
HAL Id: hal-01366707
https://hal.sorbonne-universite.fr/hal-01366707

Submitted on 15 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-omics analysis of primary glioblastoma cell lines
shows recapitulation of pivotal molecular features of

parental tumors
Shai Rosenberg, Maïté Verreault, Charlotte Schmitt, Justine Guegan, Jeremy

Guehennec, Camille Levasseur, Yannick Marie, Franck Bielle, Karima
Mokhtari, Khê Hoang-Xuan, et al.

To cite this version:
Shai Rosenberg, Maïté Verreault, Charlotte Schmitt, Justine Guegan, Jeremy Guehennec, et al..
Multi-omics analysis of primary glioblastoma cell lines shows recapitulation of pivotal molecular fea-
tures of parental tumors. Neuro-Oncology, 2016, �10.1093/neuonc/now160�. �hal-01366707�

https://hal.sorbonne-universite.fr/hal-01366707
https://hal.archives-ouvertes.fr


 manuscript number N-O-D-16-00214R1 

 

1 

 

Multi-omics analysis of primary glioblastoma cell-lines shows recapitulation of pivotal 

molecular features of parental tumors 

Shai Rosenberg
1,6

, Maïté Verreault
1
, Charlotte Schmitt

1
, Justine Guegan

2
, Jeremy Guehennec

1
, 

Camille Levasseur
1
, Yannick Marie

1,3
, Franck Bielle

1,4
, Karima Mokhtari

1,4
, Khê Hoang-Xuan

1,5
, 

Keith Ligon
7
, Marc Sanson

1,5
, Jean-Yves Delattre

1,5
, Ahmed Idbaih

1,5,*
 

1
Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, 

Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France 

2
Bioinformatics/Biostatistics Core Facility, IHU-A-ICM, Institut du Cerveau et de la Moelle 

épinière, ICM, F-75013, Paris, France 

3
Institut du Cerveau et de la Moelle épinière (ICM), Plateforme de Génotypage Séquençage, Paris 

75013, France 

4
AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neuropathologie-

Escourolle, F-75013, Paris, France. 

5
AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-

Mazarin, F-75013, Paris, France. 

6
Hadassah – Hebrew University Medical Center 

7
Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 

Running Title 

manuscript number N-O-D-16-00214R1 

Corresponding author 

Ahmed Idbaih. AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de 

Neurologie 2-Mazarin, 47/83 Boulevard de l’Hôpital, 75013 Paris, France. Tel:+33-01-42-16-03-

85; Fax: +33-01-42-16-04-18; ahmed.idbaih@aphp.fr 

Funding  

This work is part of GlioTex project funded by La Fondation ARC pour la Recherche sur le Cancer. 

The Institut Universitaire de Cancérologie (IUC). OncoNeuroThèque. Hadassah France 



 manuscript number N-O-D-16-00214R1 

 

2 

 

Conflict of interest 

The authors disclose no potential conflicts of interest. 

Word count 

5998 

  



 manuscript number N-O-D-16-00214R1 

 

3 

 

Abstract 

 

Background: Glioblastoma (GBM) is the deadliest primary brain cancer in adults. Emerging 

innovative therapies hold promise for personalized cancer treatment. Improving therapeutic options 

depends on research relying on relevant preclinical models. In this line we have established in the 

setting of the GlioTex project (GBM and experimental therapeutics), a GBM-patient derived cell 

line library (GBM-PDCL). Multi-OMIC approach was used to determine the molecular landscape 

of PDCL and the extent to which they represent GBM tumors. 

Methods: SNP-array, expression arrays, exome sequencing and RNA sequencing were used to 

measure and compare the molecular landscapes of 20 samples representing ten human GBM and 

paired GBM-PDCL. 

Results: Copy number variations were similar for a median of 85% of the genome and for 59% of 

the major focal events. Somatic point mutations were similar in a median of 41%. Mutations in 

GBM driver and “druggable” genes were maintained in 67% events. Mutations that were not 

conserved in the PDCL were mainly low allelic fraction and/or non-driver mutations. Based on 

RNA expression profiling, PDCL cluster closely to their parental tumor with overexpression of 

pathways associated with cancer progression in PDCL.  

Conclusions: Overall, PDCL recapitulate pivotal molecular alterations of paired-parental tumors 

supporting their use as preclinical model of GBM. However, some driver aberrations are lost or 

gained in the passage from tumor to PDCL. Our results support using PDCL as relevant preclinical 

model of GBM. Further investigations of changes between PDCL and their parental tumor may 

provide insights in GBM biology.  

