifiers’’, trained and tested at
each time point can extract stimulus information throughout the
activation period. However, as each classifier is specific to the time
point at which it has been trained, they cannot generalize across other
time samples. The generalization time analysis thus reveals a diagonal
generalization matrix. (right) By contrast, if the underlying activity is
sustained over time, then all classifiers would capture the same pattern.
These classifiers would thus generalize to one another and lead to a
square generalization matrix.
doi:10.1371/journal.pone.0085791.g001

Figure 2. Violating two types of auditory regularities. The Local-
Global experimental design [7] is a variation of the auditory oddball
task. It consists in presenting series of 5-sound sequences which are
composed of five identical sounds (local standard) or four identical
sounds followed by a deviant one (local deviant). The global regularity
is established across trials by making 80% of the trials identical (global
standard). The design thus dissociates the violation of local predictions
(change of sound in a given trial) and global predictions (change of
sequence across trials).
doi:10.1371/journal.pone.0085791.g002

Temporal Generalization Index Brain Dynamics
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when a brain area – or set of areas – is activated, its magnetic fields

project to the MEG sensors in a specific spatial pattern, and can

thus be isolated by a particular topography. The aim of the present

MVPA is thus to construct, at each time point and for each subject

separately, a classifier that specifically isolate such topography.

The detailed procedure of the multivariate pattern analysis is

reported in [11] and a Python script has been made publicly

available [27] in the MNE software [28] to test temporal

generalization method on a public dataset [29]. A ten-fold

stratified cross-validation was implemented for each within-subject

analysis. Stratified cross-validation balances the proportion of each

class (LSGS, LDGS, LSGD, LDGD) in each fold. For each fold

and at each time sample, a linear support vector machine (SVM,

[30]) was fit on 9/10 of the trials (training set) with a single time

sample recorded across the 306 MEG sensors. MEG signals were

normalized (subtract mean and divide by standard deviation)

within the cross-validation and for each classifier separately. No

dimensionality reduction or feature selection was applied here, as

the number of features remained relatively low (n = 306). Each

SVM aimed at finding the hyperplane (w, i.e. the topography) that

best discriminated standard and deviant trials at each time sample.

Note that because the SVM kernel is linear and because the SVM

features are the amplitude recorded in MEG channels, the present

analysis can only capture brain waves that are phase-locked to the

auditory stimulation (i.e. evoked but not induced brain activations

[31]). Following previous analyses [11], the regularization

parameter (C) was fixed to 1. The SVM was supplemented with

Platt’s method [32] that provides a continuous, probabilistic,

estimate (e.g. continuous prediction: probability of being deviant)

rather than a categorical output (discrete prediction: either deviant

or local standard). Classification performance was then computed

with a Received Operative Curve (ROC), based on the

probabilistic classification of an independent test set (1/10).

Finally, a sample weighting procedure was applied in proportion

to the classes (LSGS, LSGD, LDGS, LDGD) so as to equalize the

contribution of each of these categories in the definition of the w.

All multivariate analyses were performed with the Scikit-Learn

toolbox [33].

As discussed elsewhere (e.g. [34–36]), cross-validation methods

can be less sensitive than classical inferences, partly because each

fitting procedure is trained on a subset of the data. However, the

multidimensional distribution of the present data being unknown

and the number of samples (i.e. number of trials for each subject)

being relatively small compared to the number of features (i.e.

number of channels), the assumptions of traditional multivariate

inference statistics (e.g. MANOVA) would not hold. Moreover,

cross-validating is here particularly important because MEG

signals are auto-correlated. As a consequence, training a classifier

on a set of trials at time t could potentially generalize to t9 only

because of auto-correlated noise, and therefore even in the

absence of information.

