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Abstract 24 

Integral projection models (IPM) make it possible to study populations structured by 25 

continuous traits. Recently, Vindenes et al. (2011) proposed an extended IPM to analyse the 26 

dynamics of small populations in stochastic environments, but this model has not yet been 27 

used to conduct population viability analyses. Here, we used the extended IPM to analyse the 28 

stochastic dynamics of IPM of small size-structured populations in one plant and one animal 29 

species (evening primrose and common lizard) including demographic stochasticity in both 30 

cases and environmental stochasticity in the lizard model. We also tested the accuracy of a 31 

diffusion approximation of the IPM for the two empirical systems. In both species, the 32 

elasticity for λ was higher with respect to parameters linked to body growth and 33 

size-dependent reproduction rather than survival. An analytical approach made it possible to 34 

quantify demographic and environmental variance in order to calculate the average stochastic 35 

growth rate. Demographic variance was further decomposed to gain insights into the most 36 

important size classes and demographic components. A diffusion approximation provided a 37 

remarkable fit to the stochastic dynamics and cumulative extinction risk, except for very small 38 

populations where stochastic growth rate was biased upward or downward depending on the 39 

model. These results confirm that the extended IPM provides a powerful tool to assess the 40 

conservation status and compare the stochastic demography of size-structured species, but 41 

should be complemented with individual based models to obtain unbiased estimates for very 42 

small populations of conservation concern. 43 

 44 

Keywords: extinction, life cycle, population viability analysis, trait-based approach. 45 

 46 
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Introduction 48 

Ecological impacts of human activities have altogether caused a massive loss of species 49 

(Hughes et al. 1997), and the abundance of many species has crossed a critical threshold for 50 

the population viability (Gilpin and Soulé 1986). Therefore, a better understanding of small 51 

population dynamics should give crucial insights to predict, and where possible remedy, 52 

extinction. Population dynamics results from an interplay between deterministic components, 53 

stochastic components, and the life history (Benton et al. 2006; Lande et al. 2003). For 54 

example, populations of common lizards are regulated by density dependent feedbacks (i.e., 55 

deterministic component) and also fluctuate due to yearly changes in weather conditions (i.e., 56 

random component, Le Galliard et al. 2010). Given that importance of stochastic factors in 57 

small populations, one major topic in conservation biology is to evaluate how random, 58 

demographic variation affects population viability across diverse life histories (Beissinger and 59 

McCullough 2002; Morris and Doak 2002). Demographic variation can be explained by 60 

random fluctuations in climate, resource availability, and other extrinsic factors that generate 61 

simultaneous changes among individuals at a given time (i.e., environmental stochasticity). 62 

Demographic variation can also be explained by random inter-individual differences (i.e., 63 

demographic stochasticity), non-random differences among individuals (e.g., differences in 64 

quality at birth) and sampling effects (Kendall and Fox 2002). 65 

Models to describe stochastic dynamics and calculate extinction risk for small 66 

populations often hypothesise a discrete time process and a discrete stage structure 67 

(Beissinger and McCullough 2002; Caswell 2001; Morris and Doak 2002). They rely on a 68 

projection matrix whose entries are transition rates within and between stages (e.g., survival 69 

and reproduction in an age structured population, Caswell 2001). Such matrix projection 70 

models (MPM) make it possible to include, for example, effects of environmental (Lande and 71 

Orzack 1988; Tuljapurkar 1990) and demographic stochasticity (Engen et al. 2005). Thus, 72 
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most population viability analyses (PVA) are based on MPM for which robust protocols have 73 

been defined to assess conservation status, make demographic projections and test alternative 74 

management scenarios (Morris and Doak 2002). However, the life history of many species is 75 

often characterised by a life history structure that depends on continuous traits, sometimes in 76 

conjunction with a discrete stage structure (Benton et al. 2006; Ellner and Rees 2006). For 77 

example, size (or height in plants) are key determinants of demographic variation in natural 78 

populations of snakes and lizards (Baron et al. 2013; Le Galliard et al. 2010), and many 79 

species of mammals, birds and plants (Merow et al. 2014). 80 

Continuously structured life histories can be modelled with a large transition matrix 81 

made out of numerous classes and the demographic parameters in a MPM can be estimated 82 

from regression on continuous traits (Gross et al. 2006). In such cases, however, the use of 83 

MPM may come at the cost of precision of model parameters, generate difficulties of 84 

numerical implementation in small data sets, and induce potential changes in the ranking of 85 

sensitivities (Easterling et al. 2000; Enright et al. 1995; Pfister and Stevens 2003). Instead, 86 

Easterling et al. (2000) and Ellner and Rees (2006) recommended to use regression 87 

techniques to estimate demographic traits in an integral projection model (IPM). Ramula et al. 88 

(2009) further demonstrated that the IPM can outperform the MPM for small data sets 89 

because the IPM estimates the asymptotic growth rate λ  with less bias and variance. In a 90 

recent study, Vindenes et al. (2011) proposed an extended IPM to model continuously 91 

structured life histories for small populations in fluctuating environments. This extension of 92 

