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Abstract

With the goal of identifying splicing alterations in myotonic dystrophy 1 (DM1) tissues that may yield insights into targets or
mechanisms, we have surveyed mis-splicing events in three systems using a RT-PCR screening and validation platform. First,
a transgenic mouse model expressing CUG-repeats identified splicing alterations shared with other mouse models of DM1.
Second, using cell cultures from human embryonic muscle, we noted that DM1-associated splicing alterations were
significantly enriched in cytoskeleton (e.g. SORBS1, TACC2, TTN, ACTN1 and DMD) and channel (e.g. KCND3 and TRPM4)
genes. Third, of the splicing alterations occurring in adult DM1 tissues, one produced a dominant negative variant of the
splicing regulator RBFOX1. Notably, half of the splicing events controlled by MBNL1 were co-regulated by RBFOX1, and
several events in this category were mis-spliced in DM1 tissues. Our results suggest that reduced RBFOX1 activity in DM1
tissues may amplify several of the splicing alterations caused by the deficiency in MBNL1.
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Introduction

Myotonic dystrophy type 1 (DM1) is a multisystem disorder that

affects primarily skeletal muscles causing myotonia, muscle

weakness and degeneration, but also causes impaired heart

function, ocular cataracts and various dysfunctions of the central

nervous system. DM1 is caused by the expansion of CTG-

trinucleotide repeats in the 39-untranslated region (UTR) of the

DMPK gene. The most commonly accepted mechanistic expla-

nation for this disease is that the nuclear accumulation of

transcripts containing CUG expansions sequesters the RNA

binding protein MBNL1 and stabilizes the CELF family member

CUGBP1 through hyperphosphorylation [1–6]. The disregulated

expression and activity of these RNA binding proteins in DM1

individuals leads to perturbations in the alternative splicing

program of key genes, such that many are switched to their

embryonic profiles [2,7]. Among the mis-splicing events that have

been documented [8], splicing reversions occurring in the muscle

chloride channel CLCN1 [9,10], the insulin receptor INSR [11]

and BIN1 [12] contribute respectively to myotonia, insulin

resistance and muscle weakness. Since MBNL1 has also been

implicated in transcription and other aspects of RNA biogenesis

[13–15], and since CUGBP1 can regulate translation [16,17],

other defects in gene expression are expected. Moreover, the CUG

repeat expansion may have other effects on gene expression, as

suggested by a study in a CTG repeat-expressing mouse that

identified changes in the abundance of many extracellular matrix

mRNAs [14]. In addition to MBNL1 and CUGBP1, the RNA

binding proteins hnRNP H and MBNL2 have also been

implicated in DM1 pathogenesis [4,14,18–21].

While the full spectrum of splicing alterations in DM patients

remains to be determined, a variety of model systems have been

used to study these alterations and determine the contributions
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that CUG repeats, MBNL downregulation, and CUGBP1

overexpression have to disease evolution [8]. Modeling trinucle-

otide repeat instability in transgenic mice has allowed the

recapitulation of human splicing defects in a few orthologous

murine genes [14,22], and the replication of some of the muscle

phenotypes and histopathology of human DM1 [23–25]. Notably,

MBNL1 knockout mice display myotonia due to abnormal

CLCN1 splicing and develop myopathy, but exhibit no sign of

muscle degeneration [26]. On the other hand, induced expression

of CUGBP1 in adult skeletal muscle or the heart also mimics DM1

histopathology [27,28]. Microarray analysis has identified mis-

splicing events in the skeletal muscle of the HSALR mouse (FVB/n

strain) that expresses approximately 250 CUG-repeats [14].

Comparing its splicing profile with that of MBNL1 knockout

mice revealed that 128 of a total of 172 mis-splicing events were

common to both mouse models. Thirty-three of these were

validated by RT-PCR and three were confirmed to be mis-spliced

in the majority or all human samples tested [14].

To reveal splicing alterations that may be relevant to the DM1

phenotypes, we deployed our RT-PCR screening platform to

identify which mis-splicing events documented in the HSALR and

MBNL1 knockout mice (FBV/n strain) were similarly altered in

mice (C57BL6/129/OLA/FVB strain) displaying a milder DM1

phenotype. We also used the platform to identify muscle-relevant

mis-splices in myoblast cell cultures derived from embryonic and

adult DM1 tissues. Because one of the DM1 mis-splicing events

identified in adult DM1 tissues occurred in the gene encoding the

splicing regulator RBFOX1, we further explored the regulatory

interconnections between MBNL1 and RBFOX1, and discovered

that these RNA binding proteins cooperate to regulate many

muscle-relevant genes, a subset of which are mis-spliced in DM1.

Materials and Methods

The study has been approved by the Ethics Committee of

CRCHU de Quebec (project A12-08-1019). Human tissues and

cells were obtained from the MyoBank-CHUQ, which has been

approved by the Ethics Committee of the CRCHU de Quebec

(project A12-08-1022). Anesthesia of mice was done with 2%

isoflurane, CO2 followed by cervical dislocation. The protocol was

approved by the CRCHU de Quebec institutional Animal Care,

the ‘‘comité de protection des animaux du CHUQ’’ (CPAC,

protocol No 2103151-1).