 

Keywords: Glioblastoma, Cell lines, Cancer, Genome  
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Introduction 

 Glioblastoma (GBM) is the most common and the most devastating primary brain cancer in 

adults. Despite intensive treatments (i.e. surgery, radiation therapy and/or chemotherapy), prognosis 

of GBM patients remains dismal with a median overall survival between 12 and 18 months  

appealing new treatments
1
.  

Most of the innovative therapeutic strategies for cancer treatment developed in the last 

decade incorporate drugs targeting specific oncogenic proteins or signaling pathways. Such 

promising approaches are already used in non-central nervous system (CNS) tumors
2,3

. The 

potential of these approaches is being enhanced by the comprehensive molecular mapping of 

thousands of tumors, thus identifying novel oncogenic targets
4
. In addition, the growing number of 

targeted drugs
5
, should enable the application of tumors’ molecular information to offer a growing 

number of therapeutic options, personalized to each patient’s disease state.   

 Development of novel treatments is highly dependent on relevant preclinical models 

recapitulating biology of human tumors. Indeed, before reaching clinical routine, innovative 

treatments are tested most often in cancer cell lines (CCL) and animal models. Accordingly, efforts 

to create large molecularly comprehensively annotated CCL libraries were carried out
6
. 

 The use of CCL as models to investigate potential efficacy of novel drugs is built on the 

assumption that important parts of tumor biology are represented in these cellular models. Hence, it 

seems important to examine in a quantitative manner whether indeed CCL libraries represent the 

molecular landscape of parental tumors. 

  We have established a cell line library of GBM patients derived cell lines (GBM-PDCL). In 

this study, we measured and compared the molecular profiles, obtained using high throughput 

technologies, of a set of parental tumors and paired GBM-PDCL. Indeed, we hypothesize that the 

measurement of multi-omics molecular profile changes in this cohort of paired tumors/GBM-PDCL 

can address and shed light on potential molecular aberrations and biological processes that are being 

lost or gained during the transition between human GBM to GBM-PDCL.    
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Materials and Methods 

Human GBM samples   

Fresh tumor samples from 10 patients with newly diagnosed de novo GBM were collected. The 

patient characteristics are given in Table 1. Blood samples were available for seven patients. 

Samples come from the tissue bank OncoNeuroThèque and were accrued over six years. PDCL 

derivation success rates was 32%. Collection of tumor and blood samples, clinico-pathological 

information and molecular analysis were undertaken with informed consent and with the relevant 

ethical board approval in accord with the tenets of the Declaration of Helsinki. 

 

GBM-PDCL preparation 

Within three hours post-resection, tumors collected in Hank’s Buffered Salt Solution were 

mechanically dissociated and then maintained in neurosphere growth conditions using DMEM/F12  

culture medium supplemented with 1% penicillin/streptomycin, B27 (Life Technologies®, Saint-

Aubin, France), EGF (20 ng/ml) and b-FGF (20 ng/ml) (Peprotech®, Neuilly-sur-seine, France). 

Tumor cells in culture were amplified for at least 8 passages after which the cell line was 

considered established. 

To standardize cell material preparation, 1x10
6
 cells, from established PDCL (i.e. ≥ 8 passages), 

were plated in T75 flask. Three days later, culture medium was renewed and after 24 hours, cells 

were collected, centrifuged and snap frozen. 

 

 

Copy number variation analysis 

Copy number variation (CNV) analysis was performed using the iSelect Infinium 

HumanOmniExpress v1.0 Illumina® chip platform and using GPHMM algorithm
7
. 

 

Whole Exome Sequencing 
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Exome capture was performed using Agilent® kit - Capture Agilent SureSelect All exon v5+UTR 

according to manufacturer protocol and for 5 samples by Nextera rapid capture exome kit. A paired-

end 2x75 bases sequencing was performed by HiSeq 2000. Data analysis used GATK best practices 

pipeline
8
 as detailed in Supplementary Methods. Somatic mutation analysis using Mutect

9
 for tumor 

samples with blood-paired DNA data, and GATK HaplotypeCaller
8
 for tumor samples without 

blood-paired DNA data. For the tumor samples without blood-paired DNA data, only mutations that 

were not described in dbSNP were considered.   

 

Point mutations annotation and interpretation 

 Point mutation were annotated by Oncotator
10

. IntOGen software
11

 was used for functional 

impact prediction in cancer biology context. All mutations of the exome were analyzed. We 

examined also mutations in several genes subsets : (i) COSMIC Gene Census – 547 general cancer 

related genes
12

, (ii) GBM driver genes – 23 frequently mutated GBM driver genes
13

, and (iii) 

“druggable genes”- 69 genes that can be targeted by a FDA-approved drugs
14

. 

