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Abstract 

The reactivity of water vapor introduced in the flowing post-discharge of an RF atmospheric plasma torch is 
investigated through electrical characterization, optical emission spectroscopy and mass spectrometry 
measurements. Due to the technical features of the plasma torch, the post-discharge can be considered as divided 
into two regions: an inner region (inside the plasma torch device) where the water vapor is injected and an outer 
region which directly interacts with the ambient air. The main reactions induced by the injection of water vapor are 
identified as well as those indicative of the influence of the ambient air. Plausible pathways allowing the production 
of H, OH, O radicals and H2O2 are discussed as well as reactions potentially responsible for inhomogeneities and for 
a low DC current measured in the flowing post-discharge. 
Keywords: atmospheric post-discharge, H2O plasma reactivity, RF plasma torch 

 

 

Introduction 

 

At first inspection, traces of water vapor in a plasma source may be considered as problematic since they can induce undesired chemical 

reactions [1, 2] and often instabilities [3]. However, for specific applications, water vapor can be deliberately mixed with the plasmagen 

gas either to achieve a milder treatment or to generate radicals of interest. This approach has already been investigated in various 

domains such as surface treatments [4], biocompatibility [5] or plasma medicine [6]. 

 

In surface treatments, the oxidative functionalization is usually achieved with O2 [7–11]. This reactive gas can, however, be replaced by 

water vapor and mixed with a carrier gas to induce a milder treatment. For instance, the exposure of graphene to a pure oxygen plasma 

at 0.3 mbar leads to an over-etching of the top sheets even on short exposure times (few seconds) while the addition of water-vapor to 

the plasma allows a milder and more homogeneous treatment [12]. In any case, the presence of water vapor makes useless the 

utilization of a mask to filter the free radicals [12]. Another example deals with the oxidative functionalization of polypropylene: 

replacing O2 by water vapor ensures a more homogeneous distribution of the alcohol, carbonyl and carboxyl groups on the surface, but 

also a functionalization achieved on a larger depth [4]. 

 

In biocompatibility applications, the functionalization of hydroxyl groups on polyethylene and polystyrene surfaces has achieved minor 

success by using either a pure O2 plasma treatment or an Ar plasma treatment followed by an oxygen environment [13, 14]. Water 

plasma treatment could be considered as an alternative for the preparation of hydroxyl surfaces allowing the covalent immobilization 

of biologically active molecules and the support of cells colonization [5]. It could also be used for blood compatibility of PTFE prosthesis. 

For instance, König et al have followed a 3-step process [15] in which a water vapor microwave plasma is used as the first step to 

facilitate the subsequent post-grafting of acrylic acid on the PTFE surface (2nd step) and the immobilization of the fibrinolytic protein 

urokinase (3rd step). 
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In plasma medicine, the role of radicals, such as O, O3, NO and OH, as well as ultraviolet radiation, are still under study for therapeutic 

applications such as wound healing or dermatology and tumor treatments [6]. For instance, Zhang et al showed the role of O, OH and 

Ar* radicals on the destruction of cancerous hepatocellular carcimona cells [16]. In this respect, water vapor could be used as a process 

gas to generate large densities of O and OH radicals. 

 

All of these applications clearly indicate that there are two requirements: Firstly, there is need for the understanding of the chemical 

mechanisms induced by water vapor at atmospheric pressure and, secondly, for a more specific control of the production of radicals. In 

this respect, an experimental study is presented in this article where the introduction of water vapor within the post-discharge of an 

Ar plasma torch is discussed in terms of plasma stability, chemical kinetics and radicals of interest. The results of the present study 

complement two previous studies published using the same plasma source, namely an experimental investigation by Duluard et al [17] 

and simulations from Atanasova et al [18]. 

