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insights into the most important size classes and demo-
graphic components. A diffusion approximation provided 
a remarkable fit to the stochastic dynamics and cumulative 
extinction risk, except for very small populations where 
stochastic growth rate was biased upward or downward 
depending on the model. These results confirm that the 
extended IPM provides a powerful tool to assess the con-
servation status and compare the stochastic demography of 
size-structured species, but should be complemented with 
individual based models to obtain unbiased estimates for 
very small populations of conservation concern.

Keywords  Extinction · Life cycle · Population viability 
analysis · Trait-based approach

Introduction

Ecological impacts of human activities have altogether 
caused a massive loss of species (Hughes et al. 1997), and 
the abundance of many species has crossed a critical thresh-
old for the population viability (Gilpin and Soulé 1986). 
Therefore, a better understanding of small population 
dynamics should give crucial insights to predict, and where 
possible remedy, extinction. Population dynamics results 
from interplay between deterministic components, stochastic 
components, and the life history (Benton et al. 2006; Lande 
et al. 2003). For example, populations of common lizards are 
regulated by density dependent feedbacks (i.e., determinis-
tic component) and also fluctuate due to yearly changes in 
weather conditions (i.e., random component, Le Galliard 
et  al. 2010). Given the importance of stochastic factors in 
small populations, one major topic in conservation biology is 
to evaluate how random demographic variation affects popu-
lation viability across diverse life histories (Beissinger and 

Abstract  Integral projection models (IPM) make it pos-
sible to study populations structured by continuous traits. 
Recently, Vindenes et  al. (Ecology 92:1146–1156, 2011) 
proposed an extended IPM to analyse the dynamics of 
small populations in stochastic environments, but this 
model has not yet been used to conduct population viabil-
ity analyses. Here, we used the extended IPM to analyse 
the stochastic dynamics of IPM of small size-structured 
populations in one plant and one animal species (evening 
primrose and common lizard) including demographic sto-
chasticity in both cases and environmental stochasticity in 
the lizard model. We also tested the accuracy of a diffusion 
approximation of the IPM for the two empirical systems. 
In both species, the elasticity for λ was higher with respect 
to parameters linked to body growth and size-dependent 
reproduction rather than survival. An analytical approach 
made it possible to quantify demographic and environmen-
tal variance to calculate the average stochastic growth rate. 
Demographic variance was further decomposed to gain 
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McCullough 2002; Morris and Doak 2002). Demographic 
variation can be explained by random fluctuations in climate, 
resource availability, and other extrinsic factors that gener-
ate simultaneous changes among individuals at a given time 
(i.e., environmental stochasticity). Demographic variation 
can also be explained by random inter-individual differences 
(i.e., demographic stochasticity), nonrandom differences 
among individuals (e.g., differences in quality at birth) and 
sampling effects (Kendall and Fox 2002).

Models to describe stochastic dynamics and calculate 
extinction risk for small populations often hypothesise a dis-
crete time process and a discrete stage structure (Beissinger 
and McCullough 2002; Caswell 2001; Morris and Doak 
2002). They rely on a projection matrix whose entries are 
transition rates within and between stages (e.g., survival and 
reproduction in an age structured population, Caswell 2001). 
Such matrix projection models (MPM) make it possible to 
include, for example, effects of environmental (Lande and 
Orzack 1988; Tuljapurkar 1990) and demographic stochastic-
ity (Engen et al. 2005). Thus, most population viability analy-
ses (PVA) are based on MPM for which robust protocols have 
been defined to assess conservation status, make demographic 
projections and test alternative management scenarios (Mor-
ris and Doak 2002). However, the life history of many species 
is often characterised by a life history structure that depends 
on continuous traits, sometimes in conjunction with a discrete 
stage structure (Benton et  al. 2006; Ellner and Rees 2006). 
For example, size (or height in plants) are key determinants 
of demographic variation in natural populations of snakes and 
lizards (Baron et al. 2013; Le Galliard et al. 2010), and many 
species of mammals, birds and plants (Merow et al. 2014).

Continuously structured life histories can be modelled 
with a large transition matrix made out of numerous classes 
and the demographic parameters in a MPM can be esti-
mated from regression on continuous traits (Gross et  al. 
2006). In such cases, however, the use of MPM may come 
at the cost of precision of model parameters, generate dif-
ficulties of numerical implementation in small data sets, 
and induce potential changes in the ranking of sensitivities 
(Easterling et al. 2000; Enright et al. 1995; Pfister and Ste-
vens 2003). Instead, Easterling et al. (2000) and Ellner and 
Rees (2006) recommended to use regression techniques to 
estimate demographic traits in an integral projection model 
(IPM). Ramula et  al. (2009) further demonstrated that the 
IPM can outperform the MPM for small data sets because 
the IPM estimates the asymptotic growth rate � with less 
bias and variance. In a recent study, Vindenes et al. (2011) 
proposed an extended IPM to model continuously structured 
life histories for small populations in fluctuating environ-
ments. This extension of IPM theory assumes small demo-
graphic fluctuations (i.e., small-noise approximation) and 
allows to approximate population dynamics by a diffusion 
process. The new mathematical framework of Vindenes 

et  al. (2011) should provide a useful addition to the PVA 
toolbox in conservation biology because it allows to model 
size-structured stochastic population dynamics. However, to 
our knowledge, this new framework has never been applied 
in real life situations and the accuracy of the small-noise 
approximation has not been thoroughly investigated.