 

 

RNA chip analysis 

Expression array analysis was performed by Affymetrix Human Genome U133 Plus 2.0 array. Data 

analysis methods are given in Supplementary Methods. Limma package
15

 was used for differential 

expression analysis (p<0.05, with False Discovery Rate (FDR) correction). GBM subtype
16

 

classification was performed using ssGSEA in GenePattern
17

, as reported in Brennan et al
13

. 

 

RNA sequencing (RNA-Seq) analysis 

Libraries were generated from total RNA and constructed according to manufacturer protocols. 

Paired end sequencing (2x150 bp) was performed by Nextseq 500 machine using High Output kit 

(300 cycles). Data analysis methods are given in Supplementary Methods.  
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Pathway analysis 

Qiagen’s Ingenuity Pathway Analysis (IPA)
18

 was used to assess pathways involving genes that 

were differentially expressed between parental tumors and PDCL. Two statistical measures were 

used for pathway assessment: (i) p-value for the enrichment of each pathway’s genes in the set of 

differential expresses genes, FDR correction was applied (p<0.05), and (ii) the activation/inhibition 

measure for each pathway, with threshold Z=1. 

GSEA
19

 was performed for the complete transcriptome using GenePattern
17

 implementation. Gene 

lists representing the pathways of Biocarta, Kyoto Encyclopedia of Genes and Genomes (KEGG) 

and Pathway Interaction Database (PID) were extracted from MsigDB
20

.   

 

Clonal analysis 

Clonal analysis was performed by Absolute algorithm
21

. This algorithm requires input of basic 

CNV segmentation profiles and somatic point mutations. For the CNV segmentation we used CBS 

algorithm
22

 and we used the somatic point mutation data as described above.   

 

Statistical Analysis 

Statistical analysis was performed using R programming language.  
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Results 

 

Copy number variations 

The frequencies of CNV, in parental tumors and paired PDCLs, are reported in Fig. 1. As expected 

in the parental GBM, the most common chromosomal alterations are: (i) chromosome 7 gain -

100%-, (ii) chromosome 10 loss -90%-, (iii) chromosome 6 loss -50%-, and (iv) chromosome 9 loss 

-20%-. Classical focal genomic alterations targeting GBM driver genes are also detected: (i) EGFR 

amplification -50%-, (ii) CDKN2A homozygous deletion -60%-, (iii) MDM2 amplification -10%-, 

(iv) PIK3CA amplification -10%- and, (v) CDKN2C homozygous deletion -10%-.  

Copy number state (gain, normal or loss) was compared between parental GBM and paired PDCLs. 

The median level of agreement, compared at bins of 1000 base pairs, was 85% (range: 46% to 99%) 

(Fig. 1A). The level of agreement for the most common large alterations (i.e. chromosome 7 gain, 

chromosome 10 loss, chromosome 6 loss, and chromosome 9 loss) was 90%. The 10% difference 

consisted of chromosome 6 loss in one PDCL and chromosome 9 loss in two PDCLs that were not 

detected in their paired parental tumor. 

Across the parental tumor samples, 15 focal genomic alterations (i.e. high level amplifications and 

homozygous deletions) of known GBM driver genes were detected (Fig. 1B): (i) 10/15 were 

maintained in their paired PDCL and, (ii) 5/15, including two EGFR amplifications, one CDKN2C 

homozygous deletion, one CDKN2A homozygous deletion and one CDK4 amplification were not 

detected in paired PDCL. Of note, two CDKN2A homozygous deletions measured in PDCL were 

not found in the parental tumor. 

The frequencies of copy neutral loss of heterozygosity (CN-LOH), in the parental tumors and 

PDCL, are reported in Fig. 1C. The most common large chromosomal level CN-LOH was in 

chromosome 9 (30%) and the level of agreement between tumors and PDCL was 100% for large 

chromosome CN-LOH. Comparison of all areas defined as CN-LOH showed poor agreement 
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between tumor and PDCL (range 0-72%) with median of 24%. For all types of LOH (CN-LOH, 

deletion-LOH and gain-LOH), the level of agreement range is 28-94% with a median of 77%.  

 

Point mutations 

 Exome sequencing analysis was performed for the 10 tumors, 10 paired PDCL and 7 

corresponding available blood samples. Mean coverage was 76X ±13. Point mutation analysis was 

carried out to identify somatic mutations for the 14 samples with corresponding blood DNA, and to 

identify non dbSNP mutations (termed “novel”) for the six samples without blood DNA (Fig. 2). 