Experimental methods 

 

Figure 1 introduces a schematic diagram of the experimental setup, including the plasma source and a water-containing bubbler (at 

room temperature) dedicated to the injection of water vapor in the post-discharge. The plasma source is an atmospheric RF plasma 

torch from Surfx Technologies LLC (Atomflo™ 250D), consisting of two parallel circular electrodes perforated by 126 holes, each one 

with a critical diameter of 0.6 mm. A 126-holes circular metallic mesh is located parallel and downstream to the two electrodes to 

homogenize the flowing post-discharge. The gas flow is oriented perpendicularly to the two electrodes. As these holes are arranged to 

form a circular pattern of 20 mm in diameter, this torch is commonly called a ‘showerhead plasma torch’. For all of the results discussed 

in the present article, it operates at a frequency of 27.12 MHz and a power fixed at 80 W. As sketched in figure 1, three regions can be 

distinguished: (i) the plasma region located between the RF and the ground electrodes, (ii) the inner post-discharge located between 

the ground electrode and the grid and (iii) the outer post-discharge located beyond the grid. 

 

 

Figure 1. Schematic diagram of the experimental setup and location of the three discharge regions. 
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Two argon inputs were considered: the first one supplies the plasma torch for a flow rate of 30 L min−1; it is referenced here as the ‘main 

Ar flow rate’. A second input—assigned here as the ‘secondary Ar flow rate’, supplies the bubbler via a volumetric flowmeter from 

Aalborg for flow rates comprised between 0 L min−1 and 6 L min−1. An Ar/H2O vapor mixture can therefore be generated and reach 

the inner post-discharge region via the plasma torch nozzle. Secondary (2nd) Ar flow rates of 0, 2, 4 and 6 L min−1 correspond to H2O 

flow rates of 0, 0.7, 1.3 and 2 mL s−1. 

 

Optical emission spectroscopy (OES) was performed with a Spectra Pro-2500i spectrometer from ACTON research Corporation (0.500 

m focal length, triple grating imaging). The light emitted by the post-discharge is collected by an optical fiber set either in a perpendicular 

configuration or a parallel configuration, as sketched in figure 1. The perpendicular configuration supplies only information on the outer 

post-discharge, whereas the parallel configuration gives information on the whole post-discharge (inner and outer). The light is then 

transmitted to the entrance slit (50 μm) of the monochromator where it is collimated, diffracted, focused on the exit slit and finally 

captured by a CCD camera from Princeton Instruments. Each optical emission spectrum is acquired with a 1800 grooves mm−1 grating 

(blazed at 500 nm) and recorded on 30 accumulations with an exposure time of 25 ms. Experimentally, we have observed that an 

increase in the H2O flow rate has always induced a decrease in all the emission lines/bands of the post-discharge. As a consequence, 

from one water flow rate to another, the de-excitation of a specific species is always proportional to the overall decay of the post-

discharge emission. To solve this problem, for every H2O flow rate, the emissions of all the species were divided by the emission of the 

whole post-discharge (i.e. a continuum from 250 to 850 nm). 

 

Mass spectra of the post-discharge were acquired with a quadripolar mass spectrometer (Balzers QMS 200) coupled with a turbo 

molecular pump (Pfeiffer TSU 062H) at a base pressure of approximately 1·10−8 mbar. The mass spectrometer measures the gaseous 

species in the post-discharge through a capillary tube, set either perpendicular or parallel to the gas flow. The capillary tube is 1 m in 

length, with an inner diameter of 0.1 mm. It is heated by a resistance to maintain the gas temperature at 150 °C, thereby avoiding 

condensation before entering the ionization chamber. The ionization energy is set to 70 eV. 

 

DC currents were measured in the post-discharge by placing a copper plate downstream. The distance separating the plasma torch from 

the copper plate is called the ‘gap’. The current is obtained by measuring the voltage difference across a resistor (820 k) connecting the 

copper plate to an oscilloscope. A digital phosphor oscilloscope from Tektronix (DPO3032) has been used, with a band gap of 300 MHz 

and a sample rate as high as 2.5 GS s−1 for an accurate representation of the signals. 

