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Abstract

Objectives: Systemic inflammation is a major risk factor for critical-illness myopathy (CIM) but its pathogenic role in muscle
is uncertain. We observed that interleukin 6 (IL-6) and serum amyloid A1 (SAAT) expression was upregulated in muscle of
critically ill patients. To test the relevance of these responses we assessed inflammation and acute-phase response at early
and late time points in muscle of patients at risk for CIM.

Design: Prospective observational clinical study and prospective animal trial.
Setting: Two intensive care units (ICU) and research laboratory.

Patients/Subjects: 33 patients with Sequential Organ Failure Assessment scores =8 on 3 consecutive days within 5 days in
ICU were investigated. A subgroup analysis of 12 patients with, and 18 patients without CIM (non-CIM) was performed. Two
consecutive biopsies from vastus lateralis were obtained at median days 5 and 15, early and late time points. Controls were
5 healthy subjects undergoing elective orthopedic surgery. A septic mouse model and cultured myoblasts were used for
mechanistic analyses.

Measurements and Main Results: Early SAAT expression was significantly higher in skeletal muscle of CIM compared to
non-CIM patients. Immunohistochemistry showed SAA1 accumulations in muscle of CIM patients at the early time point,
which resolved later. SAAT expression was induced by IL-6 and tumor necrosis factor-alpha in human and mouse myocytes
in vitro. Inflammation-induced muscular SAA1 accumulation was reproduced in a sepsis mouse model.

Conclusions: Skeletal muscle contributes to general inflammation and acute-phase response in CIM patients. Muscular
SAA1 could be important for CIM pathogenesis.

Trial Registration: ISRCTN77569430.
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Introduction mechanical ventilation, increased hospital mortality, and chronic
physical disability [4,5]. Diminished myosin heavy chain (MyHC)
content is consistently observed [1,6]. Others and we recently
reported that non-excitable muscle membranes indicate patients at
risk for critical illness myopathy (CIM) early during the disease
process [1,7,8]. CIM deteriorates the disease course and leads to

Intensive care unit (ICU)-acquired weakness is a serious
complication during critical illness, characterized by loss of muscle
mass, preferential atrophy of fast-twitch myofibers and weakness
[1-3]. The clinical consequences are prolonged hospital stay and
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protracted rehabilitation, poor quality-of-life outcomes, and
permanent disability [4,5,9]. The suffering and economic impact
for the health care system and the society are high [10].

Earlier, we observed disturbed glucose utilization in skeletal
muscle from CIM patients caused by insufficient translocation of
the glucose transporter GLUT4 to the membrane [11]. Nonethe-
less, the pathophysiology of CIM is poorly understood [12].
General inflammation with sepsis, immobilization, sedation,
hyperglycemia and corticosteroids contribute to CIM [13,14].
Among these the mediators of inflammation interleukin 6 (IL-6)
and tumor necrosis factor-alpha (TNI-o) are particularly impor-
tant [15,16]. Serum levels of IL-6 [14,15] and TNF-o [16] are
increased in systemic inflammatory response syndrome and sepsis
patients and are associated with increased mortality [14]. Both IL-
6 [17,18] and TNF-a [19-21] contribute to muscular atrophy by
increasing protein degradation [22,23]. Both cytokines increase
the expression of acute phase response proteins, such as serum
amyloid A 1 (SAAIL) in muscle and other tissues [24]. SAAL is
associated with muscle wasting and atrophy in cachectic mice [25].
In addition, IL-6 and SAA1 cooperate to enhance angiotensin
(Ang) II-induced muscle atrophy [26]. However, it is unknown if
inflammation induces acute phase response directly in myocytes of
critically ill patients which contributes to CIM. We hypothesized
that early identification of non-excitable muscle membranes
indicative for CIM could be helpful to identify pathways involved
in the pathogenesis of CIM. A gene expression array performed on
skeletal muscle biopsies from CIM and non-CIM patients drew
our attention to increased muscular SA47/ gene expression
indicative for acute phase response in muscle of CIM patients.
We investigated factors regulating SAAI1 synthesis in skeletal
myocytes and tested conservation of this pathway in a sepsis mouse
model.

Materials and Methods

Ethics Statement

The institutional review board of the Charité approved the
study, and written informed consent was obtained from legal
proxy (ICU patients), or the patients themselves (control subjects)
(Charité EA2/061/06). The study was registered under http://
www.controlled-trials.com, ISRCTN77569430. We specifically
included patients at high risk to develop ICU-acquired weakness.
Accordingly, critically ill, mechanically ventilated ICU-patients
were eligible for inclusion once they showed Sequential Organ
Failure Assessment (SOFA) scores =8 on three consecutive days
within the first five days after ICU admission. In this observational
study all patients (n = 33) were treated according to local standard
operating procedures [27]. We have reported an analysis on
defective glucose utilization in these same patients earlier [11]. All
patients received physiotherapy by an experienced physiotherapist
starting from day one in ICU. Passive range of motion and active
exercise were prescribed daily based on interdisciplinary discus-
sions involving physiotherapists, nurses, ward physicians and
consultants, and according to individual patient needs. Study
physicians assessed patients’ muscle strength according to the
Medical Research Council (MRC) score. To be eligible for MRC
score evaluation, patients had to be awake (defined as Richmond
Agitation Sedation Scale scores of —1, 0, or +1) and to adequately
respond to at least three out of five verbal commands as recently
reported [8]. Five age- and gender-matched otherwise healthy
patients undergoing elective orthopedic surgery permitted muscle
biopsies.