IPM theory assumes small demographic fluctuations (i.e., small noise approximation) and 93 

allows to approximate population dynamics by a diffusion process. The new mathematical 94 

framework of Vindenes et al. (2011) should provide a useful addition to the PVA toolbox in 95 

conservation biology because it allows to model size-structured stochastic population 96 

dynamics. However, to our knowledge, this new framework has never been applied in real life 97 
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situations and the accuracy of the small noise approximation have not been thoroughly 98 

investigated. 99 

In this study, we used the newly developed, extended IPM and tested the accuracy of 100 

the diffusion approximation for two particular empirical systems. First, we applied the 101 

extended IPM to the case of two natural populations, including (i) a widespread monocarpic 102 

perennial plant species (redsepal evening primrose, Oenothera glazioviana) previously 103 

studied with a deterministic IPM (Rees and Rose 2002), and (ii) a widespread lizard species 104 

(common lizard, Zootoca vivipara) characterised by a strong size structure and temporal 105 

fluctuations in survival (Le Galliard et al. 2010). We chose these two study systems because 106 

they represent an increasing complexity from a system influenced solely by demographic 107 

stochasticity to a system influenced by the combined action of demographic and 108 

environmental stochasticity. In addition, the primrose represents a natural situation with a 109 

positive deterministic growth, which is a encountered in some reintroduction programs in 110 

conservation biology (Beissinger and McCullough 2002; Morris and Doak 2002). On the 111 

contrary, the lizard represents a natural situation with a negative growth typical of the study of 112 

endangered, declining species. Thus, these two examples are useful testbeds to demonstrate 113 

the flexibility of the extended IPM for conservation biology. In each case study, we used the 114 

extended IPM to conduct a standard PVA including the calculation and decomposition of the 115 

stochastic population growth rate, the analysis of demographic stochasticity, and the 116 

simulation of extinction dynamics. We compared outcomes of this PVA with those of an 117 

individual based, simulation version of the IPM. Second, we also quantified the accuracy of 118 

the diffusion approximation in numerous, alternative parameterisations of the primrose model 119 

ranging from positive to negative growth and from low to very high values of demographic 120 

variance. We did so to investigate more thoroughly the accuracy of the diffusion 121 

approximation without confounding effects of differences in life history structure between the 122 
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two species. 123 

Materials and methods 124 

Integral projection model 125 

Let’s assume that the life history is structured by one continuous variable called y such that 126 

individuals differ by y only and y is a major determinant of vital rates; for example y could 127 

correspond to body size in animal or height in a plant. The population can then be described 128 

by the probability density of individual size y at time t, defined by the continuous function 129 

),( tyn , such that dytyn ),(  is the number of individuals between trait values y  and dyy +  130 

at time t (Easterling et al. 2000). Total population size at time t is called dytyntn ),(=)( ∫Ω , 131 

where Ω  is the domain of possible values for trait y . The general structure of the 132 

time-invariant IPM of a large population writes like: 133 

[ ] dxtxnxyfxbxyfxsdxtxnxyktyn bs ),(),()(),()(),(),(=1),( ∫∫
Ω

Ω
+=+  (1) 134 

where ),( xyk  is the kernel describing transition rates from state x at time t to state y at time 135 

t+1. According to equation (1), the kernel can be further decomposed into (1) the 136 

survival-growth kernel where )(xs  is the survival probability of an individual with trait value 137 

x, and dyxyf s ),(  is the probability of reaching trait value between y  and dyy +  at time 138 

1+t  for an individual of trait value x, and (2) the fecundity kernel where )(xb  is the fecundity 139 

of an individual with trait value x, and ),( xyfb  is the probability density function of the trait 140 

value of offspring. This deterministic IPM can be considered as a matrix projection model 141 

(MPM) with an infinite number of discrete classes. Thus, according to the seminal paper by 142 

Easterling et al. (2000), most of the properties of MPM can be generalised to IPM, including 143 

the calculation of the deterministic population growth rate λ , the determination of 144 

equilibrium population structure )(yu  and reproductive values )(yv  and the calculation of 145 
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deterministic elasticities of λ . Here, we used a numerical method to simulate IPM by 146 

discretising the state-space Ω  into C classes of the same width and computing integrals 147 

using Simpson’s 3/8 method, a more accurate numerical integration method than the standard 148 

mid-point rule (Merow et al. 2014). A spectral analysis of this discretised IPM allows to 149 

determine the dominant eigenvalue (called λ ), the right eigenvector )(xu  scaled so that 150 

1)( =∫Ω dxxu , and the left eigenvector )(xv  scaled so that 1)()( =∫Ω dxxuxv . The right 151 

eigenvector corresponds to the stable trait distribution, while the left eigenvector corresponds 152 

to the reproductive value distribution, which measures the contribution of an individual to 153 

future population growth relative to other individuals in the population. 154 

Finite population in a stochastic environment 155 

To describe the dynamics of a small population in a fluctuating environment, we introduce the 156 

stochastic IPM: 157 

( ) dxtxNZxyKtyN t ),(),,(=1, ∫Ω+ ,      (2) 158 

),,(),(),,(),(=),,( tbttstt ZxyfZxbZxyfZxsZxyK +  159 

where N  is the discrete population size, K  is a stochastic kernel, and tZ  is a random 160 

vector describing parameter values at time t  and thus the environmental state. The model 161 

described by equation (2) is similar to the deterministic model of equation (1) conditional on 162 

tZ . Here, we consider that tZ  is a vector of year-specific parameters and assumed that 163 

parameter values vary randomly over time according to the random effects model of Rees and 164 

Ellner (2009). This implies that elements of the stochastic kernel of the IPM are drawn 165 

randomly each year from some parametric statistical distributions. However, the exact 166 

distribution from which the elements are taken is not defined a priori and will be 167 

representative of the model species. The most common assumption is that time-varying kernel 168 

elements are drawn independently from symmetric, Gaussian distributions, but it is possible 169 
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to use any other type of multivariate parametric statistical distribution (Rees and Ellner 2009). 170 