Overall 1988 somatic mutations (including intronic and silent mutations, see supplementary file 1), 

were detected across the samples: (i) median 41% mutations existed in both tumor and PDCL, (ii) 

median 19% of mutations were present in the parental tumors only, and (iii) median 36% were 

present in the PDCL only. Of note, the two samples presenting the lowest frequency of maintained 

mutations (PDCLs 7015 and N13-1520: 14% and 17 % respectively), contained two different 

missense TP53 mutations (C176F and R248Q, respectively) that appeared only in the PDCL and 

not in the parental tumor. These two mutations are described as frequent somatic mutations in 

COSMIC database and are predicted to have high impact on the protein activity. Interestingly, a 

minority of cells in parental tumors corresponding to these PDCL stained positively for TP53 – 

suggesting the existence of these mutations in minor subclones that were positively selected when 

cultured as PDCL (Fig 2D). When considering mutations in the subset of COSMIC genes, a median 

of 44% of mutations existed in both tumors and PDCL. For the subset of GBM driver genes the 

corresponding number was 50%.  

 

Detailed description, focused on the non-silent mutations, in the subsets of GBM driver 

genes and “druggable” genes, is of special interest due to the genes’ biologic and therapeutic 

relevance.  Mutations in GBM driver genes were maintained in 11/16 events across the samples. 

Only 1/16 mutations was detected in parental tumors and disappeared in their paired PDCL (NLRP5 
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mutation). 4/20 mutations were not detected in the parental tumors but were found in PDCL (one 

SPTA1 mutation, one TCHH mutation, and two TP53 mutations). For the subset of “druggable” 

genes (including EGFR), 6/8 events were maintained. 1/8 mutations was detected in a parental 

tumor but was not be detected in its paired GBM-PDCL (PARP1 mutation). 1/8 mutations were 

found in GBM-PDCL while they were not detected in their paired parental tumor (PARP14 

mutation). As expected, silent mutations in both gene subsets, were significantly less preserved as 

compared to non-silent mutations (0/5 preserved events, p= 0.003, binomial test).  

   

In order to further characterize the mutations that were different between parental tumors 

and paired PDCL, we estimated allelic fraction of the mutations (i.e. how many cells carry this 

mutation,). As shown in Fig. 2C mutations that appear in parental tumor only or PDCL only, have 

lower allelic fraction as compared to mutations that appear in both parental tumor and PDCL (p< 

2.2e-16, chi-square test). 

We used IntOGen functional prediction for each mutation to classify into putatively 

functional mutations vs. nonfunctional mutations (Fig. 2C). 46% of mutations detected in both 

tumors and PDCL were putatively functional vs. 33% of the mutations detected in tumors or PDCL 

exclusively (p=7.8E-8, chi-square test). For the subset of COSMIC genes, 65% of mutations 

detected in both tumors and PDCL were putatively functional vs. 38% of the mutations detected in 

tumors or PDCL exclusively (p=0.057). Finally, for GBM driver genes, 92% of mutations detected 

in both tumors and PDCL were putatively functional vs. 50% of the mutations detected in tumors or 

PDCL exclusively (p=0.06).  

Interestingly when considering only mutations with allelic fraction >10% and putatively 

functional biological impact, the median agreement between parental tumors and PDCL raised and 

reached 48%, 67% and 79%  for all genes, COSMIC genes and GBM driver genes respectively.  

The subgroup of mutations that were detected in tumor only and not in PDCL are of special 

interest. Overall, a median of 19% of mutations belong to this group. These mutations have lower 
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allelic fraction compared to mutations detected in both tissues (0.15 vs. 0.32, p<2.2e-16, chi-square 

test). Fewer of these mutations are predicted to have functional impact (38% vs. 46%, p=0.02, chi-

square test). A minority (6%) of functional COSMIC genes mutations belong to this group 

(CAMTA1, SLC45A3, PTPRB, KDM6A) with low median allelic fraction of 0.11. Only one 

functional mutation in GBM genes (4%, NLRP5) belong to this group with allelic fraction of 0.07.     

   

mRNA expression profiling 

 Transcription levels were measured for all tumor-PDCL pairs. One pair was excluded from 

the analysis due to low quality of tumor RNA. The GBM transcription subtype
16

 was maintained for 

5/9 pairs (Supplementary Table 1). Multidimensional scaling (MDS) performed on all the measured 

genes resulted in distinct clusters: (i) one for all the parental tumors, and (ii) another for all the 

PDCL (Fig. 3A).  

There were 2643 genes significantly differentially expressed between parental tumors and 

PDCL. As shown in Fig.3B, MDS performed after the exclusion of the differentially expressed 

genes, resulted, as expected in one unified cluster, but in addition the average distance between 

tumors and their paired PDCL was shorter as compared to the overall average pairwise distance 

(after exclusion of the outlier tumor 3719T, overall average Euclidean distance was 54 vs. average 

tumor-PDCL pair distance of 34 on MDS scale, p=0.049, t-test).  