Generalization across Time. Crucially, each classifier is not

only assessed on its ability to decode information at the time point

at which it has been trained, but is also assessed on its ability to

generalize across other time samples. The principle of the present

temporal generalization method is similar to the one employed in

previous multi-unit recording studies, in which one or several

patterns of neuronal activity are first isolated with a linear classifier

at a particular time window and then tracked over time (e.g. [37–

41]). Recently, similar approaches have also been used with MEG

recordings (e.g. [42–45]). Once t linear classifiers have been fitted

(where t is the duration of a trial expressed in time samples), each

of these classifiers is tested on its ability to discriminate the two

types of trials at any time t9. This method thus leads to a temporal

generalization matrix of training time x testing time. In each cell of the

matrix, decoding performance is summarized by the Area Under

the Curve (AUC). Classifiers trained and tested at the same time

point correspond to the diagonal of this t2 matrix, and are thus

referred to as ‘‘diagonal’’ decoding. The decoding performance

obtained when t9 differ from t is referred to as ‘‘off-diagonal’’

decoding. Note that the cross-validation was applied indepen-

dently of the temporal generalization analyses: the trials used in

the training set at time t were never included in the generalization

at time t9 as consecutive time samples are not independent. Simple

simulations are detailed below in order to clarify the aim of this

analysis.

To compute the average duration over which temporal

generalization remained significant, we computed the number of

time samples during which each classifier could significantly

predict the trials’ classes, using false discovery rate (FDR) to

correct for multiple comparison. To avoid underestimating the

mean generalization time, we only considered the time window

during which the diagonal classifiers performed above chance

(82 ms–450 ms).

Statistics & Effect sizes. To test for statistical significance

within subjects, Mann-Whitney U tests were performed on the

classifiers’ continuous outputs, with trials as the random variable.

Similarly, across-subjects statistics were performed using Wilcoxon

Signed Rank Tests. Effect sizes are summarized with the AUC

computed from empirical ROC analyses. An AUC of 50% implies

that true positive predictions (e.g. trial was correctly predicted to

belong to class a) and false positive predictions (e.g. trial was

erroneously predicted to belong to class a) are, on average, equally

probable; an AUC of 100% indicates a perfect prediction with no

false positives. In principle, for the diagonal decoding, classifica-

tion performance should not yield AUCs that are significantly

below 50%. However, when a classifier fitting and testing time

differ, AUCs can be significantly below 50%, as the pattern of

brain activation carrying the discriminative information can be

flipped in sign between t and t9. Statistical analyses were performed

with MATLAB 2009b.

Two common yet important statistical points may be worth

noting here. First, statistical significance (i.e. p-value) is related but

distinct from classification performance (i.e. AUC). Indeed, while

the former indicates whether the test is likely to reflect a non-

random result (i.e. ‘‘Is there decodable information?’’), the latter

indicates the extent to which each trial can be classified from MEG

signals (i.e. ‘‘How much information is there?’’). Second, the use of

non-parametric statistical methods was motivated by the non-

Gaussian distribution of our data (see [11]’s supplementary

materials).

Simulations. A series of simulations were generated to test

the principle of the temporal generalization method. For each

class, 50 trials (50% in each class) were generated across 20

simulated sensors and 80 time-samples (t). Each generator (g),

simulating one or several brain areas, projected on a random

combination of sensors (C), and was activated (A) with a temporal

profile specific to each simulation. Each generator was thus

defined by a vector of 2061 features of normally distributed

values, as well as by a second vector of t time-samples indicative of

its activity. Each trial (S(c,t)) corresponded to the sum of the

generators’ activities in the direction of the class (class y = [21, 1]):

S(c,t)~y
X

g

C(g)A(t)

Temporal Generalization Index Brain Dynamics
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Subsequently, Gaussian white noise was added to all signals.

Signal-to-noise ratio was set to 0.5. Finally, each simulation was

repeated ten times to simulate a group of subjects. In the

simulation of a sequential pattern, 10 generators were successively

active for six time samples each. In the simulation of sustained

brain activity, a single generator was active for 60 time samples

(Figure 1).

Results

The generalization-across-time analyses were applied to nine

subjects who performed the Local-Global task while their brain

activity was recorded with MEG.

The average event related fields (ERF) elicited by local auditory

violations (local standard – local deviant) led, on average, to the

traditional mismatch field, peaking at around 120 ms after the

onset of the fifth sound (Figure 3, top left). The average ERF

elicited by global auditory violations (global standard – global

deviant) led to a sustained activity from ,300 ms after the onset of

the fifth sound (Figure 3, bottom left). Traditional analyses,

including source reconstruction, are further detailed in [11,15].

Note that traditional ERF analyses were applied across subjects,

and are thus insensitive to inter-individual variability. In Figure 3,

the topography of a single representative subject is plotted in

comparison to the group average in order to highlight the

potential loss of information induced by first order statistics

applied at the group level.