Mouse, human cell lines and tissues
Mice carrying the CUG600 repeats are described in [29]. Mice

carrying the CUG1200 repeats are called DMSXL and are

described in [30]. Human normal satellite muscle cells were

derived from quadriceps muscle biopsy of 41 and 47 year old

females. Human fetal normal satellite muscle cells (HFN) were

derived from a 15 week old fetus. Human DM1 satellite muscle

cells carrying 750 CTG repeats (ST-750), were derived from a 20

week old fetus. Human DM1 satellite muscle cells carrying 1200

CTG (ST-1200) and 3500 (ST-3500), were derived from a 13 and

a 15 week old fetus. Human muscle satellite cells were grown in

MB-1 medium supplemented with 15% heat-inactivated fetal

bovine serum, 5 mg/ml insulin, 0.5 mg/ml BSA, 10 ng/ml

epidermal growth factor and 0.39 mg/ml dexamethasone (prolif-

erative medium), as previously described [31,32]. For human

muscle satellite cell differentiation, the cells were subsequently

transferred to DMEM supplemented with 0.5% heat-inactivated

fetal bovine serum,10 mg/ml insulin and 10 mg/ml apo-transferrin

(differentiation medium). All cultures were incubated at 37uC in a

humid atmosphere containing 5% CO2. Normal and DM1 cells

were used between the 4th and 6th passages. The number of

passages refers to the total number of passages from the time

following the isolation of the initial satellite muscle cell population

from the fetus. DM1 skeletal muscle samples were obtained from

the left biceps brachii of 3 females aged 44, 45 and 48 years old

and two males, aged 31 and 40 years old. All donors had an adult

form of the disease. Normal skeletal muscle samples were obtained

from 3 males aged 32, 41 and 48 years old and one 41 years old

female. Biopsies were done during surgical intervention. All

human DM1 muscle cell lines and DM1 tissues were obtained

from the Quebec DM1 biobank, following consent from the

CHUQ ethical committee

RNA interference assay with siRNAs. The siRNAs used to

knockdown the expression of RNA-binding proteins were

purchased from IDT (Coralville, Iowa) siRNA target sequences

were GACGCAAUAACUUGAUUCAdTdT (MBNL1) and

GGUCUCGUUCUUUCUUCAUdTdT (RBFOX1). siRNAs du-

plexes carrying dTdT 39 overhangs were transfected into cells at a

concentration of 100 nM using Lipofectamine 2000 (Invitrogen).

RNA was extracted 48 hours post-transfection. Knockdown was

validated by evaluating relative expression levels by SYBR green

based RT-qPCR as previously described [33,34]. Primer sequenc-

es for target and reference genes are listed in Table S2, qPCR
tab.

RT-PCR assays
Our collection of alternative splicing units was derived from the

RefSeq database. Sets of primers mapping in the exons flanking all

the simple alternative splicing events were designed using Primer3

with default parameters. Total RNA was extracted using TRIzol

and quantified using a 2100 Bioanalyzer (Agilent Inc. Santa Clara,

CA, USA). A total of 2 mg of RNA was reverse transcribed using a

mix of random hexamers and oligo(dT) and the Omniscript

reverse transcriptase (Qiagen, Germantown, MD, USA) in a final

volume of 20 ml. Twenty ng of cDNA were amplified with 0.2 U/

10 ml of HotStarTaq DNA Polymerase (Qiagen) in the buffer

provided by the manufacturer, and in the presence of the specific

primers (IDT) for each splicing unit (at concentrations ranging

from 0.3 to 0.6 mM) and dNTPs. The list of ASEs, oligos, and

expected size of RT-PCR products are shown in Table S2), and

primer locations mapped to the UCSC genome browser can be

viewed at http://palace.lgfus.ca/data/related/2073/odgene_/.

When more than one ASE was targeted per gene, lowercase

letter suffixes were appended to gene names, e.g Dnm1l.a,

Dnm1l.b, …, see Tables S1 and S2 and link above for precise

locations. Reactions were carried out in the GeneAmp PCR

system 9700 (Applied Biosystems, Foster City, CA, USA). A first

cycle of 15 minutes at 95uC was followed by 35 cycles of

30 seconds at 94uC, 30 seconds at 55uC and 1 minute at 72uC.

Thermocycling was concluded with an extension step of 10 min-

utes at 72uC. Visualization and analysis of amplified products were

done using the LabChip HT DNA assay on a Caliper LC-90

automated microfluidic station (Caliper, Hopkinton, MA, USA).

Results

Splicing defects in mouse expressing CUG-repeats
The transgenic C57BL/6-derived mouse strains express 600

and 1200 CUG-repeats, and display phenotypic traits that are

characteristic of DM1 [25], but in a milder form compared to the

MBNL1 knockout and HSALR mice [30]. It was therefore of

interest to determine to what extent splicing alterations overlap

with the splicing alterations observed in the other CUG-expressing

HSALR mouse model (FVB/n strain) [14].

Splicing Regulation in DM1
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Total RNA from two muscle sources (tibialis anterior and

gastrocnemius) were isolated from three normal mice, two DM1

mice expressing 600 repeats (CUG600) and three DM1 mice

expressing 1200 repeats (CUG1200). We used our RT-PCR

analysis platform [35–37] to interrogate a total of 172 alternative

splicing events (ASEs) in genes reported to be susceptible to

changes in HSALR and MBNL knockout mice [14]. Because our

RT-PCR approach requires the design of primers on either side of

each splicing event, only 58 of the 172 ASEs, representing cassette

exons, and alternative 59 and 39 splice sites could be designed

directly. The remaining reported ASEs, comprised mostly of

microarray-identified alternate transcript start and end sites, were

not directly accessible by our RT-PCR technique. Nonetheless, we

were able to identify and design primers for 114 additional ASEs

in regions overlapping these affected transcripts. Maps of the 172

ASEs analyzed showing our primer designs and the regions

reported by Du et al. [14] can be viewed at http://palace.lgfus.ca/

data/related/2080/odgene_/. RT-PCR amplifications followed

by microcapillary electrophoretic separation were designed to

detect a long and a short isoform of unambiguous identity. For

each ASE, the percent spliced-in (PSI or Y) value, defined as the

ratio between the concentration of the long isoform over the sum

of the short and long isoform concentrations, was computed.