Muscle membrane in-excitability after direct muscle stimulation
is an accepted marker for early CIM diagnosis and was shown to
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be associated with later development of ICUAW [1,8,28]. We
measured muscle membrane excitability after direct muscle
stimulation at day 6 (4-13) in ICU as recently reported [1,8].
Muscle membranes of CIM patients (n = 18) were non-excitable as
shown by a reduced compound muscle action potential after direct
muscle stimulation (dmCMAP<3 mV), whereas in non-CIM
patients (n =12) muscle membranes (CMAP=3 mV) were excit-
able [8,28,29]. For logistical and clinical reasons three patients
could not be classified and were consequently not included in
comparisons. We took biopsy specimens from vastus lateralis muscle
in all 33 ICU-patients at median day 5; referred to as early time
point. Twenty-two patients were still in the ICU at median day 15,
when a second biopsy was performed; referred to as late time
point. Serum samples were taken at the second or third day on
ICU and stored at —20°C.

Hematoxylin & Eosin and Gomori-trichrome histological
staining on cryosections were performed to assess overall muscle
pathology as described earlier [30]. Photographs were acquired
with a Leica CTR 6500 microscope and a Leica DFC 360 FX
digital camera. Further information about animal experiments,
Microarray analyses, quantitative real-time RT-PCR (primer
sequences are provided in Table S1), immunohistochemistry,
ELISA, human and mouse myoblast culture and immunocyto-
chemistry is provided in Methods S1.

Statistical Tests

Non-parametric tests, the Mann-Whitney test to analyze group
differences and the Wilcoxon test for dependent samples, were
performed. Spearman’s rank correlation coefficients were calcu-
lated. Data are shown as median with interquartile range (IQR).
Student’s t-tests and one-way ANOVA analyses were used for
PCR data and cell culture experiments. Statistical tests were
calculated using SPSS (version 19.0.0.1); box plots were made with
the Sigma Plot software (version 12.0). Statistical significance was
considered at P<0.05.

Results

A Gene Expression Array Analysis Uncovered Increased
SAA1 Expression in CIM Muscle

The study design is outlined (Figure 1); data on patient
characteristics and further clinical information are presented in
Table 1. Patients with non-excitable muscle membrane indicating
muscle pathology in CIM developed muscle weakness during ICU
treatment, with a median MRC score of 3.0 (interquartile range
[IQR], 2.9-3.3), whereas patients with excitable muscle mem-
brane showed a median MRC score of 4.3 (IQR, 3.5-4.8;
P=0.003). A non-excitable muscle membrane measured at
median day 6 (4/13) was predictive for the development of
muscle weakness with a sensitivity and a specificity of 80% each.

To assess very early changes in gene expression, we first
performed microarrays. Among 24,133 transcripts, 1,841 genes
were differentially expressed in critically ill patients versus control
patients (5% FDR). The top 30 genes by fold-change increased or
decreased in critical illness were revealing (Tables S2 and S3).
Additionally, exon expression interaction with the grouping
control versus CIM patients versus non-CIM patients led to a set
of 1,948 significant differential expressed transcript clusters (5%
FDR). Viewing the top 30 genes by fold change differences
between CIM versus non-CIM patients implicated several candi-
dates differentially regulated in CIM (Tables S4 and S5). Among
these we found serum amyloid A 1 and 4 (S447, SAA4) and
therefore reasoned that acute phase response occurred in muscle
during critical illness, especially in CIM patients. The data
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Figure 1. Study protocol.
doi:10.1371/journal.pone.0092048.g001

discussed in this publication have been deposited in NCBI's Gene
Expression Omnibus and are accessible through GEO Series
accession number GSE53702 (http://www.ncbinlm.nih.gov/
geo/query/acc.cgiacc = GSE53702).