 

Results 
 

Figure 2 introduces pictures of the post-discharge operating at an RF power of 80 W, supplied with a main argon flow rate fixed at 30 L 

min−1 and a secondary (2nd) Ar flow rate set to either 2 L min−1 or 6 L min−1 (with and without water in the bubbler). The amount of H2O 

injected in the post-discharge is controlled by the secondary Ar flow rate. If no water is contained in the bubbler, the post-discharge 

emission is uniform and stable in each hole, whatever the secondary Ar flow rate. However, once water is introduced into the bubbler 

and carried under vapor via the secondary argon flow rate, the whole emission of the post-discharge vanishes and becomes 

inhomogeneous through the various holes, randomly changing as a function of time. Moreover, these inhomogeneities become stronger 
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as the amount of water vapor carried by the secondary argon flow rate is increased. Therefore, the inhomogeneities of the post-

discharge clearly result from the injected water vapor and not from the secondary Ar flow rate. 

 

 

Figure 2. Influence of the water vapor and secondary Ar flow rates on the apparent post-discharge stability, for P=80 W, Φ(Ar) = 30 L.min−1. 

 

The influence of the H2O flow rate on the post-discharge’s electrical properties was carried out as described in the experimental 

methods. The post-discharge current as a function of the H2O flow rate is represented in figure 3. Although some tentative interpretation 

of this current is given further in this paper (see ‘stability’ section in the discussion part), and although such current has already been 

observed and discussed in other papers (but for a torch fed with Helium) [19], these current measurements should only be taken here 

as qualitative data, hence showing a clear water-depending trend. Its variation shows a strong decrease between 0 and 0.7 mL s−1 

followed by a slower decay. Without water vapor, the post-discharge is stable, and a current of 32 μA is collected on the copper plate. 

For H2O = 2.7 mL s−1, a post-discharge current of only 4 μA is measured and corresponds to a lower-emissive and more inhomogeneous 

post-discharge, as shown in inset. This decrease in the post-discharge current is directly connected to the number of holes ignited in 

the post-discharge: they are 126 (maximum) without water vapour and less than 50 for H2O = 2.7 mL s−1. 

 

 

Table 1. Species detected by OES. 
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Figure 3. Influence of the H2O flow rate on the post-

discharge current. Gap = 10 mm. Ar flow rate = 30 L min−1, 

RF power = 80 W. 

The influence of the H2O flow rate was investigated by measuring the optical emission of several species reported in table 1 namely OH, 

O, N2 and Ar for the plasma torch supplied with a power of 80 W and an Ar flow rate of 30 L min−1. Their variations were plotted as a 

function of the water flow rate in the perpendicular (figures 4(a) and (c)) and parallel configurations (figures 4(b) and (d)), considering 

either the influence of the secondary argon flow rate with water vapor (figures 4(a) and (b)) or only the influence of the water vapor 

(figures 4(c) and (d)) based on the relation εdif{H2O} = ε{2nd Ar+H2O} − ε{2nd Ar} where ε stands for the emission and εdif the differential 

emission. Several observations are noteworthy: 

(i) The comparison between figures 4(a) and (b) shows that stronger emissions are obtained in the perpendicular configuration with 

variations in emission of almost an order of magnitude between 0 and 2.7 mL s−1, except for Ar. In this configuration, the production of 

the OH species seems counterbalanced by the consumption of N2 and O species. Similar trends appear also in the parallel configuration, 

albeit less significant. 

(ii) Figures 4(c) and (d) indicate whether the presence of water vapor in the post-discharge enhances or not the differential emission of 

the species. If a species differential emission is positive (εdif > 0), then its density can be considered as more important than in a pure Ar 

post-discharge (such as OH in the perpendicular configuration). On the contrary, if a species differential emission is negative (εdif < 0), 

then its density is higher in the pure Ar post-discharge, such as O, N2 and Ar species in the perpendicular configuration. Figures 4(c) and 

(d) also indicate whether the injection of water vapor enhances the reactions of production (if |εdif| increases versus Φ(H2O)) or the 

reactions of consumption (if |εdif| decreases with Φ(H2O)). As an example in the parallel configuration, a rise in Φ(H2O) increases the 

differential emission of the Ar line, thus indicating an increase in the density of these excited species. 