In this study, we used the newly developed, extended 
IPM and tested the accuracy of the diffusion approxima-
tion for two particular empirical systems. First, we applied 
the extended IPM to the case of two natural populations, 
including (i) a widespread monocarpic perennial plant spe-
cies (redsepal evening primrose, Oenothera glazioviana) 
previously studied with a deterministic IPM (Rees and Rose 
2002), and (ii) a widespread lizard species (common lizard, 
Zootoca vivipara) characterised by a strong size structure 
and temporal fluctuations in survival (Le Galliard et  al. 
2010). We chose these two study systems because they rep-
resent an increasing complexity from a system influenced 
solely by demographic stochasticity to a system influenced 
by the combined action of demographic and environmental 
stochasticity. In addition, the primrose represents a natu-
ral situation with a positive deterministic growth, which is 
encountered in some reintroduction programs in conserva-
tion biology (Beissinger and McCullough 2002; Morris and 
Doak 2002). On the contrary, the lizard represents a natu-
ral situation with a negative growth typical of the study of 
endangered, declining species. Thus, these two examples 
are useful testbeds to demonstrate the flexibility of the 
extended IPM for conservation biology. In each case study, 
we used the extended IPM to conduct a standard PVA 
including the calculation and decomposition of the stochas-
tic population growth rate, the analysis of demographic sto-
chasticity, and the simulation of extinction dynamics. We 
compared the outcomes of this PVA with those of an indi-
vidual based, simulation version of the IPM. Second, we 
also quantified the accuracy of the diffusion approximation 
in numerous, alternative parameterisations of the primrose 
model ranging from positive to negative growth and from 
low to very high values of demographic variance. We did so 
to investigate more thoroughly the accuracy of the diffusion 
approximation without confounding effects of differences 
in life history structure between the two species.

Materials and methods

Integral projection model

Lets assume that the life history is structured by one con-
tinuous variable called y such that individuals differ by y 
only and y is a major determinant of vital rates; for exam-
ple, y could correspond to body size in animal or height 
in a plant. The population can then be described by the 
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probability density of individual size y at time t, defined 
by the continuous function n(y, t), such that n(y, t)dy is the 
number of individuals between trait values y and y + dy at 
time t (Easterling et al. 2000). Total population size at time 
t is called n(t) =

∫

Ω

n(y, t)dy, where Ω is the domain of pos-

sible values for trait y. The general structure of the time-
invariant IPM of a large population writes like:

where k(y, x) is the kernel describing transition rates from 
state x at time t to state y at time t + 1. According to Eq. (1), 
the kernel can be further decomposed into (1) the survival-
growth kernel where s(x) is the survival probability of an 
individual with trait value x, and fs(y, x)dy is the prob-
ability of reaching trait value between y and y+ dy at time 
t + 1 for an individual of trait value x, and (2) the fecundity 
kernel where b(x) is the fecundity of an individual with trait 
value x, and fb(y, x) is the probability density function of 
the trait value of offspring. This deterministic IPM can be 
considered as a matrix projection model (MPM) with an 
infinite number of discrete classes. Thus, according to the 
seminal paper by Easterling et al. (2000), most of the prop-
erties of MPM can be generalized to IPM, including the 
calculation of the deterministic population growth rate �, 
the determination of equilibrium population structure u(y) 
and reproductive values v(y) and the calculation of deter-
ministic elasticities of �. Here, we used a numerical method 
to simulate IPM by discretizing the state space Ω into C 
classes of the same width and computing integrals using 
Simpson’s 3/8 method, a more accurate numerical integra-
tion method than the standard mid-point rule (Merow et al. 
2014). A spectral analysis of this discretized IPM allows 
to determine the dominant eigenvalue (called �), the right 
eigenvector u(x) scaled so that 

∫

Ω

u(x)dx = 1, and the left 

eigenvector v(x) scaled so that 
∫

Ω

v(x)u(x)dx = 1. The right 

eigenvector corresponds to the stable trait distribution, 
while the left eigenvector corresponds to the reproductive 
value distribution, which measures the contribution of an 
individual to future population growth relative to other 
individuals in the population.

Finite population in a stochastic environment

To describe the dynamics of a small population in a fluctu-
ating environment, we introduce the stochastic IPM:

(1)

n(y, t + 1) =

∫

Ω

k(y, x)n(x, t)dx

=

∫

Ω

[
s(x)fs(y, x)+ b(x)fb(y, x)

]
n(x, t)dx

where N is the discrete population size, K is a stochas-
tic kernel, and Zt is a random vector describing parameter 
values at time t , and thus the environmental state. The 
model described by Eq.  (2) is similar to the determinis-
tic model of Eq. (1) conditional on Zt. Here, we consider 
that Zt is a vector of year-specific parameters and assumed 
that parameter values vary randomly over time according 
to the random effects model of Rees and Ellner (2009). 
This implies that elements of the stochastic kernel of the 
IPM are drawn randomly each year from some parametric 
statistical distributions. However, the exact distribution 
from which the elements are taken is not defined a priori 
and will be representative of the model species. The most 
common assumption is that time-varying kernel elements 
are drawn independently from symmetric, Gaussian dis-
tributions, but it is possible to use any other type of multi-
variate parametric statistical distribution (Rees and Ellner 
2009).