The dynamics of the expected population size at time t+1 given population size at time 171 

t can be written as: 172 

( )[ ] dxdytxNxyktNtNE ),(),(=)(1 ∫∫ ΩΩ
+      (3) 173 

where ),( xyk  is the mean kernel defined by averaging the stochastic kernel over all possible 174 

environmental state values. Similar to equation (1), this dynamics is characterised by an 175 

expected growth rate λ , the stable state structure )(xu  and the reproductive value )(xv . The 176 

total reproductive value of the population can then be defined as ∫= )()( xNxvV , which 177 

equals total population size only when the population has the exact stable state structure. The 178 

instantaneous rate of increase of the total reproductive value is then given by 179 

DE
V

V
t

t

t
t ++=Λ + λ1=        (4) 180 

where tE  and D  are random variables describing environmental stochasticity (i.e., 181 

between-year deviation from the mean kernel of the average individual contribution to total 182 

reproductive value) and demographic stochasticity (i.e., within-year deviation from the mean 183 

of the year of the individual contribution to total reproductive value), respectively (Engen et 184 

al. 2007; Vindenes et al. 2011). Assuming no covariance between demographic and 185 

environmental stochasticity, the variance in the instantaneous growth rate can be written as  186 

( ) ( ) ( ) tdettttt VVDVEV /|Var|Var=|Var 22 σσ +=+Λ    (5) 187 

for the case of a structured population model, including the IPM (Engen et al. 2007; Lande et 188 

al. 2003; Vindenes et al. 2011). In equation (5), 2
eσ  and 2

dσ  are the environmental and 189 

demographic variances, respectively. According to equation (5), the contribution of 190 

demographic stochasticity depends on the demographic variance 2
dσ  and is inversely 191 

proportional to the total reproductive value. 192 
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An important property of a stochastic IPM is the long-run logarithmic growth rate, 193 

denoted sλln , which describes the asymptotic exponential growth rate of the population size 194 

after a sufficiently long time (Lande et al. 2003; Rees and Ellner 2009; Tuljapurkar 1990). For 195 

a structured population, this long-run growth rate is best described by the dynamics of the 196 

total reproductive value, which is Markovian, obeys a first-order autoregressive process, and 197 

grows exponentially according to the same long-run growth rate as population size (Engen et 198 

al. 2007; Engen et al. 2005). The long-run logarithmic growth rate can be approximated 199 

assuming a small environmental noise, which implies that the population stays close to its 200 

stable distribution (e.g., for IPM Rees and Ellner 2009). Following earlier work on 201 

age-structured populations (Engen et al. 2007), Vindenes et al. (2011) showed that the 202 

first-order approximation of the long-run growth rate of the stochastic IPM writes like 203 

V
de

s 2

2

2

2

22
lnln

λ

σ

λ

σ
λλ −−≈ ,       (6) 204 

where λ  is the deterministic population growth rate of the mean kernel. 205 

Calculation of environmental and demographic variances 206 

The demographic variance 2
dσ  from equation (5) is given by the first-order approximation: 207 

dyyyu dd )()( 22 σσ ∫Ω≈ ,       (7) 208 

where the demographic variance due to an individual with trait value y , called )(2 ydσ , is 209 

weighted by the stable state structure )(yu  calculated for the mean kernel. Based on the work 210 

by Vindenes et al. (2011), the term )(2 ydσ  can be further computed by using the expectation 211 

of the demographic variance over all environmental states and a decomposition of the 212 

individual contribution to total reproductive value, such that 213 

      
 varianceSurvival

22

 varianceizeOffsprings

2

ianceGrowth var

22 )()()()()()(=)( yyyybyysy Svsvbvsd σµσσσ ++  214 
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    

covariance Fecundity Survival

2

varianceFecundity 

22
)()()(2)()(

−

++ yyyyy vbvsBSBvb µµσσµ   (8) 215 

All terms in equation (8) involve mean values over environments. They are precisely defined 216 

in Appendix A, where we describe methods to estimate them. The three first variances can be 217 

computed numerically from the model parameters and the reproductive value. The fecundity 218 

variance depends on properties of the fecundity probability distribution, while the 219 

survival-fecundity covariance is influenced by structural details of the model. For example, if 220 

demographic census occurs after reproduction, reproduction is conditional on the survival of 221 

parents, which implies a positive covariance between survival and fecundity. 222 

In addition, the environmental variance is given by the first-order approximation: 223 

dxdyyxcyuxue ),()()(2 ∫∫ ΩΩ
≈σ ,     (9) 224 

where [ ] [ ]),cov(),( ZWEZWEyxc yx=  is the covariance of expected contribution of 225 

individual of trait value x (Wx) and trait value y  (Wy) to the total reproductive value 226 

(Vindenes et al. 2011). A first order approximation of the environmental variance can be 227 

computed by calculating the variance in the population growth rate )(zλ  with respect to the 228 

environment state value z using stochastic simulations of large populations. Here, we 229 

computed the asymptotic population growth rate )(zλ  for 10,000 environments taken 230 

randomly from the empirical probability distribution. 231 

Simulation of the IPM for finite populations 232 

We used an individual based, numerical version of the IPM (IBM) to simulate the stochastic 233 