(iii) The comparison between the {2nd Ar + H2O} and {H2O} cases (i.e. comparison between figures 4(a) and (c) or between (b) and (d)) 

indicates curves with consistent trends. As an example in the parallel configuration for Φ(H2O) = 0–2.7 mL s−1, the emission of O 

decreases from 800 to 250 a.u. in figure 4(a) while from 0 to −330 a.u. in figure 4(c). The reactivity of the emissive species is therefore 

much stronger in presence of water vapor. 

(iv) Fourthly, whatever the graph shown in figure 4, the most significant variations in emission appear when the post-discharge passes 

from Φ(H2O) = 0 to the tiniest injected flow rate. In figure 4(a), the emission of OH increases from 300 to 1350 a.u. for Φ(H2O) comprised 

between 0 and 0.7 mL s−1 while in figure 4(c), it increases from 0 to 980 a.u. for Φ(H2O) = 0–2.7 mL s−1. For higher water flow rates, 

further variations in intensity are still visible although less significant, as if a plateau was reached (e.g. from 990 to 940 a.u. in the case 

of OH in figure 4(c)). 
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(v) A Hα line (656.3 nm) is solely observed in the parallel configuration. Its emission is particularly weak in presence of water vapor, 

even if it tends to slightly rise by increasing its flow rate. 

 

 

Figure 4. OES measurements showing the effect of the H2O flow rate on the emission and differential emission of OH, O, N2, Ar and H species (Ar flow 

rate = 30 L min−1, power = 80 W). The differential emission is given by εdif{H2O} = ε{2nd Ar + H2O} − ε{2nd Ar} 
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This OES study was completed by taking measurements of the mass spectrometry. The following species were detected where the 

values in parentheses indicate their corresponding m/z ratios: H (1), H2 (2), N (14), O (16), OH (17), H2O (18), N2 (28), O2 (32), H2O2 (34) 

and Ar (40). The intensity of the species previously detected by OES (OH, O, N2, Ar and H) are plotted in figure 5 and the intensity of the 

others in figure 6 versus the H2O flow rate. As in the OES results, each figure comprises four graphs where the perpendicular 

configuration (a&c), the parallel configuration (b&d), the influence of {2nd Ar + H2O} (a&b) and the influence of {H2O} (c&d) are 

considered. The aforementioned observations still apply with respect to figure 5: the MS intensities are stronger in the perpendicular 

configuration, and similar MS intensities trends are obtained between the {2nd  Ar + H2O} and {H2O} cases but not necessarily between 

the ⊥ and // configurations. The most significant variations in emission were detected from 0 to the tiniest measured Φ(H2O) flow rate. 

As in the OES results, the presence of water vapor increases the intensities of OH whilst reducing the intensities of O and N2, whatever 

the configuration. Furthermore, in the MS results as in the previous OES results, an increase in Φ(H2O) induces a lowering of the Ar 

intensity in the ⊥ configuration while a rising in the // configuration. In figure 6, where species resulting from non-radiative processes 

are reported, an increase in Φ(H2O) indicates a strong increase of both H2O and O2, a slight increase of both H2O2 and H2 and, finally, a 

decrease in N, whatever the configuration. 
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Figure 5. Mass spectrometry measurements showing the effect of the H2O flow rate on the intensity and differential intensity of OH, O, N2, Ar and H 

species (Ar flow rate = 30 L min−1, power = 80 W). 
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Discussion 
 

The discussion is focused on the possible reactions occurring in the interelectrode and post-discharge regions for each species detected 

by OES and/or mass spectrometry. The stability of the post-discharge depending on the water vapor injected is also discussed. 