The dynamics of the expected population size at time 
t + 1 given population size at time t can be written as:

where k̄(y, x) is the mean kernel defined by averaging the 
stochastic kernel over all possible environmental state val-
ues. Similar to Eq. (1), this dynamics is characterised by an 
expected growth rate �̄, the stable state structure ū(x) and 
the reproductive value v̄(x). The total reproductive value 
of the population can then be defined as V =

∫
v̄(x) N(x) , 

which equals total population size only when the popula-
tion has the exact stable state structure. The instantaneous 
rate of increase of the total reproductive value is then given 
by

where Et and D are random variables describing environ-
mental stochasticity (i.e., between-year deviation from the 
mean kernel of the average individual contribution to total 
reproductive value) and demographic stochasticity (i.e., 
within-year deviation from the mean of the year of the indi-
vidual contribution to total reproductive value), respectively 
(Engen et  al. 2007; Vindenes et  al. 2011). Assuming no 
covariance between demographic and environmental sto-
chasticity, the variance in the instantaneous growth rate can 
be written as

(2)N(y, t + 1) =

∫

Ω

K(y, x, Zt)N(x, t)dx,

K(y, x, Zt) = s(x, Zt)fs(y, x, Zt)+ b(x, Zt)fb(y, x, Zt)

(3)E[N(t + 1)|N(t) ] =

∫

Ω

∫

Ω

k(y, x)N(x, t)dxdy

(4)Λt =
Vt+1

Vt

= �̄+ Et + D
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for the case of a structured population model, including 
the IPM (Engen et  al. 2007; Lande et  al. 2003; Vindenes 
et al. 2011). In Eq. (5), σ 2

e  and σ 2
d  are the environmental and 

demographic variances, respectively. According to Eq. (5), 
the contribution of demographic stochasticity depends on 
the demographic variance σ 2

d  and is inversely proportional 
to the total reproductive value.

An important property of a stochastic IPM is the long-
run logarithmic growth rate, denoted ln�s, which describes 
the asymptotic exponential growth rate of the population 
size after a sufficiently long time (Lande et al. 2003; Rees 
and Ellner 2009; Tuljapurkar 1990). For a structured pop-
ulation, this long-run growth rate is best described by the 
dynamics of the total reproductive value, which is Marko-
vian, obeys a first order autoregressive process, and grows 
exponentially according to the same long-run growth rate 
as population size (Engen et al. 2005, 2007). The long-run 
logarithmic growth rate can be approximated assuming a 
small environmental noise, which implies that the popula-
tion stays close to its stable distribution (e.g., for IPM Rees 
and Ellner 2009). Following earlier work on age structured 
populations (Engen et  al. 2007), Vindenes et  al. (2011) 
showed that the first-order approximation of the long-run 
growth rate of the stochastic IPM writes like

where � is the deterministic population growth rate of the 
mean kernel.

Calculation of environmental and demographic 
variances

The demographic variance σ 2
d  from Eq. (5) is given by the 

first-order approximation:

where the demographic variance due to an individual with 
trait value y, called σ 2

d (y), is weighted by the stable state 
structure ū(y) calculated for the mean kernel. Based on the 
work by Vindenes et al. (2011), the term σ 2

d (y) can be further 
computed using the expectation of the demographic variance 
over all environmental states and a decomposition of the 
individual contribution to total reproductive value, such that

(5)Var(Λt |Vt) = Var(Et |Vt)+ Var(D|Vt) = σ 2
e + σ 2

d /Vt

(6)ln �s ≈ ln�̄−
σ 2
e

2�̄2
−

σ 2
d

2�̄2V
,

(7)σ 2
d ≈

∫

Ω

ū(y)σ 2
d (y)dy,

All terms in Eq.  (8) involve mean values over environ-
ments. They are precisely defined in Appendix A of the 
supplementary material, where we describe methods to 
estimate them. The three first variances can be computed 
numerically from the model parameters and the reproduc-
tive value. The fecundity variance depends on properties of 
the fecundity probability distribution, while the survival-
fecundity covariance is influenced by structural details of 
the model. For example, if demographic census occurs after 
reproduction, reproduction is conditional on the survival of 
parents, which implies a positive covariance between sur-
vival and fecundity.

In addition, the environmental variance is given by the 
first-order approximation:

where c(x, y) = cov
(
E[Wx|Z ],E

[
Wy|Z

])
 is the covari-

ance of expected contribution of individual of trait value x 
(Wx) and trait value y (Wy) to the total reproductive value 
(Vindenes et  al. 2011). A first-order approximation of the 
environmental variance can be computed by calculating the 
variance in the population growth rate �(z) with respect to 
the environment state value z using stochastic simulations 
of large populations. Here, we computed the asymptotic 
population growth rate �(z) for 10,000 environments taken 
randomly from the empirical probability distribution.

