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Abstract

Background: Associations between dietary patterns, metabolic and inflammatory markers and gut microbiota are yet to be
elucidated.

Objectives: We aimed to characterize dietary patterns in overweight and obese subjects and evaluate the different dietary
patterns in relation to metabolic and inflammatory variables as well as gut microbiota.

Design: Dietary patterns, plasma and adipose tissue markers, and gut microbiota were evaluated in a group of 45
overweight and obese subjects (6 men and 39 women). A group of 14 lean subjects were also evaluated as a reference
group.

Results: Three clusters of dietary patterns were identified in overweight/obese subjects. Cluster 1 had the least healthy
eating behavior (highest consumption of potatoes, confectionary and sugary drinks, and the lowest consumption of fruits
that was associated also with low consumption of yogurt, and water). This dietary pattern was associated with the highest
LDL cholesterol, plasma soluble CD14 (p = 0.01) a marker of systemic inflammation but the lowest accumulation of CD163+
macrophages with anti-inflammatory profile in adipose tissue (p = 0.05). Cluster 3 had the healthiest eating behavior (lower
consumption of confectionary and sugary drinks, and highest consumption of fruits but also yogurts and soups). Subjects in
this Cluster had the lowest inflammatory markers (sCD14) and the highest anti-inflammatory adipose tissue CD163+
macrophages. Dietary intakes, insulin sensitivity and some inflammatory markers (plasma IL6) in Cluster 3 were close to
those of lean subjects. Cluster 2 was in-between clusters 1 and 3 in terms of healthfulness. The 7 gut microbiota groups
measured by qPCR were similar across the clusters. However, the healthiest dietary cluster had the highest microbial gene
richness, as evaluated by quantitative metagenomics.

Conclusion: A healthier dietary pattern was associated with lower inflammatory markers as well as greater gut microbiota
richness in overweight and obese subjects.
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Introduction

Dietary pattern analysis is a useful way to consider the diet as a

whole, rather than considering individual foods or nutrients. The

analysis of dietary patterns provides an opportunity to investigate

relationships between diet and health in nutritional epidemiology

[1–3]. Some prospective studies have demonstrated a relationship

between dietary patterns and weight changes [4–6], although not

all studies are consistent [7].

Dietary patterns have also been associated with markers of

systemic inflammation and risk of cardiovascular diseases [8–10].

A healthy dietary pattern (higher in fruits, vegetables, poultry, tea,

fruit juices and whole grains) was found inversely related to

systemic C-reactive protein (CRP), while a western dietary pattern

was positively related to CRP in different populations [8–11]. A

similar healthy eating pattern was also associated with reduced

insulin resistance [12] and the risk of metabolic syndrome [10,13].

The mechanisms behind these links still have to be elucidated. The

gut microbiota is viewed as a pivotal actor linking ‘‘external’’

macro-environmental changes to the ‘‘internal’’ host biology

particularly inflammation as well as metabolic and body weight

homeostasis. Gut microbiota has been shown to be involved in the

development of metabolic syndrome and low-grade inflammation

associated with obesity via different mechanisms including

lipopolysaccarides-Toll-like receptors/CD14 (LPS-TLRs/CD14)

complex mostly in animal models [14]. To our knowledge, a

limited number of studies have investigated the relationship

between dietary patterns, gut microbiota, and host inflammatory

levels in humans.

Recently, quantitative metagenomic approaches have provided

the opportunity to study the gut microbiota in humans in more

depth. Interestingly, a rapid adaptation of gut microbiota could be

observed after 24 h of switching from a low-fat, plant polysaccha-

ride-rich diet to a high fat high sugar ‘‘western’’ diet [15], whereas

the diversity of species within the gut microbiota organized into

identifiable clusters or enterotypes are correlated with long-term

but not short term dietary patterns [16]. We found recently that

when subjects were clustered in function of their bacterial gene

count, low fecal bacterial gene richness was associated with

impaired glucose homeostasis and higher low-grade inflammation

during a weight loss dietary program in overweight/obese subjects

[17]. Low gene richness might not only be linked with isolated

foods, but rather with global dietary patterns, an aspect not yet

explored in the later study. Therefore we aimed to explore in the

same cohort of subjects at baseline before any dietary transition,

the relationship between different dietary patterns, metabolic and

inflammatory variables and gut microbiota evaluated by qPCR

and next-generation sequencing methods. The results in the

overweight/obese group were compared to a group of lean

subjects.

Materials and Methods

The protocol for this trial and supporting CONSORT checklist

are available as supporting information; see Checklist S1 and

Protocol S1.

Subjects
Fifty overweight and obese (BMI: $252,38 Kg/m2), but

otherwise healthy subjects (8 males and 42 females), aged from 25

to 65 years, were recruited at the Human Nutrition Research

Center (Pitié-Salpêtrière Hospital, Paris, France). Forty-five

subjects (6 males and 39 females) completed the 7-day dietary

records, bioclinical and fecal bacterial data and were included in

the present analysis (Figure 1). Selection of subjects was based on

the absence of inflammatory or infectious diseases, cancer or any

history of gastrointestinal problems. Subjects with hepatic, renal or

cardiac diseases were excluded. In addition, 17 normal weight

healthy female (BMI: ,25 .18 kg/m2) volunteers living in the

same area as the obese subjects were recruited as a control group.