 

Argon species in the interelectrode region 
In the interelectrode region, the production of non-ionized excited Ar species is expected through elementary processes such as elastic 

scattering [R-1], excitation [R-2] and recombination [R-3] (all the R-X reactions are described in table 2). The production of Ar+ ions is 

achieved through the direct ionization reaction [R-4], as well as the stepwise ionization, described by reaction [R-5] and the Penning 

ionization resulting from the collision of two excited Ar atoms [R-6]. Besides this, the production of Ar+2 ions is also expected in the 

interelectrode region through the reactions [R-7], as supported by the simulations of Atanasova et al [18]. The production of Ar 

metastable species has also been evidenced through either electron collision [R-8] and Ar+ collision [R-9] with Ar [23]. 

 

 

Table 2. Plausible reactions occurring in the Ar/H2O post-discharge (units: cm3.s−1 for two-body collisions and cm6.s−1 for three-body collisions). 
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Argon species in the post-discharge 
The plasma torch is supplied in argon via two inputs: the first one allows striking and sustaining the discharge in the interelectrode 

region, while the second plays as a carrier gas for the water vapor in the inner post-discharge region. As shown in figures 4(a) and (b), a 

rise in the water vapor flow rate does not lead to a significant variation in the Ar emission, i.e. the excitation of Ar. However, the sole 

contribution of the water vapor, as highlighted in figures 4(c) and (d), shows a discrepancy in the emission of Ar: a decrease in the 

perpendicular configuration (outer region) with an increase in the parallel configuration (inner region). Similar behavior has been 

obtained with mass spectrometry, as shown in figures 5(c) and (d). Two possibilities may explain these patterns: 

(i) the consumption of the Ar metastable species by the water vapor, as suggested by the reaction [R-11]. An increase in the H2O reactant 

may consume more efficiently the Ar metastable species, thus resulting in one hand in the dissociation of H2O into OH and H radicals as 

evidenced in the figure 4 and, on the other hand, in the excitation of Ar. As Φ(H2O) increases, the emission of excited Ar species decays 

in the outer post-discharge due to the upwards consumption of the ArM which can no longer transfer part of their energy via [R-10]. As 

a result, the more water vapor is injected, the more the Ar species can be excited and confined in the inner post-discharge region. 

(ii) injecting water vapor in the inner post-discharge may change the fluid dynamics of the main argon flow since it is injected 

perpendicularly. The resulting spatial distribution of the flow through the 126 holes grid would become more inhomogeneous by 

increasing the water vapor, i.e. becoming stronger through the holes located in the grid’s central region and lower through the holes in 

periphery. 

Simulations have been conducted by Atanasova et al on the current plasma torch for an argon flow rate set at 30 L min−1 [18]. They 

have revealed the existence of Ar2+ ions in the post-discharge, especially through dissociative recombination (see [R-7]) while no Ar+ 

ion has been calculated. For instance, 2 mm away from the ground electrode, the density of Ar+ is negligible while it is 5 · 1016 m−3 for 

Ar2
+. As expected, Ar+ ions has not been detected by OES. The Ar2

+ ions have not been observed either due to the limited range of our 

optical spectrometer. Therefore, even if these ions could not be evidenced experimentally for material reasons, their existence in the 

first millimeter of the post-discharge is at least sustained by the simulations of Atanasova. 

Two last observations on the OES and MS results are noteworthy:  

(i) On the whole Φ(H2O) range, the intensities of Ar are higher in figure 4(a) (approximately 8000 a.u.) than in figure 4(b) (approximately 

1000 a.u.). The reason for this is that even if the optical fiber presents the same solid angle of collection independently of the 

configuration, the integration of the light depends on the configuration. As illustrated in figure 7, light is collected over 40 holes in the 

perpendicular configuration whereas approximately 8 holes in the parallel configuration. This explains also why the uncertainties on the 

data points are stronger in figure 4(b) than in figure 4(a). 

(ii) The Ar mass spectra from figure 6 present similar trends of those obtained by OES. The intensities measured are however higher in 

the parallel configuration (see figure 6(b)) since the issue is no more dealing with a solid angle of collection but with the section of the 

capillary tube which collects more species when frontally exposed to the post-discharge flow. 