RT-PCR analyses on biopsy specimens confirmed the increased
SAAT (controls: 0.09 (0.09-0.9), ICU-patients early time point:
8.16 (2.42-36.6), P=10.005) and S444 (controls: 0.55 (0.42-1.54),
ICU-patients: 8.3 (2.56-29.39), P=0.002) expression levels in
critically ill patients. SAA47/ and SAA4 expression remained
unchanged between the early and late biopsy specimen (late time
point: SAA7:14.77 (4.13-27.2), P=10.003; $S444:16.7 (6.18-40.64),
P=0.0478) (Figure 2A). Subgroup analyses showed that SA47 and
SAA4 were exclusively increased in CIM patients (S447:30.6
(7.46-45.8), P=0.001; S444:22.8 (4.42-51.6), P=0.0001), but
remained unchanged in non-CIM (S4417:2.42 (0.53-4.6), P=0.15;
SAA4:1.64 (1.06-6.64), P=0.09) patients, in the early biopsy
specimens (Figure 2B). S44/ and S444 expression increased
significantly in non-CIM patients (S447:6.1 (4.99-15.1), P=0.012;
SAA4:18.4 (8.47-36), P=0.018), and reached the expression level
of CIM patients (S447:19.35 (1.34-67.2), P=0.397 vs. early time
point, P=0.24 vs. non-CIM; $444:16.71 (3.08-70.61), P=0.06 vs.
early time point, P=0.916 vs. non-CIM) in the late biopsy
specimens. In contrast, no further increase in S447/ and SA44
expression between the early and late biopsy specimens was
observed in CIM patients (Figure 2B).

In addition to electrophysiological testing MRC scoring was
possible in 21 out of the 30 ICU patients. In this subgroup, direct
muscle stimulation identified weakness with a sensitivity of 80%
and a specificity of 83.3%), which is consistent with our recent work
[8] (Table S6). Based on MRC scoring (sum score <48 or mean
MRC score <4) we performed a subgroup analysis and found an
increased SAA7 expression in patients with (n=15) compared to
patients without clinical evidence of weakness (n=6) in the early
biopsy specimens. S444 expression was not different between both
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groups. Compared to controls S447 and SAA4 expression was
increased in patients with clinical evidence of weakness at the early
time point (Figure S1 and S2). Overall, these findings are
consistent with the data shown here for electrophysiological
classification of CIM (Figure 2B).

SAA1 Production is Increased Early in Muscle of CIM
Patients

We then proceeded to test our hypothesis that SAA1 production
is induced in muscle of CIM but not non-CIM patients. Using
immunohistochemistry SAAL protein was found to accumulate in
the interstitium, around myofibers, and at the sarcolemma were it
co-localized with the membrane-marker laminin (Figure 2C and
2D). CIM patients showed stronger SAA1 accumulation in the
early biopsy specimens, compared to non-CIM patients. The same
differences, although diminished in SAAI protein contents, were
observed in the late biopsy specimens (Figure S3). These data
suggested that high S447 expression translated into a higher SAA1
protein content in skeletal muscle of CIM patients, and that SAAI
was directly synthesized by muscle. Acute phase SAA consist of
both SAAL and SAA2 [24]. Acute phase SAA is associated with
generalized inflammation [24]. SAA serum levels were higher in
ICU patients than in controls (controls: 333.7 (164.1-433.04),
ICU-patients: 606.53 (570.95-631.53), P<0.01). However, SAA
serum levels were not increased in CIM compared to non-CIM
patients (CIM: 584.9 (560.45-610.34), non-CIM: 631.64 (609.63
650.4), P<0.05) (Figure 3A). These findings suggest that SAA
synthesized in the skeletal muscle does not decisively contribute to
circulating SAA levels.

Since IL-6 and TNF-o can increase SAAIL [31], we hypothe-
sized that increased muscular IL-6 and/or TNF-a levels could be
responsible for higher SA447 and S444 expression in CIM patients.
We determined /L-6 and 7TNF-o mRNA expression in biopsy
specimens of control and critically ill patients. /L-6 expression
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Table 1. Characterization of critically ill patients.

Serum Amyloid A1 and Critical lliness Myopathy

lliness severity at ICU admission

SOFA

SAPS-II

Treatment between ICU-admission and early biopsy
Norepinephrine [mg/d]

Patients with median =2 organ dysfunctions until biopsied n (%)
Patients with acute renal failure n (%)

% of days with septic shock

Parameter non-CIM-patients CIM-patients
dmCMAP=3mV dmCMAP<3mV

N 12 18

Age [years] 42.5 (32.5/57.5) 65.5 (41.0/76.0)

Gender [m/f] 7/5 (58.3%/41.7%) 15/3 83.3%/16.7%)

BMI [kg/mz] 26.0 (23.2/32.5) 27.9 (24.9/31.4)

MRC Score 43 (3.5/4.8) 3.029/3.3)"

Diagnosis [n (%)]

ARDS n=3 (25.0%) n =28 (44.4%)

Trauma n=4 (33.3%) n=2(11.1%)

Sepsis n=7 (38.9%)

CNS n=>5 (41.7%) n=1 (5.6%)

Time point of early biopsy (days after ICU admission) 5.0 (4.0/6.5) 6.0 (4.0/7.0)

Time point of late biopsy (days after ICU admission) 15.0(14.0/16.0) 15.5(14.0/19.0)