When more than two amplification products were observed, the

short and long products were selected to maximize their total

abundance across the reaction set. To assess the significance of our

results, we used a statistical approach tailored for the analysis of

genomic data based on the false discovery rate (FDR) expressed as

a q-value [38]. For example, a 5% FDR, q#0.05, indicates that

5% of the results judged to be significant could represent false

positive signals. In addition, to improve the functional significance

of our hits, we only considered absolute PSI value differences,

|DY|, that were superior to 5 percentage points.

Although each tissue for each mouse was analyzed individually,

the results of the two tissues for each mouse were pooled in the

final analysis because very few differences were noted between

tissues (see below). Based on the above criteria, a total of 24 ASEs

were identified as significantly misregulated in CUG1200 mice

(Fig. 1, Table S1). From the set of 58 directly designed ASEs, 9

were in agreement with the misregulated events in the HSALR

Figure 1. Splicing defects in a mouse strain expressing CUG repeats. Total RNA from muscle tissues of transgenic C57BL6 mice expressing
600 and 1200 CUG-repeats were screened for alternative splicing defects. We interrogated 172 ASEs in genes reported to be susceptible to changes in
HSALR and MBNL knockout mice [14]. Using a false discovery rate threshold (q-value) of 0.05 and |DY| greater than 5 percentage points, we identified
24 ASEs in CUG1200 (black bars) that are significantly different from WT (white bars). Changes that were also significant in CUG600 (grey bars) are
indicated with an asterisk. Results are presented in histograms by order of significance based on q-values.
doi:10.1371/journal.pone.0107324.g001
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Figure 2. Differences in alternative splicing events (ASEs) when normal adult muscle cell lines are compared to normal embryonic
muscle cell lines. (A–C) A. Histograms representing the four ASEs (ABCB8, C10orf58, ACTN1, ENO3) that are differentially spliced when normal
embryonic cell lines (white bars) are compared to normal adult cell lines (black bars). B. Venn diagram representing hits when the three embryonic
cell line categories (ST-750, ST-1200, and ST-3500) were compared to normal fetal cell lines. C. Histograms representing Y values in the normal fetal
(white bars), ST-750 (light grey bars), ST-1200 (dark grey bars) and ST-3500 cells (black bars). Only the top 27 of the 50 splicing alterations seen in ST-
3500 (q # 0.05) are shown which also include all ST-750 ({) and ST-1200 (*) hits (respective q#0.05) relative to normal fetal cells.
doi:10.1371/journal.pone.0107324.g002
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Figure 3. Splicing defects in DM1 patient tissues. (A–B) A. Y values for ten misspliced ASEs are represented as histograms for 4 adult controls
(white bars) and 5 DM1 patients (black bars). Error bars represent standard deviations for each ASE. Hits were defined as changes displaying q values
,0.05 and |DY| .5%. B. Sample UCSC Genome Browser (http://genome.ucsc.edu) adaptation showing the chromosome 19 region harboring human
insulin receptor, INSR. Top image shows reported full-length RefSeq transcripts, the targeted ASE is boxed and shown in detail in the bottom image.
The positions and names of the primers used for mRNA amplification by RT-PCR are shown above the transcripts. Links to transcript maps and primer
positions for all human ASEs studied here can be found at http://palace.lgfus.ca/data/related/2073/odgene_/.
doi:10.1371/journal.pone.0107324.g003
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mouse, and 4 shifted in the opposite direction [14]. The remaining

11 misregulated ASEs were identified from the 114 indirectly

designed ASEs, i.e. occurring in the same genes and overlapping

regions reported in the HSRLA study (Table S1). Three of the

misregulated ASEs (Erc1, Rpn2.a and Usp5) were also signifi-

cantly altered in CUG600 mice (marked with a * in Fig. 1). Other

ASEs in the CUG600 samples had mean Y values consistent with

a slight progression in the direction of the shift occurring in

CUG1200 (e.g. Mknk2, Mtdh, Dnm1l.a, Ldb3b, Gnas, Ptpmt1.b
and Zmiz2). The splicing profiles between tibialis anterior and

gastrocnemius were very similar except for 5 ASEs (Mtdh.a, Opa1,
Picalm.b, Spag9 and Smyd1) (Table S1). Of these, only Smyd1
was mis-spliced in CUG600/1200 hits. Of the ensemble of

CUG1200 hits, Usp5 and Drap1 shifted in the DMBNL, but not

in the HSALR mice based on microarray analysis [14]. The most

dramatic shifts occurred in Mtap1 and Drap1, with a greater than

20 point drop in exon inclusion in CUG1200 mice (Fig. 1).

DRAP1 is a transcription factor that can interact with FEZ1, a

protein involved in axon growth in nematodes [39]. Mtap1, also

known as MAP1B, encodes the microtubule associated protein 1b

involved in the cross-bridging between microtubules and other

cytoskeletal elements in neurons, and can interact with actin and

signaling proteins [40]. Interestingly, CTG repeats disturb the

expression and subcellular distribution of the related and

interacting partner MAP1A in a neuronal cellular model [41],

suggesting that the change in MAP1B splice variants may

contribute to this redistribution.