IPM for finite populations. The IBM included random, sampling variation for growth, 234 

survival and reproduction according to the empirical distribution laws. We also parameterised 235 

a diffusion approximation of the IBM following Vindenes et al. (2011), where the stochastic 236 

discrete time dynamics is approximated by a continuous time Wiener process with drift, 237 

which is entirely described by a drift term and an infinitesimal variance term (Lande and 238 
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Orzack 1988). We used the diffusion approximation to model the natural logarithm of the 239 

total reproductive value (Engen et al. 2005). The drift term is equivalent to the average 240 

logarithm of the stochastic growth rate from equation (6), while the variance term depends on 241 

the deterministic growth rate and the environmental and demographic variances (see 242 

Appendix B for detailed justification). 243 

We simulated 50,000 runs of the IBM all starting from a reproductive value of 100 244 

and from the same state structure calculated from the stable state structure of the mean kernel. 245 

We calculated the instantaneous growth rate at each time step ( tΛ  in equation (4)) and used 246 

all simulated trajectories to quantify the sample mean and sample variance of the growth rate 247 

from time t to time t+1 given the reproductive value at time t. The diffusion approximation 248 

was simulated with the Matlab’s econometry toolbox starting from a reproductive value of 249 

100. Similar qualitative results were obtained starting from a smaller or a larger population 250 

size. We calculated cumulative quasi-extinction risk during the first 50 years of the 251 

simulation, a reasonable time horizon for a PVA, with three quasi-extinction thresholds (N=1 252 

equivalent to true extinction, N=10, and N=50). We also calculated the cumulative extinction 253 

risk according to a previously published analytical expression that uses a diffusion 254 

approximation without demographic variance (Lande and Orzack 1988). We called this 255 

approximation the "large population analytical approximation" below (see equation (B10) in 256 

Appendix B for details). By comparing this analytical expression with results from the IBM 257 

and diffusion approximation of the IPM, it is thus possible to quantify the effects of 258 

demographic stochasticity on extinction risks. 259 

Prospective perturbation analyses 260 

Tools for the prospective analysis of IPM in response to small perturbations of the kernel 261 

include the deterministic elasticity (relative change of the deterministic growth rate λ ) and 262 

the stochastic elasticity (relative change of the long-run stochastic growth rate defined by 263 



Viability analysis of size-structured populations 

12 
 

equation 3) to the mean and variance for kernel elements, parameters and functions 264 

(Easterling et al. 2000; Rees and Ellner 2009). Here, we calculated only the deterministic 265 

elasticity and the elasticity of the demographic variance constant 2
dσ , which are crucial to 266 

PVA (Mills and Lindberg 2002). For the former, we calculated both (1) the elasticity surface 267 

of λ  to changes in the kernel, given by the relative sensitivity of λ  to changes in the 268 

function ),( xyk  in a small area around y  and x, and (2) the elasticity of λ  to functions 269 

of the kernel and model parameters (Easterling et al. 2000). We also evaluated the relative 270 

impact of small changes in each parameter value on the demographic variance constant 271 

defined in equation (5). This was done numerically through a slight (1%) perturbation of the 272 

initial model. Because some parameter values were negative, we scaled sensitivities relative 273 

to the absolute value of each parameter to obtain meaningful estimates. 274 

Case studies 275 

We gathered life history data for one plant species characterised by a life cycle structured by 276 

height (redsepal evening primrose, Oenothera glazioviana) and one animal species 277 

characterised by a life cycle structured by body size (common lizard, Zootoca vivipara). The 278 

primrose population did not include estimates of environmental variance and was already 279 

studied with a deterministic IPM by Rees and Rose (Rees and Rose 2002). Both IPM included 280 

an annual census of the female portion of the population and were parameterised with life 281 

history data collected inside one reference population for each species. Detailed information 282 

on life cycles and model parameters is provided in Appendix C. 283 

We first characterised all components of the stochastic growth rate in each study 284 

species, and conducted the elasticity analyses and numerical simulations of finite populations. 285 

In the case of the primrose model, further simulations were done where we tested different 286 

parameter values for the seed mortality rate and the residual variation (standard deviation of 287 

the random noise) of the growth function, which allowed us to test situations of decreasing, 288 
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almost stable and increasing populations with distinct patterns of deterministic growth and 289 

demographic variation (see Appendix C). The primrose model was chosen to do this analysis 290 

because it is simpler. In all models, we checked that our definition of the trait space did not 291 

bias the model outcomes through eviction of individuals near size limits (Merow et al. 2014). 292 

To do so, we calculated the size-dependent fraction eviction from the IPM conditional on 293 

survival and the unconditional fraction using equation (2) in Williams et al. (2012). The 294 

magnitude of eviction was negligible, even in the case of the primrose where size growth was 295 

linear with a high variance (e.g., less than 1% and 0.001% for unconditional and conditional 296 

fractions, respectively), and the fraction of evicted individuals was not influenced by changes 297 

in model parameters. 298 

Results 299 

General characteristics of IPM 300 

Deterministic predictions for the growth rate (Table 1) and for the stable size structure (not 301 

shown) were similar to previously published observations. The primrose had an increasing 302 

population (+5% annual increase) in accordance with Rees and Rose (2002). The common 303 

lizard population displayed a local annual decrease of 10% in line with previous estimations 304 

from MPM (Le Galliard et al. 2010) and direct estimates of local recruitment and immigration 305 