Simulation of the IPM for finite populations

We used an individual based numerical version of the IPM 
(IBM) to simulate the stochastic IPM for finite populations. 
The IBM included random, sampling variation for growth, 
survival and reproduction according to the empirical dis-
tribution laws. We also parameterised a diffusion approxi-
mation of the IBM following Vindenes et al. (2011), where 
the stochastic discrete time dynamics is approximated by a 
continuous time Wiener process with drift, which is entirely 
described by a drift term and an infinitesimal variance term 
(Lande and Orzack 1988). We used the diffusion approxi-
mation to model the natural logarithm of the total reproduc-
tive value (Engen et al. 2005). The drift term is equivalent 
to the average logarithm of the stochastic growth rate from 
Eq. (6), while the variance term depends on the determin-
istic growth rate and the environmental and demographic 
variances (see Appendix B of the supplementary material 
for detailed justification).

(9)σ 2
e ≈

∫

Ω

∫

Ω

ū(x)ū(y)c(x, y)dxdy,

(8)
σ 2
d (y) = s̄(y)σ̄ 2

vs(y)
︸ ︷︷ ︸

Growth variance

+ b̄(y)σ̄ 2
vb(y)

︸ ︷︷ ︸

Offspring size variance

+ µ̄2
vs(y)σ̄

2
S (y)

︸ ︷︷ ︸

Survival variance

+ µ̄2
vb(y)σ̄

2
B(y)

︸ ︷︷ ︸

Fecundity variance

+ 2σ̄ 2
BS(y)µ̄vs(y)µ̄vb(y)

︸ ︷︷ ︸

Survival−Fecundity covariance
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We simulated 50,000 runs of the IBM all starting from a 
reproductive value of 100 and from the same state structure 
calculated from the stable state structure of the mean kernel. 
We calculated the instantaneous growth rate at each time step 
[Λt in Eq. (4)] and used all simulated trajectories to quantify 
the sample mean and sample variance of the growth rate from 
time t to time t + 1 given the reproductive value at time t. 
The diffusion approximation was simulated with the Matlab 
econometrics toolbox starting from a reproductive value of 
100. Similar qualitative results were obtained starting from 
a smaller or a larger population size. We calculated cumu-
lative quasi-extinction risk during the first 50  years of the 
simulation, a reasonable time horizon for a PVA, with three 
quasi-extinction thresholds (N = 1 equivalent to true extinc-
tion, N = 10, and N = 50). We also calculated the cumula-
tive extinction risk according to a previously published ana-
lytical expression that uses a diffusion approximation without 
demographic variance (Lande and Orzack 1988). We called 
this approximation the “large population analytical approxi-
mation” below (see equation (B10) in Appendix B of the sup-
plementary material for details). By comparing this analytical 
expression with results from the IBM and diffusion approxi-
mation of the IPM, it is thus possible to quantify the effects of 
demographic stochasticity on extinction risks.

Prospective perturbation analyses

Tools for the prospective analysis of IPM in response to 
small perturbations of the kernel include the deterministic 
elasticity (relative change of the deterministic growth rate 
� ) and the stochastic elasticity (relative change of the long-
run stochastic growth rate defined by Eq.  6) to the mean 
and variance for kernel elements, parameters and functions 
(Easterling et  al. 2000; Rees and Ellner 2009). Here, we 
calculated only the deterministic elasticity and the elastic-
ity of the demographic variance constant σ 2

d , which are cru-
cial to PVA (Mills and Lindberg 2002). For the former, we 
calculated both (1) the elasticity surface of � to changes in 
the kernel, given by the relative sensitivity of � to changes 
in the function k(y, x) in a small area around y and x, and 
(2) the elasticity of � to functions of the kernel and model 
parameters (Easterling et al. 2000). We also evaluated the 
relative impact of small changes in each parameter value on 
the demographic variance constant defined in Eq. (7). This 
was done numerically through a slight (1 %) perturbation 
of the initial model. Because some parameter values were 
negative, we scaled sensitivities relative to the absolute 
value of each parameter to obtain meaningful estimates.

Case studies

We gathered life history data for one plant species char-
acterised by a life cycle structured by height (redsepal 

evening primrose, Oenothera glazioviana) and one animal 
species characterised by a life cycle structured by body size 
(common lizard, Zootoca vivipara). The primrose popula-
tion did not include estimates of environmental variance 
and was already studied with a deterministic IPM by Rees 
and Rose (Rees and Rose 2002). Both IPM included an 
annual census of the female portion of the population and 
were parameterised with life history data collected inside 
one reference population for each species. Detailed infor-
mation on life cycles and model parameters is provided in 
Appendix C of the supplementary material.

We first characterised all components of the stochastic 
growth rate in each study species, and conducted the elas-
ticity analyses and numerical simulations of finite popula-
tions. In the case of the primrose model, further simulations 
were done where we tested different parameter values for 
the seed mortality rate and the residual variation (stand-
ard deviation of the random noise) of the growth function, 
which allowed us to test situations of decreasing, almost 
stable and increasing populations with distinct patterns 
of deterministic growth and demographic variation (see 
Appendix C of the supplementary material). The primrose 
model was chosen to do this analysis because it is simpler. 
In all models, we checked that our definition of the trait 
space did not bias the model outcomes through eviction of 
individuals near size limits (Merow et al. 2014). To do so, 
we calculated the size-dependent fraction eviction from the 
IPM conditional on survival and the unconditional fraction 
using Eq.  (2) in Williams et al. (2012). The magnitude of 
eviction was negligible, even in the case of the primrose 
where size growth was linear with a high variance (e.g., 
less than 1 and 0.001 % for unconditional and conditional 
fractions, respectively), and the fraction of evicted individ-
uals was not influenced by changes in model parameters.