Survivors n (%) 12 (100%) 12 (66.7%)

11.0 (9.0/14.0)
53 (42/57)

11.5 (10.0/14.0)
62 (47/66)

20.0 (8.8/21.7) 12.5 (9.0/24.3)

2 (16.7%) 14 (77.8%)"
1 (8.3%) 11 (61.1%)*
8.3 (0.0/45.0) 45.0 (25.0/71.4)*

*P<0.05,
fP<0.01.
doi:10.1371/journal.pone.0092048.t001

(controls: 1.25 (0.51-1.38), ICU-patients early time point: 5.73
(2.4-9.51), P<0.0001), but not that of TZNF-o (controls: 0.79 (0.34—
1.45), ICU-patients early time point: 1.36 (0.96-1.9), P= 0.28) was
elevated in critically ill patients (Figure 3B). Furthermore, no
difference in /L-6 and TNF-o expression was found between CIM
and non-CIM patients (early time point: /L-6: CIM 6.02 (2.74—
11.67), non-CIM 5.43 (2.45-7.11), P=0.175; TNF-a: CIM 1.4
(0.97-1.84), non-CIM 1.31 (1.03-2.08), P=0.76) or between the
early and late biopsy specimens (late time point: /L-6: CIM 8.01
(4.324-10.37), non-CIM 8.92 (3.72-13.46); TNF-o: CIM 2.02
(1.15-2.55), non-CIM 1.58 (1.19-2.29), n.s.)(Figure 3B and 3C).
These data suggest that inflammation occurred directly in muscle
during critical illness.

Muscle biopsies consist of myocyte and non-myocyte cells, such
as fibroblasts and endothelial cells. To test if myocytes synthesize
SAA1, we performed cell culture experiments using human
myocytes which were differentiated into myotubes. Indeed, using
real-time RT-PCR we found SAA47 to be endogenously expressed
in myotubes. We treated myotubes with human recombinant IL-6,
TNF-a, or both. Both IL-6 and TNF-a increased SA47 expression
in human myotubes. A combination of IL-6 and TINF-ot was more
effective than either cytokine alone (Figure 4A). Immunofluores-
cence staining showed an increase in SAA1 protein (Figure 4B).
Lipopolysaccharides (LPS) also mediate muscular atrophy [32].
LPS treatment of human myotubes increased SAA/ expression
(Figure 4C) and protein content (Figure 4D).

PLOS ONE | www.plosone.org

ICU indicates intensive care unit; BMI, body mass index; ARDS, acute respiratory distress syndrome; SOFA, Sequential Organ Failure Assessment; SAPS-II, Simplified Acute
Physiology Score II; MRC, Medical Research Council; RASS, Richmond Agitation Sedation Scale. Results are expressed as medians with inter-quartile range or as absolute
numbers with percentages. Differences are calculated between patients with excitable (non-CIM) and non-excitable (CIM) muscle membrane. Mann-Whitney test.

To analyze if SA41 or SAA4 expression were directly associated
with compound muscle action potential, correlation analyses were
performed. We found that SA47 and S444 mRNA expression in
the ecarly biopsy specimen were inversely correlated with
compound muscle action potential after direct muscle stimulation
(dmCMAP) (Figure 5). In addition, SAA7 and SAA44 expression
levels were directly correlated with each other (Figure S4).

Inflammation-induced SAA1 Expression in Muscle is
Conserved throughout Species

We next sought to test if inflammation-induced acute phase
response in muscle is conserved throughout species. Therefore, we
asked if our findings could be reproduced in a mouse model of
polymicrobial sepsis. Wild type mice were subjected to the cecal
ligation and puncture model (CLP) of sepsis, or a sham procedure,
for 24 h [33]. RT-PCR analyses performed on the gastrocnemius
plantaris and tibialis anterior confirmed increased muscular SA47
expression during sepsis (Figure 6A). Immunohistochemistry
showed that SAA1 protein was increased in myofibers, at the
sarcolemma around myofibers and in the interstitium of the
gastrocnemius plantaris of septic mice (Figure 6B). To investigate if
SAA protein was secreted by septic skeletal muscle and was
contained in the muscular interstittum, we performed micro-
dialysis in the vastus medialis of septic and sham mice 24 h after
surgery. Mass-spectrometric analysis of dialysates showed an
increase in interstitial SAA1, SAA2 and SAA4 proteins in vastus
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doi:10.1371/journal.pone.0092048.g002

medialis of septic mice (Figure 6C). These data indicate that SAA is Discussion
not only synthesized, but also secreted by skeletal muscle in
response to inflammation. RT-PCR analyses and immunofluores-
cence stainings revealed that mouse myoblasts differentiated into
myotubes also endogenously expressed SAAI. Differentiated
myotubes were treated with murine recombinant IL-6 or TNF-

& Both 1L-6 and TNF- increased SAA7 expression (Figure 6D). CIM development. S447 was expressed in myocytes i vitro.
Treatment with IL-6, TNF-a, or LPS increased its expression both

in human and mouse skeletal muscle and myocytes. Inverse
correlations between early S447 expression and muscle membrane
excitability suggest that SAAI could contribute to the development
of CIM.