A traditional ‘‘diagonal’’ decoding method, consisting in

repeatedly training and testing a classifier with the MEG sensor

data recorded at each time point, revealed the presence of

decodable information between approximately 100 ms and

450 ms following the onset of the fifth sound (all pFDR,.05).

Local auditory violations led to a decoding peak at 120 ms

(AUC = 69.6%67.9, p = .003) whereas global violations lead to a

stable decoding performance from ,150 ms to 700 ms (e.g.

t = 350 ms: AUC = 66.3%64.0, p = .003). This result confirms

previous analyses showing a mismatch response around 120 ms

[3,15] and significant local and global effects ranging from 200 ms

to 700 ms [7,10,11,15].

Crucially, generalization-across-time demonstrated remarkably

different dynamics for the local and global effects (Figures 3, top

versus bottom). In the local contrast (decoding of local standards

versus local deviants, corresponding to the classical mismatch

response), none of the classifiers generalized over the full time

window. Although the ‘‘diagonal’’ classifiers decoded information

about local auditory novelty within a long time interval of

approximately 400 ms, each classifier significantly generalized for

,100 ms on average (pFDR,.05) and did not significantly differ

from the corresponding diagonal classifiers over a time window of

only ,50 ms (pFDR,.05). Six classifiers, trained between 100 ms

and 600 ms are presented in Figure 3 (top middle), and

correspond to six lines of the temporal generalization matrix

(Figure 3, top right). The results showed a clear diagonal pattern of

temporal generalization and thus indicated that each classifier only

generalized for a limited amount of time: each time sample was

thus associated with a slightly different pattern of MEG activity.

This result suggests that different brain regions are serially

recruited, each for a short-lived time period, in response to a

local auditory violation.

Interestingly, the classifiers trained around 120 ms generalized

in the opposite direction around 200 ms. For example, a classifier

trained at 114 ms led to a high AUC at this time point

(AUC = 70.7%67.2, p = .003), but generalized to an AUC below

50% at 200 ms (AUC = 34.3%611.3, p = .003). This result means

that trials were predicted to belong to the opposite class (i.e.

standard trials were systematically predicted as deviant and vice

versa). This below-chance performance suggests that the pattern of

brain activity is inverted between these two time points. To test

whether this reversal reflects the polarity reversal of a single

pattern, the initial peak of diagonal decoding performance was

compared to the peak of anti-generalization performance (i.e.

AUC(t,t) versus (1-AUC(t,t9)) and vice versa. The results showed that

diagonal performance was significantly higher than anti-general-

ization performance (F(8,1) = 5.75, p = .024). This result thus

suggests that this reversal was only partial, and that a qualitatively

different pattern of brain activity was elicited at 110 and 200 ms

respectively. This hypothesis is further supported by the fact the

diagonal decoding performance was always significantly above

chance between these two time samples (all p,.004) whereas a

simple polarity inversion would have led the diagonal decoding

performance to drop to chance in the middle part of the reversal.

However, as this pattern remains more complex than what was

initially predicted, we would argue that only the late part of the

diagonal (150–450 ms) unambiguously followed the simulation of

serial processing (Figure 1, left).

Applying these analyses to the global contrast (global standard –

global deviant) led to a strikingly different pattern of decoding

performance. Within a broad temporal window, a nearly ‘‘square’’

pattern of temporal generalization indicated that most classifiers,

regardless of their training time, produced very similar decoding

performance across all testing times (Figure 3, bottom right).

Decoding performance was statistically significant from approxi-

mately 125 ms until the end of the trial (700 ms). Sample classifiers

trained between 100 ms and 600 ms and the full temporal

generalization matrix are presented in Figure 3 (bottom middle).

Overall, these findings show that a similar combination of MEG

sensors can discriminate frequent auditory sequences from rare

auditory sequences across many different time points. These

results thus suggest that the underlying patterns of brain activity

were sustained in a stable form for several hundreds of

milliseconds. A weak but significant difference between the

temporal generalization of the early classifiers (,350 ms, all

pFDR,.05) and the traditional ‘‘diagonal’’ classifiers was also

observed. This suggests that the early brain response to a global

violation was partly changing over time, and became fully stable

from 350 ms on.