Results

General characteristics of IPM

Deterministic predictions for the growth rate (Table  1) 
and for the stable size structure (not shown) were simi-
lar to previously published observations. The primrose 

Table 1   Estimates of the asymptotic growth rate (�),demographic 
variance (σ 2

d
) and environmental variance (σ 2

e
) from Eq. (3)

In the primrose, no estimate of environmental variance was available 
implying that estimate of demographic variance was probably inflated

Model � σ 2
d

σ 2
e

Oenothera glazioviana (primrose) 1.0526 2.2487 0

Zootoca vivipara (common lizard) 0.9077 0.4566 0.0204
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had an increasing population (+5  % annual increase) in 
accordance with Rees and Rose (2002). The common liz-
ard population displayed a local annual decrease of 10 % 
in line with previous estimations from MPM (Le Galliard 
et  al. 2010) and direct estimates of local recruitment and 
immigration (Lepetz et  al. 2009). An analytical expres-
sion of each term in Eq.  (8) made it possible to compute 
σ 2
d (y) and therefore  demographic variance using Eq.  (7). 

The primrose population was characterised by the strongest 
demographic variance (see Table 1). In the common lizard, 
environmental variance was significant, since according to 
Eq.  (6), the population size where demographic variance 
equals environmental variance is around 20 individuals. A 
decomposition of the demographic variance according to 
size and the five variance terms in Eq. (8) showed that most 

demographic stochasticity was due to body growth and 
survival of adults while fecundity had little effects in the 
primrose (Fig.  1a). A strong negative correlation between 
fecundity and survival was observed. In the common liz-
ard (Fig. 1b), body growth had little influence on the demo-
graphic variance, which was almost entirely due to survival 
and fecundity. 

Elasticity analysis

Elasticity surfaces represent the relative sensitivities of 
the deterministic growth rate to changes in the kernel. For 
the primrose (Fig. 2a), the elasticity surface indicates the 
dominance of one size-specific transition corresponding 
to transition of individuals into the reproductive stage, 
relative to two size-specific transitions of equal impor-
tance corresponding to growth of immature plants and 
offspring production. For the common lizard (Fig.  2b), 
three size-specific transitions of equal relative importance 
were identified: survival and growth of juveniles, survival 
and growth of older individuals, and offspring produc-
tion. We further calculated the elasticity of the growth rate 
(� ) and demographic variance (σ 2

d ) for parameters in the 
primrose and lizard models (see Appendix E of the sup-
plementary material). In the primrose, elasticity of � was 
strongest for fecundity slope (measuring the increase of 
fecundity with rosette size), growth intercept (measuring 
mean rosette size early in life) and growth slope (meas-
uring size increment per unit size at time t), followed by 
survival intercept (measuring mean survival early in life). 
In the common lizard, fecundity and growth parameters 
had the strongest influence followed by juvenile survival, 
and adult survival had a weak influence. The elasticity of 
� to change in one model parameter was positively corre-
lated with the elasticity of σ 2

d  to change in the same model 
parameter (Fig. 2c).

Population dynamics and extinction trajectories

In the case of the common lizard, population dynamics pre-
dicted by the diffusion model fitted extremely well those 
observed in the IBM. This very good fit was observed 
throughout 50 years of simulation in this case (see Fig. 3a), 
but held over longer times with different initial conditions 
(results not shown). The relationship between the stochastic 
growth rate Λt and population reproductive value predicted 
by the diffusion model was coherent with the one observed 
in the IBM or the one predicted by Eq. (6), except in very 
small populations where the diffusion approximation under-
estimated the median and range of variation of the stochastic 
growth rate distribution of the IBM (Fig. 3b). In this species, 
the diffusion approximation thus underestimated slightly the 
variance of stochastic growth rate in very small populations 

Fig. 1   Decomposition of demographic variance according to size and 
demographic components in the primrose (a) and common lizard (b) 
after Eq. (8). The primrose model was structured by rosette size (mm, 
log scale) and the common lizard model was structured by body size 
(snout-vent length, mm). The areas of different colour indicate the 
relative contribution of each component to total demographic vari-
ance at a given size, including negative contributions
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(Fig. 3c), where the probability distribution of the stochastic 
growth rate from the IBM did not fit the log-normal distri-
bution assumed by the diffusion model (Fig. 3d).

Despite these small biases at very small population 
sizes, the cumulative quasi-extinction risk curves in the 
common lizard were very well predicted by the diffusion 
model even at low quasi-extinction thresholds (relative dif-
ference less than 5 %, Fig. 4a). Starting from ca. 100 indi-
viduals, this population had declining trends and character-
istics quasi-extinction times of less than 50 years very well 
matched by the diffusion approximation. In the primrose 
population with positive growth, the risk of extinction was 
on average very small (ultimate quasi-extinction risk of less 

than 10 %) and we identified a difference between predic-
tions from the diffusion approximation and simulations of 
the IBM (relative difference more than 5  %, Fig.  4b). In 
this species, rare extinctions were caused by random events 
of rapid initial decline and demographic variance was very 
high due to stochastic variation in plant size. In this situa-
tion, the stochastic trajectories are likely to be more poorly 
captured by the diffusion approximation. In addition, as 
expected, differences between the diffusion approxima-
tion and the large population analytical approximation were 
higher at lower quasi-extinction thresholds in the lizard, 
i.e., when effects of demographic stochasticity on extinc-
tion times were stronger (Fig. 4a).