 In order to characterize the functional importance of this set of 2643 differentially expressed 

genes, pathway analysis was carried out. Figure 3C and Supplementary Fig.1 describe the pathways 

for which activation/inhibition state could be inferred. These pathways can be generally assigned as 

belonging to three groups: (i) immune pathways that were underexpressed in PDCL -e.g. 

complement system-, (ii) cell cycle and DNA repair pathways that were activated -e.g. ATM 

signaling-, and (iii) a cell cycle and DNA repair pathway that was inhibited - G2/M DNA damage 

checkpoint regulation-. Of note, the OX40 pathway is an immune pathway but surprisingly, was 

measured as upregulated in PDCL. Detailed inspection of the genes’ group of this pathway shows 
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that the classical immune genes (like human leukocyte antigen) were indeed strongly 

underexpressed and several MAPK genes which are related to oncogenesis were overexpressed 

(Supplementary Table 2). Therefore, it seems that the immune part of the OX40 pathway is 

inhibited in GBM-PDCL in accordance with the other immune pathways.   

 The set of 2643 differentially expressed genes was analyzed for expression fingerprints 

identifying potential upstream regulators. Most of the top regulators were genes related to cancer 

and their predicted activation seems pro-oncogenic in the PDCL compared to the parental tumors 

(Supplementary Table 3). The most significant activation was for the fingerprint of RABL6 gene 

(p=3.7E-14), a RAS family related protein (Supplementary Table 4). Only two upstream regulators 

were related to the immune system: (i) TGFB1 inhibition fingerprint  (one of the major functions 

attributed to this gene in GBM, is immunosuppression
23

)-, and (ii) IL13 activation fingerprint which 

showed trend for activation. Of note two fingerprints: (i) NURP1 -Nuclear protein 1, a transcription 

factor activating PI3K/AKT pathway, inhibition fingerprint in PDCL, and (ii) FBN1 -Fibrillin-1, a 

structural glycoprotein related to extracellular matrix, activation fingerprint in PDCL.    

 Pathway analysis was also carried out for the complete transcriptome (in contrast to the 

previous mentioned analysis for only the 2643 differentially expressed genes) using GSEA for 

KEGG, BIOCARTA and PID pathways sets (Supplementary Tables 5,6). Many pathways involved 

in cell cycle regulation and DNA repair were shown to be upregulated in PDCL compared with 

parental tumors (e.g. p53, BRCA, cell cycle, ATM). In addition, several metabolic pathways were 

also over represented in PDCL compared with parental tumors (e,g. Pyruvate metabolism). Many 

immune related pathways were underrepresented in PDCL compared with parental tumors (e.g. 

Fc_gamma mediated_phagocytosis and B_cell_receptor_signaling_pathways,). Thus, consistent 

with the pathway analysis noted above, several pathways involved in immunity were found 

enriched in parental tumors and several metabolic and cancer-related pathways were found enriched 

in PDCL.  
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RNA Seq 

 RNAseq analysis was performed for all parental tumor-PDCL pairs. Mean reads count was 

197×10
6
X±33. One sample was excluded from the analysis due to being an extreme outlier on 

principal component analysis (PCA) analysis. RNAseq analysis aligned reads for 56,638 Ensembl 

genes. 15,046 of the genes were significantly differentially expressed between tumors and PDCL. 

2005 of the 2643 (76%) genes identified by the expression arrays analysis were also identified here 

as differentially expressed. IPA analysis was also performed for the most significant differentially 

expressed genes (p<0.001, FDR; n=6606 genes) (Supplementary Figures 3-4). Comparable to the 

pathway analysis of expression array data: (i) several immune pathways were inhibited in PDCL vs. 

parental tumors, (ii) several pathways associated with cancer were activated in PDCL vs. parental 

tumors, and (iii) several cholesterol metabolic pathways were significantly differentially modulated 

in PDCL vs. parental tumors. Many pathways were similar between the two pathway analyses, 

specifically: (i) “dendritic cell maturation”, (ii) “complement maturation”, (iii) “role of BRCA1 in 

DNA damage response”, (iv) “ATM signaling”, and (v) several cholesterol metabolic pathways. 

Strikingly, upstream regulator analysis, conducted with RNA-seq data, revealed a list comparable 

with the one obtained with the expression profiling array data (Supplementary Table 7). 

 Fusion analysis was carried out for the RNAseq data. No known GBM or cancer related 

fusion
12,24

 was identified.     

 

Clonal Analysis 

 Clonal analysis was carried out by ABSOLUTE algorithm
21

 for the seven samples with 

available blood DNA whole exome sequencing data. A mutation that is estimated to be carried by > 

90% of cancer cells was defined as clonal whereas the others were defined as subclonal. There were 

significantly more clonal mutations in tumors (65% clonal and 35% subclonal) and more subclonal 

mutations in PDCL (56% clonal and 44% subclonal) for the complete mutation lists (p=3.7E-5, chi-

square test). Although not statistically significant, this trend was maintained for COSMIC and GBM 
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driver genes mutations subgroups. Clonal status was not significantly different between protein 

changing mutations (e.g. missense or nonsense mutations) and silent mutations.  