Few data regarding differences in gene expression between CIM
and non-CIM skeletal muscles are available. We relied on an
expression array and identified genes that are specifically increased
i CIM skeletal muscle at a very early time point after ICU
admission. SA47 and SAA4 expression was higher in skeletal

We found that inflammation caused acute phase response in
skeletal muscle of critically ill patients, which was associated with
CIM. We demonstrated that early increases in SA4/ and SAA44

expression and SAAI accumulation in muscle are associated with

Immunofluorescence staining showed an increase in SAA1 protein
in those myotubes (Figure 6E). LPS treatment of differentiated
mouse myotubes increased S44/ expression and protein content
(Figure S5A and S5B). These data indicate that inflammation-
induced S441 expression in myocytes is conserved throughout
species.

PLOS ONE | www.plosone.org 5 March 2014 | Volume 9 | Issue 3 | €92048



Serum Amyloid A1 and Critical lliness Myopathy

k%%

A = 800 dk%
) E k% *
o
=
= 1+ =5
o 6001 ' | ! '
2 = 7
= .
o
o 40071
8 . °
£
=
o 2007
(7]
<
<<
@
< 0 t f : t
Controls ICU non-CIM CIM
patients
B) IL-6 TNF-a
** n.s.
35-- *k%k 6-- n.s
n.s. n.s
s 5 .
» T L g » 5+
s 2
§.25“ P & 4+
[ o e )
< 20T <
z =37
4 4
e’ E T
o o 2T
>10T >
s Sqi+—+—-—d4-Eb_Jd = -
201 : T+
O_TE——‘————'L——— 0+
Controls day5  day15 Controls  day5 day15
ICU patients ICU patients
C) IL-6 TNF-a
357 * 6T

257

157

101 .T-

Relative mRNA expression
(S, ]
—
—
Relative mRNA expression
- N w
i + +
I :
| AN
I .
1]
I
I
I

0__——|'—_-|—-T —————— —-‘-———'L—— 04 * °
Controls non-CIM CIM non-CIM CIM Controls non-CIM CIM non-CIM CIM
1 I 1 I

dayd day15 dayd day15

Figure 3. A-SAA serum levels and /L-6 and TNF-« expression in skeletal muscle of critically ill patients. (A) Serum levels of acute phase
SAA (A-SAA) measured by ELISA in healthy controls (n=6), critically ill patients (ICUs, n=30), non-CIM (n=19) and CIM (n=11) patients. Serum
samples were obtained at days 2 to 3 after ICU admission. **P<<0.01, *P<<0.05. (B) RT-PCR analyses of IL-6 and TNF-o expressions in skeletal muscle
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from critically ill patients at early (day 5) and late (day 15) time points. Glyceraldehyde-3 phosphate dehydrogenase (GAPDH) expression was used as
reference. (C) RT-PCR analyses of IL-6 and TNF-x expression at early and late time points in CIM and non-CIM patients. Data are presented as box plots
showing median, 25™ and 75t percentiles. Wilcoxon tests were performed between early and late biopsy specimens and Mann-Whitney tests for the

respective time points and controls; ***P<<0.001, **P<0.01, *P<<0.05, or n.s. (not statistically significant).

doi:10.1371/journal.pone.0092048.g003

muscle of CIM patients only in muscle biopsies of the early time
point. The rapid and early increase in SA47 and S444 expression
could be responsible for SAAl accumulation in the muscle
membrane and interstittum of CIM patients, possibly overriding
its degradation. SAA1 accumulation coincided with decreased
electrical excitability of the muscle membrane measured at median
day 6 in CIM patients. At the later time point, SA47/ and SA44
expression were similar in CIM and non-CIM patients and SAA1
accumulation resolved; further supporting the hypothesis that

membrane during inflammation. However, further experiments
are needed to elucidate if these aggregates directly affect muscle
membrane excitability especially during early critical illness. Our
findings also implicate a very early pathomechanism facilitating
CIM development right after ICU admission. This hypothesis is
strengthened by the rapid increase in SAAI synthesis and secretion
in muscle of septic mice. Based on our findings, we hypothesize
that skeletal muscle participates in acute phase responses that self-
perpetuate muscle demise during sepsis.