Fig. 2   Elasticity analysis of the deterministic growth rate and of the 
demographic variance. a, b Elasticity surfaces of the deterministic 
growth rate λ with respect to the projection kernel of the primrose (a) 
and the common lizard (b). c Elasticity of the demographic variance 
against elasticity of the deterministic growth rate λ with respect to the 

same model parameter for the common lizard (filled circles) and prim-
rose (empty circles) models. Elasticity was calculated with respect to a 
small change in the value of each parameter describing size-dependent 
survival, growth and reproduction functions of the projection kernel 
(see Appendix D of the supplementary material for raw data)
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In the primrose, increased parameter values for seed estab-
lishment probabilities and growth rate residual variance were 
associated with higher deterministic growth rate but also higher 
demographic variance (see Table C1b in Appendix C of the sup-
plementary material), with a net negative effect on extinction 
risk. An analysis of the relative difference between quasi-extinc-
tion curves predicted by the diffusion approximation and those 
observed in the IBM revealed stronger biases during transient 
dynamics (intermediate simulation times) and when populations 
were less at risk of extinction (Fig. 5a, b). In all cases, the diffu-
sion approximation underestimated time to extinction and it also 

underestimated the total cumulative risk of extinction for popu-
lations with positive intrinsic growth. To unravel if these biases 
were associated with differences in the characteristic dynamics 
of the populations or systematic failure to capture the properties 
of very small populations like in the common lizard, we plotted 
the bias for stochastic growth rate against population reproduc-
tive value. The results strongly suggested that this bias depended 
on population size irrespective of the model parameter values 
(Fig. 5c, d). The diffusion approximation systematically over-
estimated the mean stochastic growth rate of the IBM in very 
small populations (less than 10–20 individuals).

Fig. 3   Comparison of the simulations of the diffusion approximation 
of the IPM (diffusion) with the simulations of the individual based 
model (IBM) and the predictions from the small-noise first-order 
approximation (Theory) for the common lizard. a Population tra-
jectories (75, 50 and 25 % quantiles of the total reproductive value) 
predicted by the diffusion approximation and the IBM. b Stochastic 
growth rate (mean and quantiles) against population reproductive 
value from the diffusion approximation, the IBM and the small-
noise approximation of Eq.  (6). c Variance of the stochastic growth 
rate variance against inverse of population reproductive value from 

the diffusion, the IBM and the small-noise approximation of Eq. (6). 
For the diffusion approximation and the IBM, reproductive values 
and stochastic growth rate statistics were calculated from the simula-
tions displayed in panel a. The inverse of the population reproductive 
value was used to ease visualization. d Probability distributions of the 
stochastic population growth rate in small (20 individuals) and very 
small (five individuals) populations from the diffusion approximation 
and the IBM. Similar qualitative results were obtained with the other 
models
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Discussion

Until recently, the analysis of stochastic, size-structured 
populations rested essentially on individual based or matrix 
population models (Easterling et  al. 2000; Enright et  al. 
1995; Pfister and Stevens 2003; Ramula et al. 2009). Here, 
we applied a new mathematical framework (Vindenes et al. 
2011) designed specifically for small, size-structured popu-
lations and including both environmental and demographic 
variation. We performed basic population viability analy-
ses, evaluated the model’s accuracy in two species charac-
terised by contrasted life cycles, and tested robustness of 
the model’s predictions to changes in some model param-
eters in one model species. We found three results: (1) the 
extended IPM allows to decompose demographic variance 
to gain insights into most important size classes and demo-
graphic components, (2) the diffusion model with three 
parameters provided in general a very good approximation 
of the transient stochastic dynamics and ultimate extinction 
risks, but (3) the diffusion approximation produced model-
dependent biased estimates of the stochastic growth in very 
small populations.

Model construction

Given the number of tools available to conduct a PVA 
(Beissinger and McCullough 2002), one must be fully 
aware of the opportunities and constraints of the stochas-
tic IPM. The kernel construction and parameter estimation 
are the most critical steps of the construction of an IPM. 

The kernel includes functions for growth, survival and 
reproduction. For our case studies, growth and reproduc-
tion functions and their yearly variation could be estimated 
relatively easily with regression techniques (Easterling 
et  al. 2000; Rees and Ellner 2009). However, an accurate 
estimation of the survival function was more difficult to 
obtain for the lizard population since not all animals could 
be sampled. Thus, we used capture-mark-recapture models 
for closed populations, a procedure that can underestimate 
true survival (animals can be lost due to movement outside 
the study site) and that makes it more difficult to assess 
size-dependent survival than standard logistic regressions 
(but see Frederiksen et al. 2013). In rare or declining spe-
cies of conservation concern, accurate repeated censuses of 
the same population through time and a reasonable sample 
of individual records of one or two traits (e.g., body size) 
are therefore critical to parameterize the IPM and conduct 
a PVA (Ramula et al. 2009). For example, we have found 
it possible to parameterize an IPM for the critically endan-
gered meadow viper with individual records of body size 
and reproduction in a very small population (less than 50 
individuals, unpub. data).