Fourteen of these completed the dietary records and were included

for reference purposes. No antibiotics were taken within 2-months

prior to the start of the study. Subjects were enrolled between

October 2008 and December 2009. The Ethical Committee of

Hotel-Dieu Hospital, Paris, France, approved the protocol. All the

subjects gave written informed consent. This clinical trial was

registered before enrolment of participants in the EU Clinical

trials Register under the identification number: 2008-001138-28,

and in the French agency for the security of medications and

health products - changed to ANSM) under the identification

number: ID RCB 2008-A00406-49. It was also registered in the

ClinicalTrials.gov under the identification number:

NCT01314690, later due to some technical problems with the

sponsor of the study. The authors confirm that all ongoing and

related trials for this study are registered.

All selected participants underwent a series of tests following an

overnight fast. Blood samples were taken to measure plasma

glucose, insulin, lipids and some inflammatory markers. Body fat

and fat-free mass distributions were measured using dual-energy

X-ray absorptiometry (Hologic APEX, discovery W. (S/N 84030),

version 3.0, Bedford, MA). Estimation of pancreatic b-cell function

(HOMA B%) and insulin sensitivity (HOMA S%) were calculated

using homeostasis model assessment: HOMA/CIGMA software.

Dietary assessment
Dietary intake was assessed using an unweighed dietary record

for 7-days (unless specified otherwise). The records were self-

completed and contained pre-defined spaces for the recording of

each meal. Subjects were provided with instructions on how to

complete the dietary records. On the visit day, the dietitian

verified the information with the subject. All records were

analyzed by using the computer software program PROFILE

DOSSIER X029 (Audit Conseil en Informatique Médicale,

Bourges, France), which has a food composition database initially

made up of 400 food items representative of the French diet as

described previously [18]. Nutrient intakes were generated for

Figure 1. Consort Flowchart.
doi:10.1371/journal.pone.0109434.g001
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each subject based on the dietary data collected. Information on

consumed foods could not be directly extrapolated from the

program and were therefore coded manually into 26 food groups.

Food groups were defined based on groups and sub-groups

typically used in the reporting of dietary data in large surveys, such

as the French Nutrition and Health Survey and program (Étude

Nationale Nutrition Santé, ENNS) [19,20]. Mean food and

nutrient intakes in the overweight/obese subjects were calculated

for each subject according to the 7-day diary (in 2 subjects only 6

days of data were available). The lean subjects completed a 3-day

diary of the same format as those used for overweight and obese

subjects. Habitual physical activity (Baecke questionnaire) was also

evaluated.

Adipocyte morphology and immunohistochemical
analysis

Subcutaneous abdominal adipose tissue samples were obtained

by needle biopsy from the periumbilical area under local

anesthesia (1% xylocaine) for measuring adipocyte diameter and

immunohistochemical detection (HAM56, CD163). Sub-cutane-

ous adipose tissue samples were washed in physiological saline. A

fresh aliquot was used to measure adipocyte diameter as described

previously [21] by using Perfect Image software (Claravision.

Orsay.France). Other aliquots were fixed overnight at 4uC in 4%

paraformaldehyde, and then embedded in paraffin for immune

histochemical detection. Antibody anti-HAM56 and anti-CD163

(DakoCytomation, Trappes, France) were used to target the

macrophage cells in subcutaneous adipose tissue by the avidin-

biotin-peroxidase method. The number of positively marked cells

was counted by two blinded investigators as previously described

[22]. We calculated the labeled cell number per field, and the

adjusted number (percentage per 100 adipocytes).

Gut Microbiota
(qPCR and SOLiD methods).

Fecal samples were obtained on the morning of the study before

breakfast after 12 hours of fasting. Whole fecal samples were self-

collected in sterile boxes and stored at 220uC within 4 h. Samples

were treated in the laboratory as 200-mg aliquots and stored at 2

80uC until further analysis. DNA were extracted using the method

previously described [23].

Real time qPCR method. The procedure for qPCR was

performed as previously described (23). Seven bacterial groups

were detected: Clostridium leptum (C. leptum), Clostridium
coccoides (C. coccoides), Bacteroides/Prevotella, Bifidobacterium,

Lactobacillus/Leuconostoc/Pediococcus, Escherichia coli (E. coli) as

well as Faecalibacterium prausnitzii (F. prausnitzii).
Metagenomic sequencing. Intestinal bacterial gene content

was determined by high throughput ABI SOLiD sequencing

technology of total fecal DNA as described previously by our

group [17], an average of 76.5636.5 (mean 6 sd) million 35 base-

long single reads were determined for each sample (a total of

393 Gb of sequence). By using corona_lite (v4.0r2.0), an average

of 24.8614.3 million reads per individuals were mapped on the

reference catalog of 3.3 million genes [24–25] with a maximum of

3 mismatches. Reads mapping at multiple positions were

discarded and an average of 14.268.1 million uniquely mapped

reads per individuals were retained for estimating the abundance

of each reference gene by using METEOR software [26].

Abundance of each gene in an individual was normalized with

METEOR by dividing the number of reads that uniquely mapped

to a gene by its nucleotide length. After that, normalized gene

abundances were transformed in frequencies by dividing them

with the total number of uniquely mapped reads for a given

sample. The resulting set of gene frequencies, termed as microbial

gene profile of an individual, was used for further analyses.