(Lepetz et al. 2009). An analytical expression of each term in equation (8) made it possible to 306 

compute )(2 ydσ  using equation (7) and demographic variance using equation (6). The 307 

primrose population was characterised by the strongest demographic variance (see Table 1). 308 

In the common lizard, environmental variance was significant, since according to equation 309 

(6), the population size where demographic variance equals environmental variance is around 310 

20  individuals. A decomposition of the demographic variance according to size and the five 311 

variance terms in equation (8) showed that most demographic stochasticity was due to body 312 

growth and survival of adults while fecundity had little effects in the primrose (Figure 1a). A 313 
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strong negative correlation between fecundity and survival was observed. In the common 314 

lizard (Figure 1b), body growth had little influence on the demographic variance, which was 315 

almost entirely due to survival and fecundity. 316 

Elasticity analysis 317 

Elasticity surfaces represent the relative sensitivities of the deterministic growth rate to 318 

changes in the kernel. For the primrose (Figure 2a), the elasticity surface indicates the 319 

dominance of one size-specific transition, corresponding to transition of individuals into the 320 

reproductive stage, relative to two size-specific transitions of equal importance corresponding 321 

to growth of immature plants and offspring production. For the common lizard (Figure 2b), 322 

three size-specific transitions of equal relative importance were identified: survival and 323 

growth of juveniles, survival and growth of older individuals, and offspring production. We 324 

further calculated the elasticity of the growth rate (λ ) and demographic variance ( 2
dσ ) for 325 

parameters in the primrose and lizard models (see Appendix E). In the primrose, elasticity of 326 

λ  was strongest for fecundity slope (measuring the increase of fecundity with rosette size), 327 

growth intercept (measuring mean rosette size early in life) and growth slope (measuring size 328 

increment per unit size at time t ), followed by survival intercept (measuring mean survival 329 

early in life). In the common lizard, fecundity and growth parameters had the strongest 330 

influence followed by juvenile survival, and adult survival had a weak influence. The 331 

elasticity of λ  to change in one model parameter was positively correlated with the 332 

elasticity of 2
dσ  to change in the same model parameter (Figure 2c). 333 

Population dynamics and extinction trajectories 334 

In the case of the common lizard, population dynamics predicted by the diffusion model fitted 335 

extremely well those observed in the IBM. This very good fit was observed throughout 50 336 

years of simulation in this case (see Figure 3a), but held over longer times with different 337 

initial conditions (results not shown). The relationship between the stochastic growth rate tΛ  338 
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and population reproductive value predicted by the diffusion model was coherent with the one 339 

observed in the IBM or the one predicted by equation (6), except in very small populations 340 

where the diffusion approximation under-estimated the median and range of variation of the 341 

stochastic growth rate distribution of the IBM (Figure 3b). In this species, the diffusion 342 

approximation thus under-estimated slightly the variance of stochastic growth rate in very 343 

small populations (Figure 3c), where the probability distribution of the stochastic growth rate 344 

from the IBM did not fit the log-normal distribution assumed by the diffusion model (Figure 345 

3d). 346 

Despite these small biases at very small population sizes, the cumulative 347 

quasi-extinction risk curves in the common lizard were very well predicted by the diffusion 348 

model even at low quasi-extinction thresholds (relative difference less than 5%, Figure 4a). 349 

Starting from ca. 100 individuals, this population had declining trends and characteristics 350 

quasi-extinction times of less than 50 years very well matched by the diffusion 351 

approximation. In the primrose population with positive growth, the risk of extinction was on 352 

average very small (ultimate quasi-extinction risk of less than 10%) and we identified a 353 

difference between predictions from the diffusion approximation and simulations of the IBM 354 

(relative difference more than 5%, Figure 4b). In this species, rare extinctions were caused by 355 

random events of rapid initial decline and demographic variance was very high due to 356 

stochastic variation in plant size. In this situation, the stochastic trajectories are likely to be 357 

more poorly captured by the diffusion approximation. In addition, as expected, differences 358 

between the diffusion approximation and the large population analytical approximation were 359 

higher at lower quasi-extinction thresholds in the lizard, i.e., when effects of demographic 360 

stochasticity on extinction times were stronger (Figure 4a). 361 

In the primrose, increased parameter values for seed establishment probabilities and 362 

growth rate residual variance were associated with higher deterministic growth rate but also 363 
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higher demographic variance (see Table C1b in Appendix C), with a net negative effect on 364 

extinction risk. An analysis of the relative difference between quasi-extinction curves 365 

predicted by the diffusion approximation and those observed in the IBM revealed stronger 366 

biases during transient dynamics (intermediate simulation times) and when populations were 367 

less at risk of extinction (Fig. 5a, b). In all cases, the diffusion approximation under-estimated 368 

time to extinction and it also under-estimated the total cumulative risk of extinction for 369 

populations with positive intrinsic growth. To unravel if these biases were associated with 370 

differences in the characteristic dynamics of the populations or systematic failure to capture 371 

the properties of very small populations like in the common lizard, we plotted the bias for 372 

stochastic growth rate against population reproductive value. The results strongly suggested 373 

that this bias depended on population size irrespective of the model parameter values (Fig. 5c, 374 

d). The diffusion approximation systematically over-estimated the mean stochastic growth 375 

rate of the IBM in very small populations (less than 10-20 individuals). 376 

Discussion 377 

Until recently, the analysis of stochastic, size-structured populations rested essentially on 378 

individual based or matrix population models (Easterling et al. 2000; Enright et al. 1995; 379 