Discussion

We characterized the dynamics of the brain response to two

types of auditory novelty detection. We predicted that i) local

novelties should elicit a serial propagation of prediction error in

successive brain areas whereas ii) global novelties should lead to an

active maintenance of a particular pattern of brain activity.

Traditionally, multivariate pattern classifiers are trained and tested

at the same time point (e.g. [11,46–49]) – an approach hereafter

referred to as ‘‘diagonal decoding’’. Here, by contrast, each

classifier was trained to distinguish standard from deviant trials at

distinct time sample, and evaluated their respective ability to

generalize to all other time samples. The results showed that the

two types of auditory violations are characterized by strikingly

distinct dynamics.

Violation of a local auditory expectation leads to the
serial progression of short-lived neural activity patterns

Decoding local-standard versus local-deviant trials revealed a

diagonally-shaped pattern of temporal generalization, together

Temporal Generalization Index Brain Dynamics
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with a partial reversal of decoding performance in an early time

window.

The diagonally-shaped decoding performance shows that the

topographical pattern of magnetic fields changes continuously over

time. This novel result therefore suggests that the violation of a

low-level auditory regularity successively and temporarily recruits

a series of different brain areas and thus supports the early

proposal that the low-level auditory novelties recruit several

different generators [50].

Furthermore, this finding clarifies the neural mechanisms

responsible for the detection of low-level auditory novelties.

Indeed, studies based on a similar task and in combination with

fMRI [4,7,51], intracranial EEG [7,11] and source reconstruction

of MEG recordings [15], had already shown that local auditory

novelties elicit a strong BOLD and electric response in the vicinity

Figure 3. Generalization across time of the local and global responses to auditory novelty. At each time point, a classifier was trained to
extract the pattern of MEG activity that distinguishes local-standard from local-deviant trials (mismatch effect, top) or to contrast global-standard
from global-deviant trials (bottom). Each classifier was subsequently tested on its ability to generalize this discrimination to all other time samples.
(left) Differential patterns (standard – deviant) of brain activity across subjects as well as in a single representative subject using classic univariate
analyses. For simplicity purposes, only the magnetometers are plotted (n = 102/306 channels). Note that, unlike subject-specific decoding, classic
event related fields (ERF) analyses are tested across subjects, and are thus insensitive to inter-individual variability of subjects’ topographies. (middle)
Generalization of six different classifiers trained at regularly spaced times between 100 ms and 600 ms (purple), compared to the traditional
‘‘diagonal’’ decoding method where a different classifier is trained and tested at the same time point (black). The thick lines indicate significant
decoding scores. The yellow areas indicate when the diagonal performance was significantly different from the generalization across time. Error bars
indicate the standard error of the mean (SEM) across subjects. (right) Generalization matrices. Decoding performance is plotted as a function of
training time (vertical axis) and testing time (horizontal axis) for all classifiers. Decoding of the local-violation effect leads to a diagonal-shaped
decoding performance from 82 ms to 508 ms (AUC over 50% in red), demonstrating that each classifier was only able to predict trials’ classes for a
short amount of time. Decoding of the global-violation effect leads to a square generalization matrix, suggesting that the underlying brain activity is
essentially stable during this time period. Early classifiers of the global violation (,350 ms) are slightly lower than the traditional ‘‘diagonal’’ decoding
performance, thus suggesting only a small change in the underlying pattern of activity.
doi:10.1371/journal.pone.0085791.g003
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of Heschl’s gyrus and the underlying segment of the superior

temporal gyri – including when the novelty consists in omitting the

last sound [15]. While these studies characterized the anatomical

location of the neuronal generators of the MMN, they did not

investigate the extent to which distinct generators were serially

activated, or, conversely, whether the MMN reflected the

homogeneous activation of a single neural system.

More generally, the serial activations observed presently also fit

with predictive-coding theories, which postulate that distinct brain

regions compare internally generated predictions to the incoming

bottom-up evidence [21–23]. Subtracting the sensory evidence

and the prediction leads to a ‘‘prediction error’’ signal, which is

passed on to higher areas that iteratively search for an internal

model making sense of the incoming data. Empirical and modeling

studies have shown that the MMN could reflect a prediction error

[15,20]. The results supplements this proposal by confirming that

unexpected sounds lead to a serial propagation of brain activity.