Identification of patients with low and high gene counts

(LGC and HGC, respectively). The two groups of patients

were defined using the 480 000 gene threshold. Genes significantly

different in groups of individuals were identified by Mann-

Whitney tests using p-value threshold ,0.0001. They were

clustered by an abundance-based binning strategy, using the

covariance of their gene frequency profiles among the individuals

of the cohort, as described in the previous study [24]. Abundance

of a given cluster in each individual was estimated as a mean

abundance of 25 arbitrarily selected ’tracer’ genes for each cluster;

these values were close to those obtained by using all the genes of a

cluster.

Biochemical measurements
Plasma glucose was measured by hexokinase method (ARCHI-

TECT system, Abbott, Park, Illinois, USA). Plasma insulin was

determined by chemiluminescence (ARCHITECT system, Ab-

bott). Plasma triglyceride and free fatty acids (FFA) were measured

with Biomérieux kits (Marcy l’Etoile. France), and total cholester-

ol, high density (HDL), and low density (LDL) lipoprotein

cholesterol were measured with Labintest kits (Aix-en-Provence.

France). High sensitive (hs) CRP was measured by immuno-

nephelometry on an IMMAGE analyzer (Backman-Coulter,

Villepinte, France)..Leptin and interleukin-6 (IL-6) were deter-

mined by using enzyme-linked immunosorbent assay (ELISA) kit

(Quantikine, R&D Systems, Oxford, UK). The limit of detection

for leptin was 7.8 pg/ml and the intra- and interassay variability

was less than 3.5 and 5.5%, respectively. Adiponectin was

determined by using ELISA (Bühlman, Basel, Switzerland). The

limit of detection was 0.019 ng/ml and the intra- and interassay

variability was less than 5.5%. Serum concentrations of 5 cytokines

(eotaxin, vascular endothelial growth factor (VEGF), interferon

gamma-induced protein 10 (IP10), monocyte chemotactic protein-

1 (MCP-1) and macrophage inflammatory protein-1 beta (MIP-

1b)) were simultaneously determined by multiplex biochip

technology with the human cytokine multiplex panel kits (Bio-

Rad, Hercules, CA. USA). A multiplex assay was performed

according to the manufacturer’s instructions. Multi-analytic

profiling was performed on the Luminex-200 system and the

Xmap Platform (Luminex Corporation. Austin. TX. USA).

Acquired fluorescence data were analyzed using Exponent

software with standard curves obtained from serial dilutions of

standard cytokine mixtures. Serum samples were diluted (1:4).

Plasma soluble CD14 (sCD14) was determined by using ELISA

(Quantikine, R&D Systems, Oxford, UK). The limit of detection

was 125 pg/ml and the intra- and interassay variability was less

than 6.5 and 7.5%, respectively and plasma LPS was measured

with the Limulus amebocyte lysate kinetic chromogenic method-

ology that measures the color intensity directly related to the

endotoxin concentration in a sample, using Endosafe-MCS

(Charles River laboratories, Lyon, France).

Statistical Analysis
Data were analyzed using SAS 9.2 and SAS Enterprise Guide

4.2 (SAS Institute Inc., Cary. NC. USA) and R version 2.13

Software (http://www.r-project.org). Homeostasis model assess-

ment of insulin resistance (HOMA-IR), insulin sensitivity

(HOMA-S%), and b-cell function (HOMA-B%) were calculated

by HOMA Calculator from www.dtu.ox.ac.uk/homacalculator.

All data are expressed as mean 6 SEM. P values #0.05 were

considered as significant unless specified otherwise. Bonferroni
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correction was used for the adjustment of the food and nutrient

analysis.

Identification of dietary patterns
Cluster analysis was employed to derive dietary patterns from

the data. Overweight and obese subjects were grouped based on

similarities in eating behaviors. Prior to this analysis, all food

categories were standardized to a mean of 0 and a standard

deviation of 1 in order to ensure that quantities consumed were

comparable across different categories. A comparison of two

clustering methods for use with dietary data (Ward’s Agglomer-

ative Hierarchical Clustering and k-means clustering method) was

undertaken as described previously [27]. K-means was found to be

the most appropriate method to use in the conditions of the

present study. Group membership is determined by a series of

steps. The algorithm starts by a set of selected seeds and an

estimation of the centroid (the multidimensional equivalent of the

mean). Each individual is assigned to the nearest centroid and

temporary clusters are formed. The seeds are then replaced by the

centroid for each group. The process is repeated until no further

changes occur in the groups. The k-means function fits a user-

specified number of centers (the parameter k), such as that the

within-cluster sum of squares from these centers is minimized,

based on the Euclidian distance or another chosen distance. Since

the number of clusters must be established a prior, several

solutions were compared with a varying number of clusters (from 1

to 4).

To visualize the food categories that significantly distinguish one

pattern from another, a Canonical Discriminate Analysis was

implemented through SAS (CANDISC procedure) in order to

transform the food categories into two canonical axes that achieve

maximum separation between the clusters. The canonical

coefficients were used to assess the contributions of food categories

to the separation by evaluating their signs and magnitude. Using

canonical discriminate analysis for k-means, the 26 food categories

were transformed into two canonical variables from the patterns.