Pfister and Stevens 2003; Ramula et al. 2009). Here, we applied a new mathematical 380 

framework (Vindenes et al. 2011) designed specifically for small, size-structured populations 381 

and including both environmental and demographic variation. We performed basic population 382 

viability analyses, evaluated the model’s accuracy in two species characterised by contrasted 383 

life cycles, and tested robustness of the model's predictions to changes in some model 384 

parameters in one model species. We found three results: (1) the extended IPM allows to 385 

decompose demographic variance to gain insights into most important size classes and 386 

demographic components, (2) the diffusion model with three parameters provided in general a 387 

very good approximation of the transient stochastic dynamics and ultimate extinction risks, 388 
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but (3) the diffusion approximation produced model-dependent biased estimates of the 389 

stochastic growth in very small populations. 390 

Model construction 391 

Given the number of tools available to conduct a PVA (Beissinger and McCullough 2002), 392 

one must be fully aware of the opportunities and constraints of the stochastic IPM. The kernel 393 

construction and parameter estimation are the most critical steps of the construction of an 394 

IPM. The kernel includes functions for growth, survival and reproduction. For our case 395 

studies, growth and reproduction functions and their yearly variation could be estimated 396 

relatively easily with regression techniques (Easterling et al. 2000; Rees and Ellner 2009). 397 

However, an accurate estimation of the survival function was more difficult to obtain for the 398 

lizard population since not all animals could be sampled. Thus, we used 399 

capture-mark-recapture models for closed populations, a procedure that can under-estimate 400 

true survival (animals can be lost due to movement outside the study site) and that makes it 401 

more difficult to assess size-dependent survival than standard logistic regressions (but see 402 

Frederiksen et al. 2013). In rare or declining species of conservation concern, accurate 403 

repeated censuses of the same population through time and a reasonable sample of individual 404 

records of one or two traits (e.g., body size) are therefore critical to parameterize the IPM and 405 

conduct a PVA (Ramula et al. 2009). For example, we have found it possible to parameterize 406 

an IPM for the critically endangered meadow viper with individual records of body size and 407 

reproduction in a very small population (less than 50 individuals, unpub. data). 408 

Anyone willing to develop a stochastic IPM will also face three other difficulties. 409 

First, even if IPM provide more accurate estimates of λ  than MPM for small data sets 410 

(Ramula et al. 2009), uncertainty in parameter values may lead to uncertainty in model 411 

predictions. Confidence intervals for model predictions could be obtained using Monte Carlo 412 

simulations or bootstrap re-sampling (McGowan et al. 2011). Second, the regression models 413 
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used to parameterize the IPM assumed small and normally distributed inter-annual variation. 414 

This assumption was backed up by long term data from the field, but other species may be 415 

characterised by catastrophic variation in survival (Baron et al. 2010). Individual-based 416 

simulations could be used to test the demographic consequences of such catastrophic 417 

variation. Third, a good knowledge of the probability distribution of kernel functions is 418 

required to model demographic stochasticity. We used binomial distribution for survival and 419 

Gaussian distribution for growth, but had no a priori expectation for the probability 420 

distribution of fecundity. In the common lizard, the generalized Poisson distribution was the 421 

best fit for the data because sample values were truncated at zero and had a clear upper bound 422 

(Kendall and Wittmann 2010). 423 

Stochastic growth rate calculation 424 

The diffusion approximation and variance decomposition made it possible to describe 425 

stochastic dynamic with only three parameters (Vindenes et al. 2011): deterministic growth 426 

rate (λ ), demographic variance ( 2
dσ ) and environmental variance ( 2

eσ ). This decomposition 427 

provides a very powerful tool to assess the conservation status and compare the demography 428 

of size-structured species. The primrose population was characterised by a strong 429 

size-dependent demography and very high demographic stochasticity. The small demographic 430 

stochasticity in the common lizard dominated environmental variance only in populations of 431 

less than 20 individuals; thus, stochastic population dynamics were mainly driven by 432 

inter-annual effects similar to previous studies (Le Galliard et al. 2010). We anticipate that 433 

quantitative estimates of demographic and stochastic variance could be obtained in other 434 

size-structured species of plants and animals. Their comparison would be extremely useful to 435 

understand the relationship between stochastic population dynamics and life history similar to 436 

what was done with stage-structured animal populations (Saether et al. 2013). 437 

A good understanding of demographic stochasticity is particularly relevant in 438 
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conservation biology. Here, we proposed a graphical approach to decompose the demographic 439 

variance which requires an analytical expression. This decomposition indicated that 440 

demographic variance was mostly due to growth variation for the primrose but survival 441 

variation in yearlings and adults for the common lizard. That plant growth contributed 442 

strongly to demographic variation in the primrose population may be due to the prolonged and 443 

weakly canalized compensatory growth trajectories. Plant growth lasted up to 10 years until 444 

maturation, and there was also a very high variability in growth rate (Kachi and Hirose 1983). 445 

In general, patterns of increasing size variability with age are common in plants because 446 

growth rates of individuals are often depensatory and/or positively correlated through time 447 

(e.g., Pfister and Stevens 2002). The stochastic IPM would allow a better understanding of the 448 

effects of these complex growth strategies on demographic variance. 449 

One important assumption made in the two case studies is that the life cycles are 450 

structured by one continuous covariates only. The framework of IPM also allows to include 451 

more than one continuous variable or a mixture of continuous and discrete state variables 452 