Mis-splicing events in human embryonic DM1 myoblast
primary cultures

More than 50 splicing alterations have been identified in skeletal

and cardiac muscle of adult humans suffering from DM1

[8,14,42]. Overall, the defects indicate an incapacity to engage

in a postnatal splicing transition [2,22]. To address the extent of

defective alternative splicing regulation in the developing muscle of

DM1 embryos, we produced human DM1 myoblastic primary

cultures from embryonic muscle tissues carrying 750, 1200 and

3500 CUG repeats (ST-750, ST-1200 and ST-3500, respectively).

Three cultures were produced from each original sample. Normal

embryonic and adult muscle cultures were also produced and used

as controls.

A detection screen using pooled RNA from normal and DM1

cultures was first carried out to identify splice variants for which

the less abundant form represented at least 10% of the sum of both

variants. Out of 2034 known human ASEs in muscle-relevant

genes, we identified 487 such ASEs. We used this set first to

compare myoblast cultures from normal adult and normal

embryonic muscles (3 cultures each). A T-test on these two sample

sets revealed fifty statistically significant ASEs, p,0.05 (Table S2,
DM1 fetal cells tab, column W). Of these, the top four events

that differentiate normal embryonic from normal adult muscle

primary myoblastic cultures were ABCB8, C10orf58, ACTN1 and

ENO3 (Fig. 2a).

Next, comparing splicing in DM1 and normal embryonic

primary cultures identified 50 ASEs that were differently spliced

between the embryonic ST-3500 and the normal embryonic

cultures (q ,0.05 and |DY| .5 percentage points) (Table S2,
DM1 fetal cells tab, columns B and T, Fig. 2b and 2c). For

6 of these, PDLIM3, SMTN, TACC2, BIN1.b, PPP1R12B and

SORBS1.c, the defects suggested an exacerbated embryonic

splicing profile. The ST-1200 cultures yielded 29 hits, 11 of them

seen in ST-3500 and displaying a good correlation between the

amplitude of the splicing alterations and the number of repeats in

the expansion (Fig. 2b and 2c, Table S2, DM1 fetal cells
tab, column R). The ST-750 myoblasts only produced 4 hits,

three of them occurring either in the ST-1200, ST-3500 or both

(TACC2) (Fig. 2b and 2c, Table S2, DM1 fetal cells tab,
column P). While all the differences noted were statistically

Figure 4. Role of MBNL1 and RBFOX1 in splicing regulation. (A–C) A. Venn diagram representing the overlap of hits obtained by knocking
down MBNL1 and RBFOX1 in the HFN embryonic muscle cell line. In panels B and C, Venn diagrams are presented to illustrate events coregulated by
MBNL1 and RBFOX1 that are mis-spliced in embryonic DM1 lines or and DM1 adult samples. The number and identity of the ASEs in each category
are indicated. Gene names in bold indicate that the splicing shift for those ASEs occur in the reverse direction to the DM1 mis-splice.
doi:10.1371/journal.pone.0107324.g004

Splicing Regulation in DM1

PLOS ONE | www.plosone.org 6 September 2014 | Volume 9 | Issue 9 | e107324



significant, a subset in each category (e.g., the ASEs affected in ST-

750 but not in ST-3500) may reflect individual-specific splicing

differences or differences in the status of embryonic muscle

differentiation at the time of collection. Thus, because some of the

splicing differences may reflect genetic differences between the

individuals, splicing differences that are common to ST-3500 and

ST-1200 are likely to be most relevant to DM1.

On the other hand, we observed more alterations in the ST-

3500 samples, which is what would be expected. Of the 50 muscle-

relevant, statistically significant alternative splicing aberrations in

the ST-3500 myoblast cultures, one mis-splicing event in BIN1
(exon 11) associates with T tubule alterations and muscle weakness

in myotonic dystrophy [12] (Fig. 2c). Exon 11 skipping in the

insulin receptor (INSR) is one of the first alternative splicing events

described to be aberrant in DM1 patients [11]. Although INSR
splicing was aberrant in the embryonic ST-3500 cell lines

(Fig. 2c), it occurred in the direction opposite to adult DM1

(i.e., more inclusion in fetal DM1 and more skipping in adult

DM1).

Since the 487 ASEs that were screened were selected for their

relevance to muscle function, splicing differences may affect

muscle function. Functional gene ontology annotation using

GOrilla [43] revealed a greater than 3-fold enrichment for

processes related to cytoskeleton and actin-linked cytoskeleton

function (p values of 3.461024 and 9.261024, respectively), as

well as a 2.5-fold enrichment for cytoskeleton, as a cellular

compartment. The cytoskeleton-related genes in these lists were

SYNE1, APC, MEF2A, OBSL1, TTN, PDLIM3, NF1, TACC2,

ACTN1, SORBS1, DMD, SLMAP, TPM3, ANK2, BIN1 and

FLNC. The enrichment is even stronger if we include MEF2D
[44] and the cytoskeleton-associated protein SMTN (smoothe-

lin)[45]. We also noted splicing alterations in several channel genes

including the transient receptor potential cation channel TRPM4,

the sodium channel SCN9A, the chloride channel CLCC1, the

voltage-gated potassium channel Kv4.3 gene KCND3, and the

voltage-dependent calcium channel CACNA1C. In the case of

CACNA1C, the variant made in DM1 cells changes the kinetics

and voltage-dependence of inactivation as well as recovery from

inactivation [46].