Anyone willing to develop a stochastic IPM will also 
face three other difficulties. First, even if IPM provide 
more accurate estimates of � than MPM for small data sets 
(Ramula et al. 2009), uncertainty in parameter values may 
lead to uncertainty in model predictions. Confidence inter-
vals for model predictions could be obtained using Monte 
Carlo simulations or bootstrap resampling (McGowan et al. 
2011). Second, the regression models used to parameterize 

Fig. 4   Cumulative extinction risks predicted by the diffusion approx-
imation of the IPM (diffusion), the individual based model (IBM) and 
the large population analytical approximation (Analytical) of Lande 
and Orzack (1988). The latter was not plotted in the primrose model 
because this model does not include environmental variation. Extinc-
tion probability was computed for a quasi-extinction threshold of 50 

(black), 10 (grey) and 1 (light grey) individuals for the common liz-
ard (a) and the primrose population (b). All simulations started from 
a reproductive value of 100. Note the difference in the y-axis range in 
panel (b) where population growth was positive and ultimate extinc-
tion risk is less than 1
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the IPM assumed small and normally distributed inter-
annual variation. This assumption was backed up by long 
term data from the field, but other species may be charac-
terised by catastrophic variation in survival (Baron et  al. 
2010). Individual based simulations could be used to test 
the demographic consequences of such catastrophic varia-
tion. Third, a good knowledge of the probability distribu-
tion of kernel functions is required to model demographic 
stochasticity. We used binomial distribution for survival 
and Gaussian distribution for growth, but had no a priori 
expectation for the probability distribution of fecundity. In 

the common lizard, the generalized Poisson distribution 
was the best fit for the data because sample values were 
truncated at zero and had a clear upper bound (Kendall and 
Wittmann 2010).

Stochastic growth rate calculation

The diffusion approximation and variance decomposi-
tion made it possible to describe stochastic dynamic 
with only three parameters (Vindenes et  al. 2011): deter-
ministic growth rate (�), demographic variance (σ 2

d ) and 

Fig. 5   Sensitivity analysis of the quality of the IPM diffusion 
approximation in the primrose model. Relative difference between the 
cumulative quasi-extinction curves of the diffusion approximation of 
the IPM and those of the IBM with increasing values (from dark to 
light curves) of the seed establishment probability (a) and the resid-
ual variation (standard deviation) of the size growth (b). A negative 
relative difference indicates that the diffusion approximation tends to 
underestimate the extinction probability. To understand the observed 
patterns, we calculated the relative difference between the mean sto-

chastic growth rate of the diffusion approximation and of the IBM (c, 
d). Mean stochastic growth rate was calculated at each reproductive 
value reached by the simulations and curves were then smoothed with 
a moving average method to ease interpretation. Fluctuations come 
from small sample size of data to calculate extinction risk and biases 
between the diffusion approximation and IBM. Deterministic growth 
is higher than 1 when seed establishment probability <0.008 (panels 
a–c) and when growth residual variation <0.3364 (panels b–d)
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environmental variance (σ 2
e ). This decomposition provides 

a very powerful tool to assess the conservation status and 
compare the demography of size-structured species. The 
primrose population was characterised by a strong size-
dependent demography and very high demographic sto-
chasticity. The small demographic stochasticity in the 
common lizard dominated environmental variance only 
in populations of less than 20 individuals; thus, stochastic 
population dynamics were mainly driven by inter-annual 
effects similar to previous studies (Le Galliard et al. 2010). 
We anticipate that quantitative estimates of demographic 
and stochastic variance could be obtained in other size-
structured species of plants and animals. Their comparison 
would be extremely useful to understand the relationship 
between stochastic population dynamics and life history 
similar to what was done with stage-structured animal pop-
ulations (Saether et al. 2013).

A good understanding of demographic stochasticity is 
particularly relevant in conservation biology. Here, we pro-
posed a graphical approach to decompose the demographic 
variance which requires an analytical expression. This 
decomposition indicated that demographic variance was 
mostly due to growth variation for the primrose but sur-
vival variation in yearlings and adults for the common liz-
ard. That plant growth contributed strongly to demographic 
variation in the primrose population may be due to the pro-
longed and weakly canalized compensatory growth trajec-
tories. Plant growth lasted up to 10 years until maturation, 
and there was also a very high variability in growth rate 
(Kachi and Hirose 1983). In general, patterns of increas-
ing size variability with age are common in plants because 
growth rates of individuals are often depensatory and/or 
positively correlated through time (e.g., Pfister and Stevens 
2002). The stochastic IPM would allow a better under-
standing of the effects of these complex growth strategies 
on demographic variance.