(Childs et al. 2003). To test the feasibility of this, we parameterised an additional IPM for the 453 

meadow viper (Vipera ursinii ursinii), an endangered species characterised by a complex life 454 

cycle structured by body size, age and breeding status (Baron et al. 2013; Ferrière et al. 1996). 455 

The combined size and stage structure was justified by the fact that maturation is conditional 456 

on the age (7 classes) and body size of immature females and because adult females alternate 457 

breeding and non-breeding years independent of their size (Baron et al. 2013). Unfortunately, 458 

the analytical expressions of the extended IPM were too cumbersome to allow a direct 459 

calculation and decomposition of the demographic stochasticity, and we had to rely on 460 

numerical simulations (results not shown). This difficulty could be encountered in many other 461 

species where demography is shaped by both continuous traits and discrete attributes such as 462 

stage, age, or habitat type (Ellner and Rees 2006). In such cases, we recommend to use the 463 
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IBM approach when the life cycle cannot be simplified without substantial loss of 464 

information, or to simplify the life cycle to a stage or age structured matrix population model. 465 

Elasticity analysis 466 

Prospective perturbation analysis of stochastic population dynamics include the calculation of 467 

many elasticities (this study, Easterling et al. 2000; Rees and Ellner 2009). In a real-life PVA, 468 

the conclusions of the elasticity analysis should be weighted by the feasibility and costs of all 469 

options available to improve the conservation status of the population. Here, we did not 470 

attempt to compute and compare all elasticities, but instead focused on the elasticity analysis 471 

of λ  and 2
dσ . We found a positive correlation between elasticity for λ  and for 2

dσ . Such 472 

correlations are expected whenever a management action to improve the mean of a trait also 473 

changes its variance, as is the case for the probability distributions of survival or fecundity. 474 

This correlation means that traits contributing more to deterministic growth may have lower 475 

effects on stochastic population growth than expected, especially at low population sizes. 476 

The IPM is a useful tool for elasticity analysis of λ  in a size-structured population 477 

because elasticities are not influenced by stage duration (Easterling et al. 2000). Elasticity 478 

surfaces indicate the most important size classes during a reintroduction or reinforcement 479 

program. In addition, the IPM allows to evaluate the elasticity to body growth and 480 

size-dependent demography, which is critical to the management of many important size 481 

structured populations such as hunted game species or marine fishes for example (Merow et 482 

al. 2014). Traditional PVA focuses on transition between stages (i.e., survival or migration) 483 

and fecundity, but tends to ignore body growth (Beissinger and McCullough 2002; Morris and 484 

Doak 2002). In life history theory, growth strategies are important because differences in 485 

body growth have implications for age and size at maturation, future fecundity and future 486 

survival. In addition, many species are characterised by plastic growth rates (French et al. 487 

2011; Gurnell et al. 2004). In the primrose and common lizard, the two parameters with the 488 
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highest elasticity for λ  were the slope between fecundity and size and the basal size 489 

increment. Thus, conservation programs increasing body growth by improvement of habitat 490 

quality, removal of competitors, and food or nutrient supplementation should provide the 491 

most efficient management strategies in these species. 492 

Extinction dynamics 493 

Under the small noise approximation, Vindenes et al. (2011) constructed a diffusion model 494 

and demonstrated that this model fitted well the stochastic dynamics of one hypothetical 495 

stable size-structured population subject to demographic and environmental stochasticity. Our 496 

results obtained in two model species with contrasted life cycles, including one model species 497 

analysed with 25 different combinations of parameters, confirm these conclusions except in 498 

situations where the assumption of the small noise approximation is not met. We found that 499 

the diffusion approximation fitted very well the results of the stochastic IBM in intermediate 500 

and large populations (as a rule of thumb, when N > 20), but tended to under-estimate or 501 

over-estimate the stochastic growth rate in very small populations. The direction of the bias 502 

was different in the two model species, and the impact of the bias was greater when 503 

populations had positive growth and thus extinction was not certain. According to our 504 

descriptive analyses, the differences were explained by a failure of the diffusion 505 

approximation to capture the probability distribution of the stochastic growth rate in very 506 

small populations. 507 

Relatively few ecological studies have tested for sources of deviations between the 508 

diffusion approximation and the full stochastic model. It is expected that the diffusion 509 

approximation should fail when populations sizes are very small and growth variance 510 

becomes very large, especially in populations with large demographic variance such as the 511 

primrose. Engen et al. (2005) analysed a large number of age structured population models 512 

and found a reasonable fit in most cases, except for populations structured according to a 513 
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large number of age classes where the diffusion approximation could over-estimate the 514 

extinction risks. The case of density-dependent dynamics was investigated more 515 

systematically, and significant but relatively unpredictable model-dependent deviations were 516 

found (Kendall 2009; Wilcox and Possingham 2002). Wilcox and Possingham (2002) stated 517 

that such deviations could come from (1) inaccuracy in the estimation of the parameters of the 518 

diffusion approximation, (2) difficulties to capture unstable dynamics or rare events of 519 

population decline, and (3) unrealistic assumptions of the diffusion approximation. In our 520 

case, we included both demographic and environmental stochasticity in the diffusion 521 

approximation, and population dynamics were relatively smooth. Thus, the failure of the 522 

diffusion approximation at small population sizes was probably a consequence of the 523 

structural assumption of unbounded and normally distributed population growth rates (Lande 524 

et al. 2003; Ovaskainen and Meerson 2010). The magnitude of this bias will be difficult to 525 

predict because it seems to depend on the life cycle. Thus, we recommend to complement the 526 

extended IPM approach with individual based models to obtain unbiased estimates for very 527 

small populations of conservation concern. 528 
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Figure legends 635 