early induction of SAAI facilitates its accumulation in muscle

B)  control IL-6 + TNF-a
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Figure 4. IL-6, TNF-a and LPS increased SAA7 expression and protein content in human skeletal muscle cells in vitro. (A) Differentiated
human skeletal myotubes were treated with human recombinant IL-6 (100 ng/ml), TNF-a (10 ng/ml), or a combination of both (IL-6, 100 ng/ml; TNF-
o, 10 ng/ml) for 16 h. RT-PCR was used to measure SAAT expression, which was normalized to beta-2-microglobulin expression. Relative gene
expression by fold-induction of SAAT expression (above column) is shown. **P<<0.01, *P<<0.05. (B) Immunocytochemistry of SAA1 (green) on
differentiated human myotubes following treatment with human recombinant IL-6 (100 ng/ml), human recombinant TNF-a (10 ng/ml), and both
cytokines (IL-6, 100 ng/ml; TNF-0, 10 ng/ml) together for 16 h is shown. Nuclei were stained with 4’,6-diamidino-2-phenylindole (DAPI; blue); scale
bar 50 pm. (C) Human skeletal myotubes were treated with lipopolysaccharide (LPS, 1T ug/ml) for 16 h. RT-PCR was used to measure SAAT expression,
which was normalized to Glyceraldehyde-3 phosphate dehydrogenase (GAPDH); *P<<0.05. (D) Immunocytochemistry of SAA1 (green) on human
myotubes following LPS treatment (1 pg/ml) for 16 h. Nuclei were stained with DAPI (blue); scale bar 50 pm.
doi:10.1371/journal.pone.0092048.g004
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Figure 5. Early SAA7T expression correlated with muscle membrane excitability of critically ill patients. A multivariate analysis was
performed to test, if SAAT and SAA4 expressions were correlated with clinical CIM parameters. SAAT (left) and SAA4 (right) expressions measured in
early biopsy specimens were inversely correlated with compound muscle action potential on direct muscle stimulation (dmCMAP).

doi:10.1371/journal.pone.0092048.g005

The SAA family of proteins are sub-classified into acute phase
response SAA1 and SAA2 [34], whose expression increases up to
1000-fold during inflammation [26], and SAA4, which is mainly
constitutively expressed [35]. However, S444 expression is also
increased by inflammatory stimuli in various tissues [36]. Acute
phase SAAs are predominantly synthesized and secreted by the
liver in response to inflammation [24]. Clinical data suggest
markedly increased inflammation in CIM patients [14]. We
believe that this increase contributed to the early induction of
SAAT and SAA44 expression in muscle. However, for logistical
reasons it was impossible to obtain biopsies earlier than five days
after ICU admission. Therefore we took advantage of an animal
model of polymicrobial sepsis enabling us to investigate much
earlier time points of critical illness. With this model we showed
that inflammation leads to a rapid increase of SAAI synthesis in
muscle. It also demonstrated that inflammation-induced acute
phase response in muscle was conserved throughout species.
Conservation of this pathway is also supported by our @ vitro data
showing increased SAAIl synthesis in response to cytokine
treatment of murine myocytes. In addition, this mouse model
proved to be useful to demonstrate increased SAAIL secretion in
the muscular interstitium of septic mice.

The inflammatory cytokines IL-6, TNF-o, and IL-1p all
increase hepatic SAA synthesis. However, skeletal muscle appar-
ently also contributes to increased SAA production [26]. Although,
SAA expression was higher in CIM than in non-CIM patients SAA
serum levels were not increased in CIM patients. Possibly, SAAI
accumulations at the sarcolemma and in the interstitium might
prevent SAAI’s entry into the circulation. Alternatively, SAAI
production in muscle is perhaps only a small fraction of the total
SAA produced.

Both TNF-o and LPS increased SAA41 expression i vivo [31,37].
In line with these observations, our data showed that myocytes
express SAA1, and that IL-6, TNF-a, and LPS all increase its basal
expression. Since /L-6 and TNF-o were equally expressed in CIM

PLOS ONE | www.plosone.org

and non-CIM muscle, muscular I1.-6 and TNF-a do not seem to
be responsible for increased SAAl or SAA4 contents in CIM.
However, recently we reported that serum IL-6 levels were
predictive of CIM [14]. We speculate that increased serum but not
muscular IL-6 levels were responsible for increased SA4/
expression in CGIM muscle. A role for both SAA1 and IL-6 in
muscular atrophy was recently reported [26]. SAA1 was found to
be increased in skeletal muscle of cachectic mice with cancer [25].
In this work, SA447 expression correlated with the degree of skeletal
muscle wasting and muscular atrophy. IL-6 and SAA1 were also
shown to mediate skeletal muscle atrophy induced by Angll [26].
These data, and the findings we report here, implicate that SAAI
contributes to inflammation induced muscular atrophy.