Altered splicing in human adult DM1 tissues
Next, we asked whether any of the splicing alterations identified

in DM1 fetal cultures also occurred in adult DM1 tissues. Using

five adult DM1 and four normal tissues, we selected 163 ASEs

based on q values (less than 0.1) for any of the previous 5

comparisons: fetal vs. ST-750, fetal vs. ST-1200, fetal vs. ST-3500,

fetal vs. combined ST-750, ST-1200 and ST-3500 and fetal vs.

adult. Following the analysis on adult tissues, we identified 10

Table 1. Alternative splicing events co-regulated by MBNL1 and RBFOX1.

Gene Description Function Association with diseases

Neuromuscular Organogenesis

CHRNG acetylcholin reeceptor c-subunit neuromuscular junction

CHRNA5 acetylcholine receptor neuromuscular junction

ACHE acetylcholinesterase neuromuscular junction

ILK integrin-linked kinase neuromuscular junction

EVC transmembrane muscle development Ellis-van Creveld syndrome

Channels

RYR1 (2) calcium release channel connects sarcoplasmic reticulum with tubules minicore myopathy

CLCN2 chloride channel epilepsy

CACNA1C calcium channel

KCNK2 potassium channel

TRPM4 calcium transport

CATSPER3 calcium channel

Others

JPH4 junctophilin plasma membrane and sarcoplasmic reticulum

NEB nebulin cytoskeletal matrix in sarcomeres nemaline myopathy

BMP4 TGF-b superfamily bone morphogenesis

CAPN3 calpain 3 putative protease that binds to titin limb-girdle muscular dystrophies type
2A

TAZ membrane associated cardiomyopathy

SYNE1 spectrin-repeat containing protein nuclear membrane Emery–Dreifuss muscular dystrophy

MYLK myosin light chain kinase

PHKB phosphorylase kinase

TBC1D1 cell differentiation

SORBS2 sorbin, tyrosine kinase assembly of signalling complex in stress fibers

MDH2 malate dehydrogenase

ITPR1 intracellular receptor for inositol 1,4,5-trisphosphate spinocerebellar ataxia

Genes in bold are mis-spliced in DM1 tissues.
doi:10.1371/journal.pone.0107324.t001
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events altered in DM1 with |DY| and q values of 5 percentage

points and ,0.05, respectively (Fig. 3, Table S2, DM1 tissues
tab). Of these, 6 were aberrantly spliced in the fetal DM1 cultures

(INSR, TTN.a, SORBS1.c, KCND3, SYNE1.b and QK1.a). The

exon inclusion event in a titin family member (TTN.a) occurs at

the 39 end of the coding region [47], as similarly noted in all fetal

DM1 cell lines. For INSR, SYNE1.b and QK1.a, splicing in DM1

adult tissues occurred in the direction opposite to the shift seen in

embryonic DM1 cultures. Although ITGA7, A2BP1, USP5 and

QK1.b were slightly below our cut-off in the fetal DM1 cultures,

A2BP1 and USP5 were hits in DM1 mouse models [14]. ITGA7
encodes an integrin that plays a role in acetylcholine receptor

clustering when neuromuscular junctions are formed [48]. We also

considered the next 20 strongest mis-spliced events in adult DM1

tissues (Table S2, DM1 tissues tab, blue coloring in
column E). Seven hits in this category were also seen as fetal

DM1 hits (ANK2.c, TRPM4.b, CLCC1.c, SORBS1.a, TRPM4.c,
MGEA5.a and CAST; the three underlined events shift in the

opposite direction of fetal DM1). Overall, 21% of the 30 adult

DM1 hits were also hits in the embryonic DM1 cell cultures.

Events that shifted in the same direction may reflect a DM1 fetal

splicing profile in the regenerating fibers of adult DM1 tissues [49].

Thus, although some splicing defects are common in embryonic

and adult muscle, others reflect embryonic- and adult-specific

splicing alterations.

MBNL1 and RBFOX1 co-regulate a subset of events
altered in DM1

To assess the contribution of the regulatory splicing factor

MBNL1 to the human DM1 splicing alterations, we knocked

down MBNL1 by RNA interference in a normal muscle

embryonic cell culture (HFN) and performed the splicing analysis

in triplicate. The depletions were confirmed by RT-qPCR (Table
S2, qPCR tab). We interrogated the 163 ASEs used in the

previous section, and identified 48 that were regulated by MBNL1

(Table S2, MBNL1 RBFOX1 knockdown tab, Fig. 4a).

Eleven of the MBNL1-responsive events were mis-spliced in the

DM1 embryonic cultures, five of them shifting in the direction

opposite to DM1 (Fig. 4b). The MBNL1 depletion affected only

one of our 10 strongest adult DM1 mis-splicing events, and 6 of

the 20 successive alterations (Blue colored hits in Table S2, DM1
tissues tab, column E, and Fig. 4c). These 7 shifts occurred

in the same direction in DMBNL1 and DM1 tissues.