One important assumption made in the two case stud-
ies is that the life cycles are structured by one continu-
ous covariates only. The framework of IPM also allows 
including more than one continuous variable or a mixture 
of continuous and discrete state variables (Childs et  al. 
2003). To test the feasibility of this, we parameterised an 
additional IPM for the meadow viper (Vipera ursinii ursi-
nii), an endangered species characterised by a complex 
life cycle structured by body size, age and breeding status 
(Baron et al. 2013; Ferrière et al. 1996). The combined size 
and stage structure was justified by the fact that matura-
tion is conditional on the age (seven classes) and body size 
of immature females and because adult females alternate 
breeding and nonbreeding years independent of their size 
(Baron et  al. 2013). Unfortunately, the analytical expres-
sions of the extended IPM were too cumbersome to allow 

a direct calculation and decomposition of the demographic 
stochasticity, and we had to rely on numerical simulations 
(results not shown). This difficulty could be encountered in 
many other species where demography is shaped by both 
continuous traits and discrete attributes such as stage, age, 
or habitat type (Ellner and Rees 2006). In such cases, we 
recommend to use the IBM approach when the life cycle 
cannot be simplified without substantial loss of informa-
tion, or to simplify the life cycle to a stage or age structured 
matrix population model.

Elasticity analysis

Prospective perturbation analysis of stochastic popula-
tion dynamics includes the calculation of much elasticity 
(this study, Easterling et al. 2000; Rees and Ellner 2009). 
In a real life PVA, the conclusions of the elasticity analy-
sis should be weighted by the feasibility and costs of all 
options available to improve the conservation status of 
the population. Here, we did not attempt to compute and 
compare all elasticities, but instead focused on the elastic-
ity analysis of � and σ 2

d . We found a positive correlation 
between elasticity for � and for σ 2

d . Such correlations are 
expected whenever a management action to improve the 
mean of a trait also changes its variance, as is the case for 
the probability distributions of survival or fecundity. This 
correlation means that traits contributing more to determin-
istic growth may have lower effects on stochastic popula-
tion growth than expected, especially at low population 
sizes.

The IPM is a useful tool for elasticity analysis of � in a 
size-structured population because elasticities are not influ-
enced by stage duration (Easterling et al. 2000). Elasticity 
surfaces indicate the most important size classes during a 
reintroduction or reinforcement program. In addition, the 
IPM allows evaluating the elasticity to body growth and 
size-dependent demography, which is critical to the man-
agement of many important size-structured populations 
such as hunted game species or marine fishes (Merow 
et al. 2014). Traditional PVA focuses on transition between 
stages (i.e., survival or migration) and fecundity, but tends 
to ignore body growth (Beissinger and McCullough 2002; 
Morris and Doak 2002). In life history theory, growth strat-
egies are important because differences in body growth 
have implications for age and size at maturation, future 
fecundity and future survival. In addition, many species are 
characterised by plastic growth rates (French et  al. 2011; 
Gurnell et  al. 2004). In the primrose and common lizard, 
the two parameters with the highest elasticity for � were the 
slope between fecundity and size and the basal size incre-
ment. Thus, conservation programs increasing body growth 
by improvement of habitat quality, removal of competitors, 
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and food or nutrient supplementation should provide the 
most efficient management strategies in these species.

Extinction dynamics

Under the small-noise approximation, Vindenes et  al. 
(2011) constructed a diffusion model and demonstrated 
that this model fitted well the stochastic dynamics of one 
hypothetical stable size-structured population subject to 
demographic and environmental stochasticity. Our results 
obtained in two model species with contrasted life cycles, 
including one model species analysed with 25 different 
combinations of parameters, confirm these conclusions 
except in  situations where the assumption of the small-
noise approximation is not met. We found that the diffu-
sion approximation fitted very well the results of the sto-
chastic IBM in intermediate and large populations (as a 
rule of thumb, when N > 20), but tended to underestimate 
or overestimate the stochastic growth rate in very small 
populations. The direction of the bias was different in the 
two model species, and the impact of the bias was greater 
when populations had positive growth, and thus extinction 
was not certain. According to our descriptive analyses, the 
differences were explained by a failure of the diffusion 
approximation to capture the probability distribution of the 
stochastic growth rate in very small populations.

Relatively few ecological studies have tested for 
sources of deviations between the diffusion approximation 
and the full stochastic model. It is expected that the dif-
fusion approximation should fail when populations sizes 
are very small and growth variance becomes very large, 
especially in populations with large demographic variance 
such as the primrose. Engen et al. (2005) analysed a large 
number of age structured population models and found a 
reasonable fit in most cases, except for populations struc-
tured according to a large number of age classes where 
the diffusion approximation could overestimate the 
extinction risks. The case of density-dependent dynamics 
was investigated more systematically, and significant but 
relatively unpredictable model-dependent deviations were 
found (Kendall 2009; Wilcox and Possingham 2002). Wil-
cox and Possingham (2002) stated that such deviations 
could come from (1) inaccuracy in the estimation of the 
parameters of the diffusion approximation, (2) difficulties 
to capture unstable dynamics or rare events of popula-
tion decline, and (3) unrealistic assumptions of the diffu-
sion approximation. In our case, we included both demo-
graphic and environmental stochasticity in the diffusion 
approximation, and population dynamics were relatively 
smooth. Thus, the failure of the diffusion approximation 
at small population sizes was probably a consequence 
of the structural assumption of unbounded and normally 
distributed population growth rates (Lande et  al. 2003; 

Ovaskainen and Meerson 2010). The magnitude of this 
bias will be difficult to predict because it seems to depend 
on the life cycle. Thus, we recommend complementing 
the extended IPM approach with individual based models 
to obtain unbiased estimates for very small populations of 
conservation concern.
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