Finally, the early reversal of decoding performance (‘‘worse-

than-chance’’ generalization between 120 ms and 200 ms) implies

that the pattern of brain activity that distinguishes between

standard and deviant sounds partly reverses between these time

points. One interpretation is that the brain area(s) which is/are

initially activated is/are subsequently inhibited (or vice versa). This

interpretation fits with intracranial recordings [6,7] and source

reconstruction analyses [3,15] which typically show a similar

reversal in the primary auditory cortex. However, the physiolog-

ical interpretation of this pattern remains ambiguous. For

example, the above excitation/inhibition hypothesis is indistin-

guishable from an alternative hypothesis related to the reversal of

currents flow. Indeed, if the neural currents first flow out the

cortex (bottom-up) and then flow back in (top-down), the magnetic

field would also reverse. Such a reversal may occur if an early

feedforward prediction error signal is followed, in the same region,

by a later top-down cancellation signal.

Violation of a global auditory regularity leads to a single
sustained activity pattern

In sharp contrast with the local-violation results, decoding

global standard versus global deviant trials led to a nearly square-

shaped temporal generalization matrix. This pattern results from

the fact that whenever a classifier was trained at a given time

sample, it generalized almost perfectly to any other informative

time sample. This result thus suggests that the underlying neuronal

activity is essentially stable from 200 to 700 ms approximately. In

other words, a single sustained network of brain areas appears to

be recruited and sustained during this time window. However, and

although temporal stability is the dominant feature of the temporal

generalization of the global contrast, a small but significant

advantage along the diagonal compared with off-diagonal

decoding performance (i.e. generalizing over time) was also

observed between 200 and 350 ms. This pattern suggests that,

during this period, a small temporal evolution of brain activity

coexisted with the main effect of stable maintenance.

Interestingly, the global effect rose slightly later than the local

violation one, and thus fits with the idea that this more abstract

violation recruits higher levels of processing than the local

novelties. Together with fMRI [7] and source analyses [15], these

results also support the idea that this type of violation durably

engages working memory resources allocated by the prefrontal,

parieto-temporal cortex [52–54]. The meta-stable activity of this

network has also been proposed as a hallmark of information

broadcasting and conscious access [55]. It is unclear, however,

whether the present activity corresponds to the content of working

memory or to a more transient updating process.

A systematic method to characterize the temporal
dynamics of brain activity

Decoding in general and the present temporal generalization

method in particular, present several advantages. With advances

in neuroimaging, the number of brain signals that are recorded

simultaneously increases rapidly and it becomes difficult to

embrace all of the data at once. The present recordings were,

for instance, obtained from 204 gradiometers and 102 magne-

tometers, each capturing different directions of the magnetic fields

and their spatial gradients. Yet, the relationship between MEG

sensors and brain areas dramatically varies as a function of

subjects’ anatomy and position in the scanner. Source analysis

provides a way to put these different signals in a common space

across subjects but suffers from strong methodological difficulties

and often generates an even larger dimensionality problem than

scalp analyses. Given these issues, and as discussed elsewhere (e.g.

[11,45]), the method of multivariate decoding followed by

temporal generalization presents several major advantages. First,

it combines all simultaneous recordings into a unique information

estimate. Second, each classifier is fitted on a single subject

separately, which maximizes sensitivity.

These two advantages are generic to decoding analyses. For

example, in a previous study [11], we showed how multivariate

pattern analyses could be applied to EEG, MEG and intracranial

recordings to maximally detect the MMN and the P300b following

an unexpected auditory stimulus. The results demonstrated that

such techniques could be efficiently applied to individual subjects

and thus allowed investigating clinical populations who often

present abnormal EEG topographies and latencies because of

brain and skull damages. In this case however, decoding

techniques are used to detect brain activations independently of

their underlying spatio-temporal properties. By contrast, we have

shown here how decoding can be used to characterize the underlying

neural dynamics evoked by unexpected sounds. Interestingly, and

unlike source reconstruction, the dynamics of cortical activity can

be identified without relying on the strong hypotheses associated

with source reconstruction. Generalization across time analyses

therefore provides a powerful supplement to traditional MEG

analyses and paves the way to a systematic characterization of the

dynamics subtending cognitive processes.
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