This approach permitted the visualization of the food categories

that significantly distinguish one pattern from another in the

overweight/obese subjects (Figure 2). Overweight and obese

subjects were classified according to their general dietary pattern.

Food or drink categories typically high in fat, sugar or salt and low

in other nutrients and fibers were regarded as ‘less healthy’,

whereas those typically low in fat, sugar or salt and higher in fiber,

fruits and vegetables were regarded as ‘healthier’ [28,29]. Higher

or lower intakes (as appropriate) of such categories contributed to

the assignment of a name to a particular group of subjects. The

lean subjects were projected onto the clusters of the overweight

and obese subjects to examine their distribution (Figure S1 in

Supporting Information S1).

Links between dietary patterns and bioclinical variables
including gut microbiota

Since the food and nutrient data were not normally distributed,

Kruskal-Wallis tests were used to test for differences between the

dietary clusters, while Wilcoxon rank-sum tests were used to test

for individual differences between each set of 2 clusters in food and

nutrient data. Considering the influence of age on clinical

parameters, we performed stratified Kruskal-Wallis tests stratified

by age groups (R package = coin) for analyzing the differences in

clinical variables as well as gut microbiota between the dietary

patterns. When Kruskal-Wallis tests were significant, differences

between each set of 2 clusters were assessed with stratified post-hoc

Nemenyi tests. The stratified tests for trend (R package = coin)

were performed to confirm the trends of clinical markers across the

dietary clusters (ordered in terms of healthiness starting with the

least healthy).

Partial spearman tests were used to verify the link between gene

counts/the 7 bacterial groups and dietary categories/bioclinical

variables by adjusting for age. Links between dietary clusters and

gene richness groups (low gene count/high gene count: LGC/

HGC groups) were investigated using an age-stratified Cochran-

Mantel-Haenszel test. Trends were assessed with Mantel-Exten-

sion test [30].

Canonical Correlation Analysis was used to maximize the

correlation between the set of the food categories that significantly

separate the clusters and a set of selected clinical parameters. Two

pairs of canonical axes were determined; one pair was from the

food categories and one pair from the clinical parameters. The

canonical coefficients were used to assess the contributions of each

food category and each clinical parameter to the correlation by

evaluating their signs and magnitude. This approach permitted to

Figure 2. Canonical analysis: graphical representation of the
food categories by cluster. A graphical representation of the food
categories that created the distinction between the clusters i.e. those
which were strongly correlated with canonical axis (Can) or significantly
different between clusters (KW test with Bonferroni correction). The can
1 axis separates Cluster1 from 2 or 3, the can 2 axis separates Cluster 2
from 1 or 3. If the food category is strongly correlated with the two
canonical axes it separates the three clusters at the same time. Food
categories shown in black characterise Cluster 1, in green characterise
Cluster 2, and in red characterise Cluster 3. The projection of each food
or drink category on each canonical axis represents the contribution of
this category to the building of this canonical axis. Therefore, if a
category has a high contribution to the first axis (e.g. fruit), it
discriminates Cluster 1 from Cluster 2 or Cluster 3. The food categories
with weak contribution (below 0.5 in the inner circle) are shown in blue.
These categories do not contribute to the discrimination/characteriza-
tion of the three clusters. The distance between the centre point of the
figure and the food category represents the correlation to the canonical
axis and therefore the contribution to the separation of clusters. Food
categories close to the axis between Clusters 2 and 3 indicate that
intakes are similar, as for yogurt. Food category names have been
shorted in this figure for readability.
doi:10.1371/journal.pone.0109434.g002
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visualize the association between the food categories that

significantly distinguish one pattern from another and the selected

clinical parameters.

Results

Overweight and obese subjects were divided into dietary clusters

with the number of clusters based on the optimum results obtained

using three statistical parameters and practical considerations

given the interpretability of the nutritional data. The optimum

number of clusters (k) was selected as three (k = 3). Food categories

that significantly distinguish one pattern from another in the

overweight and obese subjects are presented in Figure 2. The lean

subjects were found to be unequally dispersed across the clusters

(Figure S1 in Supporting Information S1). The three dietary

clusters were then analyzed in relation to clinical and biological

factors.

Subject general characteristics
Subject characteristics are shown in Table 1 and Table S1 in

Supporting Information S1. In the clusters of overweight and

obese subjects, no significant difference was detected in the

proportion of women or men, however, mean age of subjects in

Cluster 3 was higher (52.262.3 years), while mean age of subjects

in Cluster 1 was lower (34.462.7 years) (p = 0.001 across the 3

clusters). Importantly, body weight and adiposity markers did not

differ significantly between the 3 clusters (Table 1). Level of

physical activity was also similar across the clusters. There were no

differences in plasma glucose homeostasis including surrogate

insulin resistance index (HOMA-IR) between the three clusters. A

trend towards significance was seen in total- and LDL-cholesterol

that were significantly different across the clusters after age

adjustment, Cluster 1.Cluster 2. Cluster 3 (Figure 3). Results

were significant after stratified tests by age for trend (p = 0.03 for

total cholesterol and p = 0.01 for LDL-cholesterol) with the

greatest difference seen between Clusters 1 and 3 (when

comparing the medians Figure 3) but between cluster 1 and 2

(when comparing the mean values as in table 1).