Alternative splicing of A2BP1 (a.k.a. RBFOX1) was affected in

DM1 adult tissues (|DY| = 15 percentage points, q = 0.04)

(Fig. 3a). In the DM1 fetal culture, it yielded a |DY| of 10

points, but with a q value above our threshold (0.08). Although not

a hit with the CUG1200 mice, the A2BP1 gene is mis-spliced in

the DMBNL1 mice [14]. In all cases, a skipping event produces a

variant that lacks a portion of the RNA recognition motif (RRM)

domain involved in recognizing the regulatory sequence (U/A)G-

CAUG [50–54]. RBFOX1 is specifically expressed in neurons,

heart and muscle [52,55]. RBFOX proteins are important

regulators of muscle function in zebrafish where their depletion

affects myofiber development [56]. RBFOX1 regulates the

alternative splicing of many critical transcripts essential for

neuronal excitation and synaptic transmission [57]. We asked if

RBFOX1 regulates the splicing of muscle-relevant genes.

Performing the depletion of RBFOX1 in the normal HFN culture

(in triplicate) revealed 34 splicing events that were sensitive to a

decrease in RBFOX1 (50% drop based on qRT-PCR) (Fig. 4;
Table S2 qPCR tab). Although it is unclear if the 10–15%

increase in the RBFOX1DRRM variant occurring in DM1 tissues

would be sufficient to alter the splicing regulation of target ASEs,

some impact may be expected because this variant displays

dominant negative activity [54]. Consistent with this view, 5 of the

34 RBFOX1-sensitive events were misregulated in embryonic

DM1 cultures (CAMK2G, TCF7L2, TRPM4.b, TRMP4.c and
CHRNG), and 4 were affected in adult DM1 (RYR, SYNE1.a,
TRMP4.b and TRMP4.c). Strikingly, half of the 48 events

regulated by MBNL1 were also regulated by RBFOX1 (Fig. 4a).

Moreover, 5 of 9 RBFOX1 hits that were mis-spliced in DM1

were also regulated by MBNL1 (Fig. 4b and 4c). We confirmed

this overlapping regulation by repeating the RBFOX and MBNL1

depletions in a different HFN cell culture. Even with partial

depletions, as judged by western analysis (Fig. S1a), 11 of 13

events that were regulated by MBNL1 were sensitive to the

depletion of RBFOX (Fig. S1b).

Discussion

Mouse model systems have been developed to reproduce the

molecular and physiopathological deficiencies found in DM1

patients. Although none of the current models displays the full

repertoire of physiological deficiencies observed in DM1 patients,

they nevertheless offer the possibility of associating specific

phenotypes with molecular alterations, and identifying discerning

features that might explain shared or specific defects. The Ares

group previously identified a collection of splicing alterations in

MBNL1 knockout mice and HSALR mice that express CUG-

repeats [14]. Of these, 4 of the 6 human orthologous ASEs were

affected in three DM1 individuals. Of the 11 orthologous ASEs

derived from hits reported in the Ares study, we found 4 (USP5,
TACC2, CAMK2 and A2BP1) that were affected in 9 embryonic

myoblast cell cultures and 5 adult patient muscle tissues. Using a

stringent set of criteria for revealing splicing alterations in muscle

tissues (splicing shifts greater than 5 percentage points and q#

0.05), only 5 of the 33 original validated mouse hits uncovered in

the Ares study were similarly mis-spliced in our CUG1200 mice.

Although the smaller set of molecular alterations that we identified

may be attributable to differences in the detection methods,

different levels of transgene expression likely contributed to the

discrepancies. Indeed, the CUG repeats of the CUG1200 mice are

imbedded in a transgenic DMPK gene whose expression level in

muscle is five times lower than the murine endogenous gene [30],

whereas the transcript carrying the 250 CUG repeats of the

HSALR mice is expressed at a much higher level [24]. Consistent

with this view, CUG1200 mice have a phenotype that is milder

than the MBNL1 knockout and HSALR mice [30]. It is also

possible that alternative splicing events in C57BL/6 mice are in

general less sensitive to expression of CUG repeats. SCNM1 is a

disease modifying allele that affects splicing, and that is most

severely affected in C57BL/6 [58,59]. Such strain-specific

differences may produce overlapping but globally distinct splicing

signatures that may contribute to differences in the expression of

the DM1 phenotype in FVB/n and C57BL/6 mice. Because no

animal model reproduces the full pathophysiological manifesta-

tions of the disease, it is therefore of utmost importance to use

human samples to validate data obtained from mouse models with

the goal of uncovering molecular alterations that associate with

core aspects of the pathophysiology.

We identified 50 mis-splicing events in the fetal DM1 myoblast

cell cultures, including events known to be mis-spliced in adult

tissues, such as BIN1, INSR, CLCC1, TTN.a and TTN.b [42].

We also confirmed a known misregulated splicing event at the 39

end of the coding region of DMD (dystrophin), a gene in which

mutations cause Duchenne and Becker muscular dystrophies.

Overall, half of the altered events in embryonic DM1 cells
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occurred in cytoskeleton (21 ASEs) and channel (5 ASEs) genes.

Among the channel genes, the voltage-gated potassium channel

Kv4.3 gene KCND3 produced more of the skipped product both

in embryonic and adult DM1 cells. KCND3 is involved in

neuronal excitability and is a target of the splicing factor

RBFOX1, since inclusion of the 57 nt exon is increased in the

brain of Rbfox12/2 knockout mice [57]. We observed that

human KCND3 splicing remained unchanged when RBFOX1

was knocked down, possibly because the intron upstream of the

alternative exon in human KCND3 lacks the RBFOX binding

element and putative silencer found in the mouse gene at this

position [57].