Muscular TNF-o0 expression was unchanged in critically ill
patients implicating a minor role of TNF-a in regulation of SAA1
expression. Nevertheless, we investigated the effect of TNF-o0 on
SAAL expression and protein content in myocytes w vitro. First,
because TNF-o expression follows a time course during inflam-
mation with an early increase and a rapid decrease after the
inflammatory stimuli it is possible that the biopsy time point was
too late to detect meaningful differences in 7NF-o. expression
between CIM and non-CIM patients. Second, TNF-a increases
SAAI expression in muscle and other tissues [24]. Third, we
assumed that TNF-o0 [19-21] contributes to muscular atrophy in
critically ill patients by increasing protein degradation [22,23].
Fourth, it is unknown how much biological active TNF-o is
contained in the skeletal muscle of our patients because TNIF-o
protein levels were not quantitated. Fifth, in general TNF-o serum
levels [16] are increased in systemic inflammatory response
syndrome and sepsis patients [14]. However, if TNF-o. serum
levels were elevated in our patients is uncertain.

We also found increased muscular S444 expression in critically
il patients and higher upregulation in CIM muscle at the early
time point. Indeed, SAA4 has been described as a minor acute
phase reactant [36]. The positive correlation between SA47 and
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Figure 6. Sepsis and proinflammatory cytokines increase muscular SAA1 expression and protein content in vivo and in vitro. (A)
Polymicrobial sepsis was induced by cecal ligation and puncture (CLP) in mice for 24 h (n=5). Sham operated mice were used as controls (n=5). RT-
PCR was used to measure SAAT expression in gastrocnemius plantaris and tibialis anterior muscles, which was normalized to GAPDH expression. **P<
0.01, *P<<0.05. (B) Immunohistochemistry of SAA1 (green) on gastrocnemius plantaris muscle of sham and CLP treated mice (24 h treatment). Nuclei
were stained with 4',6-diamidino-2-phenylindole (DAPI; blue); scale bar 50 um. (C) Mass-spectrometry was used to quantitate SAA1, SAA2 and SAA4
in dialysates of vastus medialis of sham (n=8) and CLP (n=8) 24 h after surgery. ***P<0.001, *P<<0.05. (D) Differentiated mouse skeletal myotubes
were treated with murine recombinant IL-6 (100 ng/ml) or murine recombinant TNF-o (10 ng/ml) for 16 h. RT-PCR was used to measure SAAT
expression, which was normalized to GAPDH; *P<<0.05. (E) Immunocytochemistry of SAA1 (green) on differentiated murine myotubes following
treatment with murine recombinant IL-6 (100 ng/ml), murine recombinant TNF-a (10 ng/ml) or a combination of both (IL-6, 100 ng/ml; TNF-a, 10 ng/

ml) for 16 h is shown. Nuclei were stained with DAPI (blue); scale bar 50 pm.

doi:10.1371/journal.pone.0092048.9006

SAA4 expression supports a possible common pathway regulating
both genes during critical illness.

In these same patients, we recently reported that the glucose
transporter GLUT4 a key regulator of glycemic homeostasis in
skeletal muscle was trapped at perinuclear spaces of myocytes,
most pronounced in patients with CIM, but resided at the
sarcolemma in control subjects [11]. Glucose metabolism was not
stimulated during euglycemic-hyperinsulinergic clamp. Interest-

ingly, insulin signal transduction was intact and let to activation of

Akt. In contrast, p-adenosine monophosphate-activated protein
kinase (p-AMPK) was not detectable in CIM muscle. These
observations [11] together with the measurement of non-excitable
muscle membrane as well as membranous SAA1 accumulation
reported here, all occurring early during CIM development, point
towards a central role of the myocyte membrane in the

PLOS ONE | www.plosone.org

pathogenesis of CIM. However, we have not yet identified the
pathways that directly interconnect the metabolic disturbances we
observed earlier and the inflammatory responses we report here in
the same patients. But, avenues to do so certainly exist. For
mnstance, the SLC244 gene encoding GLUT4 1s repressed by the
inflammatory transcription factor NF-kB [38]. Thus, increased
inflammation in CIM skeletal muscle could have let to an
activation of the inflammation mediator NF-kB mediating
downregulation of GLUT4. Finally, SAA is a known marker for
msulin resistance [39].

We conclude that skeletal muscle contributes to general
inflammation and acute-phase response in CIM patients. Differ-
ences in muscular SAA1l expression and content could be
important for CIM pathogenesis.
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Limitations

We used muscle membrane excitability to differentiate between
CIM and non-CIM patients. MRC scores could not be assessed
for all patients mainly due to the fact that not all patients became
awake during the study period. Therefore, the number of patients
diagnosed with weakness based on MRC scoring is smaller
compared to electrophysiological testing. Although, muscle
membrane in-excitability after direct muscle stimulation is an
accepted marker for early CIM diagnosis and correlates with
ICUAW, membrane in-excitability and weakness are not synon-
ymous [1,8,28]. However, direct muscle stimulation identified
weakness with a sensitivity and specificity of 80% each, which is
consistent with our recent work [8]. We conclude that electro-
physiological testing is useful to predict weakness in patients who
are not assessable by clinical measurements of muscle strength.