Figure 1. Decomposition of demographic variance according to size and demographic 636 

components in the primrose (a) and common lizard (b) after equation (9). The primrose model 637 

was structured by rosette size (mm, log scale) and the common lizard model was structured by 638 

body size (snout-vent length, mm). The areas of different colour indicate the relative 639 

contribution of each component to total demographic variance at a given size, including 640 

negative contributions. 641 

Figure 2. Elasticity analysis of the deterministic growth rate and of the demographic variance. 642 

a-b. Elasticity surfaces of the deterministic growth rate λ with respect to the projection kernel 643 

of the primrose (a) and the common lizard (b). c. Elasticity of the demographic variance 644 

against elasticity of the deterministic growth rate λ with respect to the same model parameter 645 

for the common lizard (squares) and primrose (circles) models. Elasticity was calculated with 646 

respect to a small change in the value of each parameter describing size-dependent survival, 647 

growth and reproduction functions of the projection kernel (see Appendix D for raw data). 648 

Figure 3. Comparison of the simulations of the diffusion approximation of the IPM 649 

(diffusion) with the simulations of the individual based model (IBM) and the predictions from 650 

the small-noise first order approximation (LPA) for the common lizard. a. Population 651 

trajectories ( 75% , 50% and 25%  quantiles of the total reproductive value) predicted by the 652 

diffusion approximation and the IBM. b. Stochastic growth rate (mean and quantiles) against 653 

population reproductive value from the diffusion approximation, the IBM and the small-noise 654 

approximation of equation (6). c. Variance of the stochastic growth rate variance against 655 

inverse of population reproductive value from the diffusion, the IBM and the small-noise 656 

approximation of equation (6). For the diffusion approximation and the IBM, reproductive 657 

values and stochastic growth rate statistics were calculated from the simulations displayed in 658 

panel a. The inverse of the population reproductive value was used to ease visualization. d. 659 
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Probability distributions of the stochastic population growth rate in small (20 individuals) and 660 

very small (5 individuals) populations from the diffusion approximation and the IBM. Similar 661 

qualitative results were obtained with the other models. 662 

Figure 4. Cumulative extinction risks predicted by the diffusion approximation of the IPM 663 

(diffusion), the individual based model (IBM) and the large population analytical 664 

approximation (LPA) of Lande and Orzack (1988). The latter was not plotted in the primrose 665 

model because this model does not include environmental variation. Extinction probability 666 

was computed for a quasi-extinction threshold of 50 (black), 10 (grey) and 1 (light grey) 667 

individuals for the common lizard (a) and the primrose population (b). All simulations started 668 

from a reproductive value of 100. Note the difference in the y-axis range in panel (b) where 669 

population growth was positive and ultimate extinction risk is less than 1. 670 

Figure 5. Sensitivity analysis of the quality of the IPM diffusion approximation in the 671 

primrose model. Relative difference between the cumulative quasi-extinction curves of the 672 

diffusion approximation of the IPM and those of the IBM with increasing values (from dark 673 

to light curves) of the seed establishment probability (a) and the residual variation (standard 674 

deviation) of the size growth (b). A negative relative difference indicates that the diffusion 675 

approximation tends to under-estimate the extinction probability. To understand the observed 676 

patterns, we calculated the relative difference between the mean stochastic growth rate of the 677 

diffusion approximation and of the IBM (c, d). Mean stochastic growth rate was calculated at 678 

each reproductive value reached by the simulations and curves were then smoothed with a 679 

moving average method to ease interpretation. Fluctuations come from small sample size of 680 

data to calculate extinction risk and biases between the diffusion approximation and IBM. 681 

Deterministic growth is higher than 1 when seed establishment probability < 0.008 (panels 682 

a-c) and when growth residual variation < 0.3364 (panels b-d). 683 

684 
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Table 1 685 

Estimates of the asymptotic growth rate (λ ),demographic variance ( 2
dσ ) and environmental 686 

variance ( 2
eσ ) from equation (3). In the primrose, no estimate of environmental variance was 687 

available implying that estimate of demographic variance was probably inflated. 688 

 689 

Model  λ  2
dσ  2

eσ  

Oenothera glazioviana (primrose) 1.0526 2.2487 0 

Zootoca vivipara (common lizard) 0.9077 0.4566 0.0204 

 690 

691 



Viability analysis of size-structured populations 

30 
 

Figure 1 692 
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Figure 2 697 
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Figure 3 702 

 703 

 704 

705 



Viability analysis of size-structured populations 

33 
 

Figure 4 706 

 707 

 708 

709 

LPA LPA 

LPA 



Viability analysis of size-structured populations 

34 
 

Figure 5 710 

711 

 712 

 713 


	Abstract
	Introduction
	Materials and methods
	Integral projection model
	Finite population in a stochastic environment
	Calculation of environmental and demographic variances
	Simulation of the IPM for finite populations
	Prospective perturbation analyses
	Case studies

	Results
	General characteristics of IPM
	Elasticity analysis
	Population dynamics and extinction trajectories

	Discussion
	Model construction
	Stochastic growth rate calculation
	Elasticity analysis
	Extinction dynamics

	References
	Figure legends
	Table 1
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5