 

 

 

 

 

 

 

Figure 7. Regions analyzed in (a) the perpendicular configuration and 

(b) the parallel configuration. 
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Figure 6. Mass spectrometry measurements showing the effect of the H2O flow rate on the intensity and differential intensity of H2O, O2, H2O2, H2 
and N (Ar flow rate of 30 L min−1 and RF power of 80 W). 
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Electrons 
The mean free path of an electron in the ambient air with an energy comprised between 20 and 100 eV is approximately 0.5 μm [24]. 

As in atmospheric post-discharges the electron temperature is usually lower than 2 eV [25], the corresponding mean free path is even 

much smaller than 0.5 μm. Owing to their very short mean free paths at atmospheric pressure, and to the thickness of the ground 

electrode (at least 1 mm), the presence of free electrons in the inner post-discharge region seems a priori highly hypothetical. 

However, the simulations of Atanasova et al conducted on this plasma torch indicate that, due to the effect of the flowing carrier gas, 

an electron density as low as 5 · 1010 cm−3 can be obtained 1 mm away from the ground electrode before it drastically drops to zero 

before reaching the grid [18]. Therefore, a very low electron density may be expected in the inner region of the post-discharge even if 

its role seems negligible for the excitation of Ar or the dissociation of H2O owing to the too low energy of the electrons. 

 

H2O molecules 
Water vapor cannot be detected in the interelectrode region because of the configuration of the plasma torch. In the flowing post-

discharge, two sources of water can be distinguished: the water vapor injected via the bubbler (source controlled) and the water vapor 

from the ambient air (source uncontrolled). The optical emission of H2O molecules cannot be detected since occurring at 6260 nm [33] 

and 11876 nm [34]. However, mass spectrometry measurements revealed an increase in the intensity of H2O with Φ(H2O). As this 

increase is higher than when the plasma torch is off, it thus indicates a partial dissociation of the water vapor through at least one of 

the following reactions leading to the production of OH radicals, i.e. [R-11], [R-12] and [R-13]. 

 

Nitrogen molecules 
 

Both OES and MS measurements have evidenced the presence of molecular nitrogen in the post-discharge, due to the ambient air. In 

the perpendicular configuration, a gradual drop in the N2 optical emission and MS peak intensity was observed as a function of the 

water vapor flow rate (see figures 4(c) and 5(c)). Molecular nitrogen can be deexcited by the dissociation products of H2O, i.e. OH and 

O, as previously stated through reactions [R-14] and [R-15]. Besides, MS measurements have evidenced a partial consumption of water 

in the discharge, meaning that N*2 might also be quenched by H2O molecules ([R-16]). Reactions leading to the dissociation of N2 or to 

the formation of N+ ions are irrelevant since neither N nor N+ emissions could be observed in the optical range. Furthermore, no optical 

emission of N2
+ (15.58 eV) could be observed since Penning ionization of N2 cannot be induced by the too-low energetic ArM species 

(11.55 eV) in the post-discharge [35–37]. 

In the parallel configuration, the drop of the N2 emission (figure 5(c)) or N2 MS intensity (figure 5(d)) only occurs when a tiny flow of 

water is injected (0.33 mL s−1). In our setup, a further increase in the water vapor flow rate remains too low 

to detect, by OES or MS, significant variations of N2. 

 

OH radicals 
For Φ(H2O) = 0 ml s−1, the production of these OH radicals can result from the interaction of the post-discharge with the ambient 

atmosphere, where water vapor can be dissociated as shown by reaction [R-12], involving an excited oxygen radical as collisional 

partner. The production of OH radicals through electron impact processes in the post-discharge is highly hypothetical due to the too 

low energy and density of the electrons [38–40]. Moreover, the production of OH radicals in the interelectrode region is not expected 

since the plasma torch is supplied in argon and eventually in oxygen: no H source is present. 
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For Φ(H2O) > 0 mL s−1, the production of OH can be understood combining the trends of OH and O emissions in figure 4(c) (perpendicular 

configuration). From 0 to 0.7 mL s−1, the consumption of atomic O is counterbalanced by the production of OH radicals, whereas beyond 

0.7 mL s−1 an equilibrium seems to be reached for the consumption of O radicals; hence, there is a limitation in the emission of the OH 

radicals (around 1000 a.u.). As a result, the previous reaction [R-12] still occurs. Also, MS results in figure 5(c) indicate that at least one 

non-radiative process may also be responsible for their production since the intensity of OH increases as a function of the water vapor 

flow rate (while the emission of OH remains constant in figure 4(c)). As an example of this, the reaction [R-13] involving ground state 

oxygen atoms could be responsible for the production of non-emitting OH species. 