As expected, when comparing the whole group of overweight

and obese subjects with the lean subjects (Table 1, and Table S1 in

Supporting Information S1), overweight and obese subjects had

the highest adiposity markers (body weight, fat mass, adipocyte

diameter and leptin levels) and perturbed plasma lipids and

markers of plasma glucose homeostasis. Of interest, when

comparing the different overweight and obese clusters with the

lean subjects, Cluster 3 was found to be similar to the lean subjects

for insulin sensitivity and plasma FFA, whereas Cluster 1 remained

worse than lean subjects and kept the same profile as the

overweight and obese subjects.

Food and nutrient intakes
Mean daily food intakes are shown in Table 2 and Table S2 in

Supporting Information S1. When the absolute food intakes were

compared between the obese/overweight and lean groups,

relatively few differences were observed. Compared to obese/

overweight subjects as a whole, in lean subjects the consumption of

sugary drinks and water were significantly lower and the intake of

vegetables tended to be lower but the intake of fruits was similar.

The percentages of consumers for each food category (Table S3 in

Supporting Information S1) supported these results, differences

were more commonly seen in beverages, e.g. fewer lean subjects

were consumers of sugary drinks compared to overweight and

obese subjects (57% vs. 82%).

We observed significant differences in intakes across the 3

clusters for particular food groups. In obese/overweight subjects,

Cluster 1 was characterized by the highest consumption of

potatoes, sweets, confectionary and table sugar and sugary drinks

and the lowest consumption of fruits, yogurt and water. This

pattern appeared to have the least healthy eating behavior

compared to the other patterns. Inversely, Cluster 3 was

characterized by the highest consumption of fruits, yogurt and

soups (likely to be composed mainly of water and vegetables) with

a lower consumption of sweets, confectionary and table sugar, and

sugary drinks. Intake of vegetables was also a key in characterizing

this cluster and mean intakes showed a trend to significance.

Cluster 3 appeared to have the healthiest eating behavior

compared to the other two clusters. Cluster 2 was characterized

by the highest consumption of water and a consumption of yogurt

similar to that of Cluster 3. In terms of healthfulness it was in-

between Clusters 1 and 3. Compared to food consumption in the

lean subjects, we observed some similarities between dietary

patterns of lean subjects, and overweight and obese subjects

grouped in Cluster 3 (the healthiest cluster), the latter even tended

to consume more fruit and vegetables. On the contrary,

overweight and obese subjects grouped in Cluster 1 had a higher

consumption of sweets, confectionary and table sugar and sugary

drinks compared to the lean ones (Table 2 and Table S2 in

Supporting Information S1).

Tables S4 and table S5 in Supporting Information S1 show the

nutrient intakes of the 3 clusters. Surprisingly, there were no

differences in total energy intake across the clusters. However

protein intake expressed as percentage of energy was lower in

Cluster 1. Higher micronutrient intakes were generally observed in

Cluster 3, while lower intakes were found in Cluster 1, supporting

the characterization of the groups in terms of healthfulness

according to food consumption. Total fiber intake was also highest

in Cluster 3 and lowest in Cluster 1.

Dietary patterns, systemic and adipose tissue
inflammation

As expected, overweight and obese subjects had increased

circulating hsCRP and IP10 and increased percentage of

HAM56+cells in adipose tissue compared to lean subjects. The

obese subjects grouped in the healthy Cluster 3 had similar

circulating levels of IL6 and even better levels of MCP1 compared

to lean subjects.

In the overweight/obese subjects, Cluster 3 had the lowest level

of a systemic marker of inflammation, plasma sCD14, followed by

Cluster 2 and then Cluster 1 (Figure 3, Table S1 in Supporting

Information S1). However, the other measured systemic inflam-

matory markers (such as hsCRP, IL6, LPS) and the number of

macrophages stained with HAM56 in adipose tissue were not

significantly different among the 3 clusters. Interestingly this trend

toward a less systemic inflammatory phenotype (at least for

sCD14) was associated with an increased number of M2-

alternatively activated macrophages in adipose tissue stained with

CD163 surface markers (p = 0.05 by stratified tests for trend) as

well as CD163% (p = 0.07 by stratified tests for trend) (Table 1).

These results were confirmed when the food groups that

distinguished the clusters were combined and analyzed in relation

to selected clinical parameters (Figure 4). When all overweight/

obese subjects were analyzed together, a positive association was

found between the consumption of fruits, vegetables, yogurts and

soups and the amount of adipose tissue macrophage cells stained

with (CD163, anti-inflammatory marker) together with a negative

link with some adiposity markers (total fat mass, adipocyte

diameter), a cardiovascular risk marker (LDL-cholesterol) and a
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systemic inflammatory marker (sCD14). Greater intakes of

potatoes, sweets and sweetened soft drinks are associated with

increasing levels of these markers and decreasing adipose

macrophages positive for anti-inflammatory markers. These links

could not be clearly illustrated in the lean subjects due to the

limited fluctuation of normal values in a narrow zone.