 The point mutation profiles of GBM driver genes (including intronic and silent mutations) 

are given in Table 2. 15 mutations were detected only in one tissue type (tumor or PDCL): (i) 6/15 

were clonal, (ii) 8/15 were subclonal, and (iii) 1/15 was not classified by the algorithm. For the 

mutations that were detected in both tumors and PDCL: (i) the predicted impact of the mutations is 

higher (p=0.04, chi-square test), (ii) the cancer cell fraction was > 90% for 11/12 mutations, and 

(iii) in the mutations for which clonal status could be formally tested by the algorithm, they were 

clonal in the tumor (5/5) but not necessarily in the PDCL. 
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Discussion 

The use of PDCL as preclinical models of GBM to investigate potential response to novel 

drugs is built on the assumption that major aspects of human tumor biology are recapitulated in the 

PDCL. Hence, it seems important to examine to which extent indeed GBM-PDCL libraries 

represent the molecular landscape of human tumors. 

  

 This question was also addressed measuring multiomic genomic profiles. In the original 

report of the Cancer Cell Line Encyclopedia (CCLE), the authors measured the genomic similarity 

of the reported CCL to published unpaired primary tumors of similar cancer types and concluded 

that with relatively few exceptions, the CCLE may provide representative molecular proxies for 

primary tumors in many cancer types
6
. By contrast, Domcke et. al. compared molecular landscape 

of 47 CCL of high grade serous ovarian carcinoma from the CCLE and 316 tumor profiles from 

TCGA. They reported pronounced differences between commonly used ovarian CCL and unpaired 

high-grade serous ovarian tumor samples. They identified several rarely used CCL that more 

closely resemble cognate tumor profiles
25

. Lee et. al. showed, based on expression profiles that 

GBM cell lines were clustered remotely from their parental tumors compared to tumor stems cells
26

. 

Nevertheless, these studies compared genomic landscapes of CCL and unpaired human tumors. A 

major limitation of this approach is the inability to directly measure and quantitate the molecular 

change between primary tumors and CCL due to the different biases of sample selection. 

A recent study compared the molecular landscape of GBM-PDCL and their paired parental 

tumors for CNV and expression landscape (see below)
27

. This study, however, did not quantify the 

focal CNV events agreement. Moreover, point mutations were not measured and transcriptome 

information was measured solely by expression array.  

 In the current study, paired GBM and PDCL samples molecular characteristics were 

measured for CNV, point mutations and transcriptome. There was general good agreement between 

tumors and PDCL for measures of gain/loss. CN-LOH agreement were low and could possibly 
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represent real differences between tumors and PDCL, or could be explained by algorithmic 

inaccuracies for CN-LOH. Importantly, GBM specific chromosome gains and losses were 

comparable between parental tumors and PDCL. For focal events: 10/15 characteristic GBM 

homozygous deletion and high level amplifications were maintained. Of note, there were two 

CDKN2A homozygous deletions that were found in PDCL whilst not being detected in the paired 

parental tumor. Overall, CNV profiles are well maintained in PDCLs, but caution is advised for 

focal events which might be lost or gained in the transition between tumor to PDCL. 

 The agreement between tumors and their paired PDCL for point mutations seems to depend 

on three major factors: (i) allelic fraction of the mutation - mutations that were maintained in tumors 

and their paired PDCL were of higher allelic fraction. A plausible explanation for this is that low 

allelic fraction mutations have a higher probability to be lost in the passage from tumor to PDCL 

and are also more difficult to detect due to sequencing and algorithmic reduced sensitivity for such 

mutations
9
-,  (ii) functional impact of a mutation - mutations that were maintained in tumors and 

their paired PDCL were more frequently of functional impact -, and (iii) relevance of genes in the 

context of GBM biology. Combining these three considerations, the median agreement between 

tumors and paired PDCL was raised above the general median agreement of 41%, and reached, 

67% and 79% for, COSMIC genes and GBM driver genes, respectively. In the same manner only 

minority of functional mutations were detected in tumors only for COSMIC and GBM genes and 

most have low allelic fraction. Of note, TP53 mutations of two PDCL were not detected in their 

parental tumors. They might have existed in very low allelic fraction (Figure 2D) in the tumors and 

positively selected in PDCL. These PDCL showed the lowest similarity with their parental tumors 

and this possibly reflect that TP53 mutations allows acquisition of additional mutations in PDCL. 