To get insights into early molecular changes in skeletal muscle
caused by critical illness biopsies from the very beginning of the
disease, preferably from day 1 if not hours after the onset of critical
illness, are needed. However, according to German law and the
ethic committee a legal proxy must give his or her informed
consent before a muscle biopsy can be performed. Usually this
process takes 3 to 5 days. At this time point molecular pathways
leading to myopathy are already activated. Nevertheless, we
identified early and specific changes in gene expression in the
skeletal muscle of patients developing CIM. For the same reason,
quantitation of IL-6 and 7TNF-a expression might not be
representative for the initial disease phase. Our findings that IL-
6 and TNF-o increased SAAL gene expression and protein content
in human and mouse myotubes do not mean that they account for
the observed changes in SAA1 expression and content between
CIM and non-CIM patients; but we can also not exclude their
involvement. The discrepancy between IL-6 and TNF-o expression
in human skeletal muscle, and the results of our cell culture and
animal work in terms of SAAI] expression might be explained by
differences in timing; early biopsies were performed at median day
5, animal experiments were performed after 24 hours of sepsis and
cytokine treatment was performed for 16 hours i vitro. In addition,
despite its association with CIM we did not prove that SAAI is
causatively linked to CIM development. Because we hypothesize
that molecular changes in muscle of critically ill patients occur
early during the disease process and based on the fact that it is
difficult to obtain biopsy specimens much earlier than 3 days after
onset of critical illness we think that cell culture and animal
experiments are required to investigate mechanisms of inflamma-
tion induced muscle atrophy. Extrapolation of i vivo and i vitro
data to the human situation needs to be done with caution.

Supporting Information

Figure S1 Muscular SAA1 expression in patients with
ICU-acquired weakness (ICUAW) according to dmCMAP
or MRC scoring. RT-PCR analyses of S447 expression at the
early time point in vastus lateralis muscle of critically ill patients with
(A) excitable (n = 12) and non-excitable (n = 18) muscle membrane
and (B) MRC score = (n=6) or <4 (n=15) are shown. Control
values (no ICU subjects) were set to one. Glyceraldehyde-3 phosphate
delyydrogenase (GAPDH) expression was used as reference. Data are
presented as box plots showing median, 25" and 75™ percentiles.

(TIF)

Figure S2 Muscular SAA44 expression in patients with
ICU-acquired weakness (ICUAW) according to dmCMAP
or MRC scoring. RT-PCR analyses of S444 expression at the
early time point in vastus lateralis muscle of critically ill patients with
(A) excitable (n = 12) and non-excitable (n = 18) muscle membrane
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and (B) MRC score = (n=6) or <4 (n=15) are shown. Control
values (no ICU subjects) were set to one. Glyceraldehyde-3 phosphate
dehydrogenase (GAPDH) expression was used as reference. Data are
presented as box plots showing median, 25™ and 75™ percentiles.

(TIF)

Figure S3 SAAl accumulations were found in the
skeletal muscle of CIM patients at the late time point.
Representative immunohistochemistry for SAAl (green) and
laminin (red) for the late time point of control subjects, CIM
and non-CIM patients. Nuclei were stained with 4’,6-diamidino-2-
phenylindole (DAPI; blue); scale bar 50 pum.

(TIF)

Figure S4 SAAIl and SAA4 expression were positively
correlated with each other.

(TIF)

Figure S5 (A) Mouse skeletal myotubes were treated with
lipopolysaccharide (LPS, 1 pg/ml) for 16 h. RT-PCR was used
to measure SAA/ expression, which was normalized to Glyceralde-
hyde-3 phosphate dehydrogenase (Gapdh); *P<<0.05. (B) Immunocyto-
chemistry of SAAI (green) on murine myotubes following LPS
treatment (1 pg/ml) for 16 h. Nuclei were stained with 4',6-
diamidino-2-phenylindole (DAPI; blue); scale bar 50 pum.

(TTF)

Table S1 Primer pairs for RT-PCR are shown. SAA
indicates serum amyloid A; GAPDH, glyceraldehyde-3-phosphate
dehydrogenase; Hs, Homo sapiens; Mm, Mouse musculus.

DOC)

Table S2
patients.

(DOC)

Top 30 genes increased in vastus lateralis of ICU

Table 83 Top 30 genes decreased in vastus lateralis of ICU
patients.

(DOC)

Table S4 Top 30 genes increased in vastus lateralis of CIM
compared to non-CIM patients.
(DOC)

Table 85 Top 30 genes decreased in vastus lateralis of CIM
compared to non-CIM patients.

(DOC)

Table S6 Direct muscle stimulation identified weak-
ness with a sensitivity of 80% and a specificity of 83.3%.
(DOC)

Methods S1 Details about electrophysiological mea-
surements, muscle biopsies, microarray analyzes and
quantitative real-time PCR, the animal model of poly-
microbial sepsis by cecal ligation and puncture surgery,
mass spectrometry, immunohistochemistry and ELISA,
and human and murine myoblast culture, RT-PCR, and
immunofluorescence are provided.

(DOC)
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