Dietary patterns and gut microbiota
Dietary patterns and dominant fecal bacteria. There

were no differences in the seven bacterial groups detected by

qPCR method among the 3 dietary clusters of overweight/obese

subjects (Table S6 in Supporting Information S1). However the

overweight/obese group as a whole had lower levels of Clostridia
leptum, Clostridia coccoides and Bacteroides/Prevotella groups than

the lean subjects (Table S7 in Supporting Information S1). A

negative association was found between the Lactobacillus/

Leuconostoc/Pediococcus group and cereals intake (e.g. rice,

pasta) (Table S8 in Supporting Information S1).

Dietary patterns and microbial richness (HGC and

LGC). The differences in total gene counts did not reach

statistical significance, but showed a tendency for higher gene

richness in Cluster 3 (p = 0.09 by stratified Kruskal-Wallis tests and

p = 0.06 by stratified tests for trend) (Figure 3, Table S9 in

Supporting Information S1). When splitting subjects in function of

gut microbial richness into HGC and LGC as previously described

in Cotillard et al (17), the relationship became significant

(p = 0.045 by Cochran-Mantel-Haenszel test and p = 0.035 by

stratified test for trend). Thus, subjects in Cluster 3 had the highest

gene richness and diversity in their gut microbiota. We also used

partial Spearman correlation tests to check for links between

microbial gene counts and dietary categories by adjusting for age.

Consistently, there was a significant positive link between total

bacterial gene counts and fruits (rho = 0.43, p = 0.002), as well as

between gene counts and soups (rho = 0.35, p = 0.017).

Discussion

We were able to identify in overweight/obese subjects three

distinct dietary clusters and explore differences in host inflamma-

tory variables and gut microbiota in function of the three dietary

clusters in a relatively small number of subjects. Those subjects in

Cluster 3 were identified as having a healthier dietary pattern,

while subjects in Cluster 1 had the least healthy dietary pattern.

Associations between the healthfulness of the dietary pattern and

LDL-cholesterol, some adiposity markers and inflammatory

profile were found in the overweight/obese subjects.

In our study the healthier dietary pattern was characterized by a

higher consumption of fruits and vegetables and a lower

consumption of confectionary and sugary drinks. These foods

have been linked to a healthy dietary pattern in other epidemi-

ological studies in different populations [10]. Consumption of

soups was associated to the healthier dietary pattern, a result to be

expected given its composition which is likely to be mainly of water

and vegetables. Greater low-fat fermented dairy product intake,

largely driven by yoghurt intake, was found to be associated with a

decreased risk of type 2 diabetes development in prospective

analyses [31,32], but a null association was found between high fat

dairy intake and disease development. In the present study, the

yogurt group contained other fermented dietary products (such as

fromage blanc) and included both low and high fat yogurts. Our

results showed that the consumption of yogurt was also often

associated to the healthier dietary pattern.These results merit

further investigation.T
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When looking to the impact of dietary patterns on metabolic

health, many prospective studies have demonstrated the associa-

tion between dietary patterns and weight changes in longitudinal

studies over 9 years [4] or during whole adult life [6] using a semi

quantitative food-frequency questionnaire. Food groups have been

suggested to predict short-term weight changes as in the EPIC-

Potsdam Cohort [7]. However, many inconsistencies exist in those

studies [5]. Increased consumption of vegetables and fruits in the

diet was not found to be effective for weight loss. A 100g fruit and

vegetable intake was associated with only a 214 g weight loss per

year in a multi-center European study (DIOGenes) [33].

Increasing fruit and vegetable intake was found to reduce risk of

weight gain only in people susceptible to weight gain with smoking

cessation [33,34]. In the present study, Cluster 3 which had an

overall healthier dietary pattern containing more fruits and

vegetables was found to have no impact on classifying weight-

stable subjects according to body weight or other adiposity

markers.

In the present study, fiber intake was higher in Cluster 3

compared with the other clusters. Higher fiber intake was

demonstrated previously to be associated with lower weight gain

[35]. Despite the higher fiber intake observed in Cluster 3, body

weight and total energy intake were not significantly different

across the 3 clusters. Interestingly, in the whole group of

overweight and obese subjects, lower total fat mass and smaller

adipocyte diameter were associated with increased consumption of

foods found in Cluster 3 (fruits, vegetables, yogurts and soups);

while higher total fat mass and larger adipocytes showed a positive

link with increasing potatoes, sweet, and sweetened soft drink

consumption. These links could not be demonstrated in the lean

group. This might be likely due to the fluctuation of normal values

in a narrow zone.

While the identified dietary patterns did not differ in terms of

total energy intake or body weight, Cluster 1, the least healthy

dietary pattern was associated with the worst metabolic profile

demonstrated by a trend toward higher levels of total- and LDL-

cholesterol. This trend paralleled the positive links observed

between LDL-cholesterol and increasing consumption of potatoes,

sweets and sweetened soft drinks, and the negative association with

increasing the consumption of fruit, vegetables, and soups but also

yogurt, in the overweight/obese group as a whole. These results

obtained even with a small number of subjects, are in line with

large cohort studies in which healthy dietary patterns have been

associated with a lower risk of coronary artery diseases: Health

Professional Follow-Up Study [36] and the Nurses Health Study

[37].