By profiling splicing in adult DM1 tissues, we noted two known

aberrant mis-splicing events (INSR and TTN.a), but also identified

several new alterations. In addition to KCND3, SYNE1 splicing

was also altered both in embryonic and adult DM1 tissues. SYNE1

(also known as nesprin) is a spectrin-repeat protein that forms a

network that links various subcellular structures throughout the

muscle sarcomere to the actin cytoskeleton. SYNE1 has been

implicated in Emery-Dreifuss muscular dystrophy (muscle wasting

and weakness) [60]. The alternative segment of SYNE1 does not

affect the structure of known protein functional domains; thus the

functional impact of the variant lacking the alternative exon

remains unclear. QKI.a splicing was altered in DM1 patients

(more inclusion). QKI is an RNA binding protein involved in

neuronal function (myelination), blood vessel formation, smooth

muscle formation and heart development. In zebrafish, the loss of

QkA affects fast muscle fiber maturation as well as Hh-induced

muscle derivative specification and/or morphogenesis [61,62].

QKI was recently implicated as a global regulator of splicing

during vertebrate muscle development [63].

Regulatory interactions of MBNL1 and RBFOX1
We sought to gain insights into the regulatory pathways that

yield splicing alterations in fetal and adult human DM1 muscle

tissues. The impact of depleting MBNL1 was evaluated because

the sequestration of MBNL1 by CUG repeats has been associated

with many splicing defects. The depletion of MBNL1 in the

embryonic myoblast culture (HFN) revealed 48 alternative splicing

events sensitive to MBNL1 levels (Table S2, MBNL1 RBFOX1
knockdown tab, and Fig. 4a). Six of these events occurred in

the same direction as in the fetal DM1 lines, and five occurred in

the reverse direction (Fig. 4b).

We also tested the impact of RBFOX1 because it is mis-spliced

in adult DM1 tissues and in DMBNL1 mice [14] to produce a

defective regulator lacking a complete RNA binding motif [54]. A

recent study indicated that the knockdown of Rbfox1 inhibits

muscle differentiation, and that RBFOX1 expression was altered

in a mouse model of facioscapulohumeral muscular dystrophy

[64]. We identified 34 RBFOX1 targets in muscle-relevant genes

(Fig. 4a), seven of which displayed altered splicing in embryonic

and/or adult DM1 samples (Fig. 4b and 4c). Notably, while the

individual depletion of MBNL1 and RBFOX1 respectively

affected the splicing of 29% and 20% of the 163 events tested,

half of the 48 events controlled by MBNL1 were co-regulated by

RBFOX1. In addition to ion channel proteins and components of

the cytoskeleton, the list (Table 1) includes acetylcholine recep-

tors, which in conjunction with integrins, are critical to form

neuromuscular junctions [48]. The MBNL1/RBFOX1 co-regu-

lated genes also include four that were mis-spliced in DM1 tissues

(Fig. 4b and 4c). Knocking down MBNL1 and RBFOX2 in a

cancer cell line revealed a similar convergence of regulation for

muscle-relevant genes since 50% of these genes were co-regulated

by MBNL1 and RBFOX1 (http://palace.lgfus.ca/data/related/

2075). In contrast, only 6% of co-regulation was observed on a

different set of 47 genes implicated in cancer [65]. While MBNL1

and RBFOX1 have been individually implicated in modulating

splicing decisions during muscle and heart development [2,66],

our results suggest that MBNL1 and RBFOX proteins converge to

regulate the splicing of a common subset of genes involved in

muscle function. Recent work suggests that MBNL1 and

RBFOX2 also cooperate to implement a splicing program

associated with the differentiation of human stem cells [67]. It is

therefore intriguing to postulate that a partial loss of MBNL1 and

RBFOX1 activity in both fetal and adult DM1 tissues may

compromise a critical splicing program associated with muscle

differentiation. Given that muscle differentiation occurs in the

damaged skeletal muscle of DM1 mice [49], mis-splicing events in

muscle-relevant genes caused by defective MBNL1 and RBFOX1

activity may compromise tissue regeneration. Lastly, it is

interesting to consider the microtubule-associated protein Tau

(MAPT/Tau) whose splicing is misregulated in DM1 brains

[68,69], a defect that may contribute to neuropsychological

manifestations. MBNL proteins regulate the splicing of tau
alternative exon 2 [70], and we find that ectopic expression of

RBFOX1 can partially repress the splicing aberration of tau exon

2 induced in T98 glioblastoma cells by transfecting the CUG

repeat expression vector DT960 (Fig. S2). Co-regulation of

splicing by MBNL and RBFOX proteins may therefore extend to

neuronal tissues, and their deficient activity in DM1 brains may

lead to aberrant splicing of genes such as tau/MAPT that may then

contribute to cognitive abnormalities.

Overall, our analysis has unveiled a splicing regulatory network

where MBNL1 and RBFOX1 are co-regulating a group of events

that may be relevant to muscle function and development. Since

RBFOX1 most often imposes regulation in the same direction as

MBNL1, the aberrant splicing of RBFOX1 in adult DM1 tissues

may therefore amplify the mis-splicing of ASEs already affected by

the MBNL1 deficiency.

Supporting Information

Figure S1 ASEs that are co-regulated by MBNL1 and
RBFOX1/RBFOX2. A. Immunoblot analysis following the

knockdown of RBFOX1/RBFOX2 and MBNL1 in a HFN cell

culture. A control siRNA (si-C) was also used, and housekeeping

proteins (GAPDH or a-tubulin) were tested as loading controls. B.
Histograms showing splicing changes (DY) observed for ASEs

following MBNL1 (black bars) or RBFOX1/2 (white bars)

knockdown, relative to si-C-treated HFN cells.