 The transcriptome analysis showed that GBM expression subtypes were maintained in 5/9 

of the paired PDCL. One putative reason for disagreement is that subtypes were defined for GBM 

tumors rather than in CCL. The former may include transcription patterns typical of 

microenvironment cells and of interaction between tumor cells and the microenvironment
28

. Indeed, 
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Verhaak et al.
16

 reported that the identification of corresponding CCL subtypes is not easily 

achievable. In addition, these differences can be attributed to intratumoral subtype 

heterogeneity
29,30

. Tumors are distinct from PDCL and usually cluster in two different groups. After 

exclusion of the differentially expressed genes, tumors clustered closely to their paired PDCL. 

Accordingly, it seems that there is a strong expression pattern specific for tumors vs. PDCL,  and in 

addition, PDCL maintain expression similarity of their parental tumor. The differences included the 

change of cell cycle regulators, under-expression of immune-related pathways and change in lipid 

metabolism pathways in PDCLs. Upstream regulator analysis for the differentially expressed genes 

mostly revealed fingerprints associated with cancer related genes. The cell cycle and DNA repair 

pathways changes seems to reflect enhanced proliferation of the PDCL. The under-expression of the 

immune pathways in PDCL seems to reflect absence of immune cells in PDCL microenvironment. 

Lipid metabolism changes possibly result from the radical change of metabolism of PDCL in 

culture cell conditions. It seems, though, that the changes of cancer related pathways in PDCL 

compared to tumors may have significant influence on experiments performed on PDCL. For 

example, response to cyclin dependent kinase (CDK) inhibitors in PDCL may not predict 

corresponding response in parental tumors since cell cycle pathways are overexpressed in PDCL. 

Further research is required in order to assess the importance of these changes. Analysis performed 

for RNA-seq data revealed comparable differences between PDCLs and tumors, and the 

confirmation of these results by an independent analysis method strengthens the above mentioned 

conclusions.  

 Clonal analysis of the point mutations shows that there are more clonal mutations in tumors 

and more subclonal mutations in PDCLs. Clonal mutations in GBM driver genes were better 

maintained in tumors and PDCLs, and this supports the suitability of PDCLs as a model for GBM.  

Our results are in agreement with the conclusion of Davis el al
27

 regarding the extent of 

recapitulation of major chromosomal CNV events and EGFR amplification. However, the general 

level of agreement of CNV between tumors and PDCL seems higher in our data set (median 
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agreement of 85% vs. correlation of 0.5). Moreover, our results show that there is good preservation 

of LOH but not of copy neutral LOH. In terms of expression, Davis et al identified 63 differentially 

expressed genes that involve metabolic pathways. By contrast, our study, revealed 2643 genes that 

are differentially expressed between tumors and PDCL, inhibition of immune pathways and change 

of several cell cycle and DNA repair pathways. In addition, changes in cancer related master 

regulators expression fingerprint, specific for the PDCL population were identified.   

 The results presented in the current report demonstrate relative good agreement between 

tumor and their paired PDCL and supports their use as preclinical GBM models. However, there are 

some discrepancies between tumor and PDCLs and, they might represent real biological 

differences. We hypothesized several reasons for the discrepancies: (i) tumor heterogeneity which is 

well established for many tumors
31

 and specifically for GBM
29

, (ii) different selective pressure 

during PDCL culturing in vitro compared to the tumor biological environment, and (iii) the 

microenvironment (i.e. absence of immune cells) of PDCLs culture conditions differ markedly from 

that of their paired parental tumors
21

.  

Although the molecular analysis was comprehensive, and included several OMICS 

modalities, the sample size is relatively small and hence a larger set of paired parental tumor-PDCL 

would be necessary to confirm our findings and to provide additional insights. 

 

To conclude, the current study supports the use of GBM-PDCL as a human GBM model. Indeed, 

the majority of functional tumor molecular alterations detected in the parental tumor are maintained 

in PDCL. Further analysis of molecular discrepancies between tumors and PDCL may provide 

insights in GBM biology.  
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Figure Legends 

 

Figure 1. Copy Number Variation landscape.  

(A). Tumor and PDCL heatmap. Tumors (T) and their paired PDCL (C) are adjacent to each other. 

Red denotes gain and blue denotes loss in relation to estimated ploidy. Darker color stands for 

higher gain or deeper deletion. The bar chart at the bottom gives the level of agreement for each 

tumor-PDCL pair. (B) Heatmap filtered for high-level amplification (CN≥ploidy+3) denoted in red, 

and deeper deletions (CN=0 or CN≤1 if ploidy is 4) colored blue. The bar chart at the bottom gives 

the level of agreement for each tumor-PDCL pair. (C) heatmap describing estimated copy neutral 

loss of heterozygosity (LOH). The bar chart at the bottom gives the level of agreement for each 

tumor-PDCL pair with purple for general LOH and light green for copy neutral LOH. (D). Genomic 

landscape of the group of tumors (up) and group of PDCL (bottom). 