The three different dietary patterns were associated differently

to the inflammatory markers. While no differences were found on

Figure 3. Differences of metabolic and inflammatory markers after stratified Kruskal-Wallis tests in the 3 dietary pattern clusters.
Black, grey and white columns represent the median values of the parameters in Cluster 1, Cluster 2 and Cluster 3, respectively, after age adjustment
(see Methods S1 in Supporting Information S1). *: significant differences (p#0.05) between the 3 clusters after stratified Kruskal-Wallis tests, #: a
tendency of differences (0.05,p,0.15) between the 3 clusters.
doi:10.1371/journal.pone.0109434.g003
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hsCRP, IL-6 or LPS levels, Cluster 3 had the highest level

of CD163+macrophages anti-inflammatory cells) in adipose

tissue and the lowest level of a systemic inflammatory marker

(sCD14). Firstly, the subpopulation of CD163 positive cells refers

classically to alternatively (M2)-activated macrophages with some

anti-inflammatory properties. Bariatric-surgery induced weight

loss is associated with increased amount of these CD163+ cells

[38] and the amount of CD 163+ cells is associated with drug-

induced improvement of insulin sensitivity in clinical studies [39].

In addition, genetically modified mice, with impaired M2

Table 2. Mean daily food consumption (grams) for lean, overweight/obese subjects and the 3 dietary clusters.

Lean (n = 14)
All overweight and
obese (n = 45) Overweight and obese dietary clusters

Food category Cluster 1 (n = 14) Cluster 2 (n = 18) Cluster 3 (n = 13) P*

Bread and bread
products

73.81612.66 75.0765.54 65.3968.04 71.6168.71 90.27611.67 0.156

Cereals e.g. rice,
pasta

135.29626.53 80.1867.69 76.29614.39 87.26613.78 74.56611.23 0.876

Pulses e.g. lentils 4.7664.76 4.2861.52 3.8462.37 4.7662.58 4.0763.08 0.943

Potatoes including
chips

41.67613.73 40.5665.19 66.80610.69 18.4564.12 42.9167.50 ,0.001`

Breakfast cereals 1.4361.43 4.0061.54 10.1064.22 1.9061.48 0.3360.33 0.026

Milk 60.95621.69 98.44617.54 149.69639.75 68.76623.19 84.34625.59 0.185

Yogurt** 121.79621.97 95.49614.47 31.5869.80 121.59623.58 128.19630.34 0.0016

Cheese 50.95619.07 31.8464.39 31.1265.19 26.3165.46 40.29612.03 0.635

White meat e.g.
chicken

19.5266.69 38.6964.26 26.4567.31 33.9464.26 58.4669.14 0.010

Red meat e.g.
beef, lamb

54.76610.38 54.4864.76 55.6368.82 56.1868.29 50.8867.76 0.841

Delicatessen meats
e.g. ham

46.43615.61 42.8465.27 32.5565.59 60.03610.05 30.1167.79 0.017

Fish and fish
products

53.33615.01 30.0863.86 22.5567.26 33.0666.09 34.0766.86 0.342

Fruit 203.81636.14 206.44624.16 79.12622.15 191.32634.98 364.51629.57 ,0.001{

Vegetables 115.00619.69 175.24615.76 107.42619.91 181.52621.77 239.57631.60 0.003{

Fats and oils 22.5062.40 20.0761.46 17.4862.68 18.3661.82 25.2363.00 0.101

Eggs and egg
dishes

11.4365.01 19.8463.74 9.0862.83 32.6267.63 13.7464.60 0.070

Sweets, confectionary
and table sugar

19.1765.08 48.7169.36 96.19620.32 35.49612.40 15.8864.04 ,0.001

Pastries and sweet
biscuits

40.43610.98 53.8068.82 78.64623.92 51.2468.67 30.6068.48 0.169

Soups 107.14629.99 40.8768.70 18.8866.16 13.1064.98 103.02620.34 ,0.001{1

Savoury snacks, pies
and pizzas

40.00614.51 19.9064.58 39.59610.72 12.3765.86 9.1263.70 0.132

Condiments and sauces 5.0062.81 12.8762.25 14.8063.07 17.1764.73 4.8461.15 0.077

Nuts and seeds 0.4860.48 1.3060.56 0.8260.63 2.5461.26 0.1160.11 0.451

Water (all types) 384.52662.23 774.14659.26 463.91681.93 1047.94675.94 729.12689.26 ,0.001`

Drinks without sugar
without alcohol e.g. tea, coffee

475.00646.12 271.26627.40 232.55669.43 278.94631.93 302.31641.05 0.274

Drinks with sugar
without alcohol e.g.
soda, fruit juice

46.43615.45 162.42631.40 300.97677.34 139.26634.40 45.27616.88 0.0016{

Drinks with alcohol
e.g. wine, beer

39.76616.42 33.0667.98 14.2966.41 40.71613.93 42.69618.26 0.298

Data are presented as means 6 SEM.
*Kruskal-Wallis rank sum test with Bonferroni correction, P value significant at #0.002 is shown in bold italics. Wilcoxon rank sum test stands for variance between
overweight and obese individual clusters.
{significant difference between Clusters 1 and 3.
`significant difference between Clusters 1 and 2;
1significant difference between Clusters 2 and 3. P values testing variance between lean subjects and all overweight and obese subjects and between lean subjects and
the individual clusters are shown in Table S2 in Supporting Information S1.
**This group contains other fermented dairy products, e.g. fromage blanc.
doi:10.1371/journal.pone.0109434.t002

Dietary Patterns and Gut Microbiota in Overweight and Obese Subjects

PLOS ONE | www.plosone.org 9 October 2014 | Volume 9 | Issue 10 | e109434



macrophage activation, are prone to diet-induced obesity and

insulin resistance [40]. Therefore, the increased adipose tissue

anti-inflammatory marker might have a positive impact on health.