(PDF)

Figure S2 RBFOX1 represses the impact of CUG-
repeats on tau splicing in human glioblastoma T98G
cells. T98G cells were transfected with expression vectors for

RBFOX1, CUG-repeats (DT960) or both. Agarose gel of RT-

PCR reactions designed to amplify tau splicing products are

shown on top, and histograms depict exon 2 exclusion level in

percentage with standard deviations. * = p,0.05; ** = p,0.01. In

non-DM1 mimicking conditions, RBFOX1 did not significantly

modify the splicing of tau exon 2. DT960 increased tau exon 2

exclusion, and this effect was partially prevented by co-expressing

RBFOX1.

(PDF)

Table S1 List of ASEs screened in mice. The table lists all

ASEs that were tested for splicing in mouse tissues. For each ASE,

the gene name and primer pair names (Columns A and B) and a

summary description of the type and size of each ASE (Column C)
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is given. Column D provides a comparison of PSI shift direction

between our observations and those reported by Du et al. [14]. p-

values, q-values and |DY| are also provided for the CUG600 and

CUG1200 mice relative to wild type (WT), as well as for the

gastrocnemius and tibialis anterior comparison (Columns E-M).

Tests for threshold levels of p, q and |DY| are reported in

Columns N-AB. Average PSI values and standard deviations are

presented in Columns AC-AH for all tissue groups screened.

Column AI compares hits obtained with data from Du et al. [14].

The portion in yellow corresponds to misregulated events in

CUG1200 with q-values inferior to 0.05 and |DY| superior to 5

percentage points. When more than 1 ASEs originated from one

gene, ASEs were categorized as xxx.a, xxx.b, etc.

(XLSX)

Table S2 List of ASEs screened in DM1 embryonic cell
lines, patient tissues and knockdown assays. The file

includes three sheets that individually list the ASEs screened in

each experiment. DM1 Fetal Cells tab: List of the 487 human

ASEs analyzed. Column A: Gene Name, where more than one

ASE was targeted the suffix.a,.b, … is used. Column B: |DY|

values for ST-3500 (Y values: Column M, standard deviation:

Column N) minus Normal Fetal cells (Y values: Column E,

standard deviation: Column F). Columns C and D: hit in cells (this

sheet) and DM1 tissues (DM1 Tissues sheet) respectively, refer to

text for selection criteria. Fifty cell hits shown in red, tissue hits

shown in yellow and blue (see legend for DM1 Tissues sheet,

below). Columns G-L: Y values and standard deviations for

Normal Adult, ST-750 and ST-1200 cells. Columns O-T:

Calculated p and q values (see text) for Normal Fetal cells (N_F)

compared to ST-750, ST-1200 and ST-3500 cells. Columns U

and V: p and q values for Normal fetal cells compared to all three

DM cell lines combined. Columns W and X: p and q values for

Normal fetal cells compared to Normal Adult (N_A) cells. DM1
Tissues tab: List of the 163 human ASEs analyzed. Column A:

Column A: Gene Name, where more than one ASE was targeted

the suffix.a,.b, … is used. Columns B-D: ASE type and expected

amplicon sizes in base pairs (bp) following PCR amplification of

region flanking ASE. Column E and F: hit in tissues (this sheet)

and cells (DM1 Fetal Cells sheet) respectively, refer to text for

selection criteria. Top ten tissue hits are shown in yellow, and

following 20 hits shown blue. Columns G-I: |DY|, p and q values

for DM1 tissues versus normal controls. Columns J-R: Y values for

individual DM1 and control (CTL) tissues. Column S-V: PCR

primer names and sequences. MBNL1 RBFOX1 Knockdown
tab: List of the 163 human ASEs analyzed (identical to DM1

Tissues). Column A: Gene Name, where more than one ASE was

targeted the suffix.a,.b, … is used. Columns B and C: Hit in tissues

(DM1 Tissues sheet) and cells (DM1 Fetal Cells sheet) respectively,

refer to text for selection criteria. Top ten tissue hits are shown in

yellow, and following 20 hits shown blue, 50 cell hits shown in red.

Columns E-K: |DY| MBNL1 or RBFOX1 knockdown minus

control in HFN and fibroblasts, see text for hit criteria. Columns

L-S: DY data for untreated HFN, mock transfected HFN,

MBNL1 and RBFOX1 knockdown HFN cells and untreated

and knockdown fibroblast cells. Column T: Presence and position

relative to splice site of RBFOX1 binding motif. Negative number

is nucleotide position upstream of 39 splice site, positive number is

position relative to 59 splice site of alternative exon. Column U and

V: Presence, occurrence and position relative to splice sites of

UGC repeats (e.g. 261 refers to two repeats occurring 1 time).

Positions upstream (negative numbers) and downstream (positive

numbers) relative to 39 and 59 splice sites, respectively. qPCR tab:
mRNA expression levels following RNA interference knockdown

of MBNL1 and RBFOX1. Relative expression levels (RE) and

technical error of triplicate qPCR reactions (dT) shown 48h post

transfection for mock transfected HFN cells (HFN CTL-), and

knockdowns (HFN siMBNL, and HFN siRBFOX1). Reference

gene primer sequences are shown. RE and dT calculations

performed using the qBASE package [34].

(XLSX)

Text S1 Supplementary material and methods.

(DOCX)
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