 

Figure 2. Point mutations landscape. 

(A) Point mutations for GBM driver genes (up) and druggable genes (bottom, below the red line). 

Tumors (T) and their paired PDCL (C) are adjacent to each other. Different colors are given for the 

mutation types. For the left seven pairs, germ line information was used for somatic mutations 

inference. For the right three pairs germ line information was unavailable and mutations defined as 

“novel” are shown (see Methods). (B) frequency of mutations that appeared in both tumor and 

PDCL (yellow), tumor only (blue), PDCL only (red). (C) Mutations characteristics for the 

combined set of somatic mutations. In each histogram, the distribution of allelic fraction (x-axis) of 

mutations is given. The y-axis denotes mutation count. Each histogram bar is divided for the tissues 

in which the mutations were detected: (i) both tumor and PDCLs, (ii) PDCL only, and (iii) tumor 

only. The six histograms are ordered in columns and rows. The columns define gene set groups: (i) 

all genes; (ii) COSMIC genes; (iii) GBM driver genes. The rows define the predicted functional 

impact class (“impact”, “no impact”) . (D) TP53 staining for parental tumors 4724T and 3719T. 
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Figure 3. Transcriptome (array data) landscape. 

(A). Multidimensional Scaling (MDS) for all measured genes. Each sample is denoted by different 

color, tumors are marked as triangles and PDCL as circles. (B) MDS for all genes excluding 2643 

differentially expressed genes between the tumor and PDCL groups. (C) Ingenuity pathway 

analysis for the 2643 differentially expressed genes. Only biological pathways that are both 

significant and for which the activation/inhibition direction could be inferred are shown. Orange 

denotes pathway activation in PDCL compared to parental tumors and blue denoted pathway 

inhibition. 

  



 manuscript number N-O-D-16-00214R1 

 

25 

 

Tables 

Table 1. Patients characteristics. 

Table 2. Clonal profile for point mutations in GBM genes. All mutations in GBM driver genes 

(including intronic) are presented.  

 

 

 

 

 









Table 1. 

Patient PDCL Blood Age Sex 

2197T 4339 NA 59 F 

2211T 4371 NA 76 F 

3716T 5706 3716_S 67 M 

3718T 6190 NA 78 F 

3427T 6240 3427_S 72 F 

3719T 7015 3719_S 74 M 

3722T 7060 3722_S 59 M 

3523T 7097 3523_S 70 F 

3724T 7142 3724_S 65 M 

4724T 
N13-

1520 
4724_S 53 M 

 

 



Table 2 

Gene Sample ID Tissue Formal clone status Cell fraction 

Functional 

impact 

NLRP5 3724T tumor Subclonal 0.18 medium 

DRD5 3427T tumor Subclonal 0.22 none 

DRD5 7015 PDCL Clonal 0.83 none 

DRD5 7015 PDCL Subclonal 0.73 none 

DRD5 7015 PDCL Subclonal 0.27 none 

ABCC9 7142 PDCL Clonal 1 none 

DRD5 7015 PDCL Subclonal 0.73 ; 0.27 none 

LZTR1 7015 PDCL Clonal 1 none 

PIK3R1 N13-1520 PDCL Clonal 1 none 

RB1 7015 PDCL Subclonal 0.38 medium 

SPTA1 7097 PDCL Clonal 1 medium 

TCHH 7015 PDCL Subclonal 0.21 high 

TCHH 7015 PDCL Subclonal 0.24 low 

TP53 7015 PDCL Clonal 1 high 

TP53 N13-1520 PDCL - 1 high 

ATRX 3719T-7015 both Clonal → clonal 1 → 1 high 

EGFR 3427T-6240 both - 1 → 1 medium 

EGFR 3722T-7060 both Clonal → clonal 1 → 1 low 

GABRA6 4724T-N13-1520 both - 0.91 → 1 low 

KEL 3719T-7015 both Clonal → subclonal 1 → 0.64 high 

NF1 3719T-7014 both - 1 → 1 high 

NF1 4724T-N13-1520 both - 0.68 → 1 medium 

PIK3CA 3427T-6240 both Clonal → subclonal 1 → 0.82 none 

PIK3CA 3719T-7014 both - 1 → 1 medium 

PTEN 3523T-7097 both Clonal → clonal 1 →1 high 

PTEN 3724T-7142 both - 1 →1 high 

SPTA1 3427T-6240 both - 0.94 →0.84 medium 
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