Secondly, since CD14 acts as a co-receptor (along with the Toll-

like receptor TLR 4 and MD-2) for bacterial LPS [41], the low

levels of sCD14 might be associated with a decrease in LPS, one of

the principal components of gram-negative bacterial membrane.

However, in the present study, no difference was detected in LPS

or in the amount of the 7 bacterial groups determined across the 3

clusters. However, the variation in dietary patterns between the 3

clusters was linked to different levels of plasma sCD14 and anti-

inflammatory macrophages in adipose tissue subjects. This

hypothesis is strengthened by the negative correlations found

between these dietary patterns and plasma sCD14, and the

positive ones found between these dietary patterns and the anti

inflammatory phenotype of adipose tissue.

In spite of the absence of differences between the 3 dietary

patterns in the 7 components of gut microbiota, we are not able to

rule out the possible role of gut microbiota in linking dietary

patterns to changes in inflammation and some metabolic markers.

However, a negative association was found between the Lactoba-

cillus/Leuconostoc/Pediococcus group and cereals intake (e.g.

rice, pasta) in the whole population. Further studies are needed to

understand such link. Additionally, gut microbiota of subjects in

Cluster 3 showed higher gene richness than the other clusters.

Consistently, this gene richness was also positively associated with

fruit consumption. These results are strengthened by a recent

study in a European cohort confirming the association between

gene richness and fruit and vegetable consumption [24]. We

require now a more in-depth knowledge to discover the functional

significance behind these links.

We are aware that these results have been found in a limited

number of subjects for which there is a high female to male ratio.

Identifying dietary patterns presents challenges in any population,

especially a small sized one. The validity of the dietary pattern

analysis depends on the dietary assessment method itself and the

completeness and accuracy of the dietary data collected in the

study. Indeed, the analysis of dietary patterns requires decisions,

judgments and interpretations which may result in biased results,

for example the creation of food categories, and the decisions

regarding the number of clusters [3]. Dietary recording in the lean

subjects differed from that of the overweight/obese subjects (3 vs 7

days) and compliance with recording might decrease in line with

the number of diary days. Furthermore, misreporting of the

dietary data may also attenuate any diet and disease relationships

and affect any conclusions that can be made [42]. However, there

is no reason to believe that the level of misreporting would differ

significantly across these subjects with controlled dietary data

collection.

Given the results in their entirety, the scenario might be as

follows: small differences in dietary patterns can influence the

microbial gene diversity and quantity of certain gene classes/

species that might have in part a direct impact on some host

metabolic (total-cholesterol and LDL cholesterol) and inflamma-

tory markers (sCD14) and accumulation of some subpopulations of

adipose tissue macrophages. Additionally, dietary patterns might

have also a direct influence on host markers.

To our knowledge this study is the first to explore the impact of

dietary patterns on gut microbiota (including seven dominant

Figure 4. Canonical correlation analysis for significant food categories and selected clinical parameters (all subjects). Visualization of
the association between the food categories that significantly distinguish one pattern from another and selected clinical parameters. Pairs of
canonical axes were determined to maximize the covariance between the food categories and the clinical parameters. The canonical coefficients
were used to assess the contributions of each food category and each clinical parameter to the correlation by evaluating their signs and magnitude.
The healthy foods (yogurt, soups, fruits, vegetables) are in the area of CD163+ macrophages indicating the higher the consumption of these healthy
foods, the higher the value for the alternatively (M2)-activated macrophages. The less healthy foods (potatoes, sweetened soft drinks, sweets) are in
the area of LDL cholesterol, inflammatory parameters CD14, total fat mass and adipocyte diameter indicating that the higher the consumption of
these foods, the higher the value of these clinical parameters; Food and clinical parameter arrows pointing in the same direction indicate positive
correlation between them. The closer the food is to the clinical parameter, the greater the link (but in some cases this link is not strong, and the value
for the correlation is less than 0.05).
doi:10.1371/journal.pone.0109434.g004
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bacteria and microbial gene richness generated by next-generation

sequencing method) and host inflammation in overweight/obese

subjects without any dietary transition. This study gives insight

into how different dietary patterns might be linked with gut

microbiota and host metabolism and inflammation. The variation

in metabolic health among overweight and obese individuals

might be partially attributable to habitual diets. The results show

that the subgroup that follows a healthier diet (in terms of higher

consumption of vegetables and fruit, and lower consumption of

sweets) shows less pronounced metabolic impairment, even when

body weight and total energy intake do not differ from the other

groups. This suggests that a healthy eating pattern may provide

protection towards development of metabolic and inflammatory

diseases even when it has no impact on body weight. Further

studies are needed to elucidate the underlying mechanisms that

may provide new diagnostic and therapeutic strategies to treat and

prevent metabolic diseases.
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