 

H radicals 
The comparison between figures 4(c) and (d) shows that the production of H radicals through radiative processes has only been 

evidenced in parallel configuration; the mass spectrometry measurements indicate the production of H radicals both in ⊥ and // 

configurations (see figures 6(c) and (d)).  

In the post-discharge, the injection of water vapor does not seem to favor the production of H radicals since no significant variation has 

been observed in the Hα emission in figure 4(d) and in its MS intensity in figure 5(d). However, variations can be observed in figures 4(b) 

and 5(b) where the influence of the secondary argon flow is taken into account, meaning that new pathways such as [R-11] and [R-17] 

may barely happen in the post-discharge. It is also worth mentioning that OES has not revealed any formation of molecular hydrogen 

since no Fulcher band could be detected between 590 nm and 640 nm irrespective of the setup configuration [41, 42]. The molecular 

hydrogen detected by MS (see figure 5) may result from the recombination of H atoms in the ionization chamber. 

 

O radicals and O2 molecules 
The production of O2

+ ions has already been observed in the case of flowing post-discharges supplied in helium as a carrier gas [19]. 

These ions were the result of Penning ionization induced by He metastable species. Here, the Penning ionization of O2 molecules by Ar 

metastable species can barely be suggested since no production of O2
+ ions could be evidenced by OES. The reason for this is that the 

energetic level of ArM species is lower than the energy required to ionize O2
+ ions. For the same reason, no O2 metastable species could 

be evidenced since no band of the singlet sigma metastable oxygen O2(b1g
+) has been detected between 758 and 770 nm [19]. 

However, the presence of molecular oxygen has been highlighted by mass spectrometry as increasing with Φ(H2O) irrespective of the 

configuration (see figure 6). Even without water injected, the figures 6(a) and (b) clearly indicate a peak intensity of O2 specific to 

molecular oxygen from the ambient atmosphere. An increase in Φ(H2O) is responsible for the production of O2 through non-radiative 

processes such as [R-17], [R-18] and [R-19]. The ozone species required by the two latter reactions have already been measured in the 

outer post-discharge at concentrations comprised between 1014 and 1015 cm−3 by investigating the absorption of the mercury emission 

line [17]. 

One of the main pathways explaining the efficient production of atomic oxygen in the post-discharge is the direct dissociation of 

molecular oxygen contained in the ambient atmosphere (see [R-20]). However, another reaction—even if less obvious—should also be 

taken into account. Indeed, we have already stated that atomic oxygen could control the production of OH radicals essentially through 

reactions [R-12] and [R-13]. We have also noticed in figure 4(c) that any further increase in water vapor flow rate induced limitations of 

OH and O emissions. Those two plateaus may evidence an equilibrium with respect to the production/consumption of O and OH species, 

resulting from a reaction opposite to [R-12] and [R-13], namely [R-21]. In this reaction, two OH radicals could lead to the production of 

water and O radicals. 
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H2O2 
The formation of hydrogen peroxide was detected by mass spectrometry in the ⊥ and // configurations. Without injecting water vapor, 

a very tiny amount of H2O2 was detected and it may have resulted from [R-15] where two OH radicals in presence of molecular nitrogen 

leads to the production of H2O2. By injecting water vapor, two other reactions may enhance the mass spectrum intensity of H2O2 as 

shown in figures 6(a) and (b), namely reactions [R-18] and [R-22], with the first implying ozone molecules and the second one oxygen 

radicals. 

 

Stability 
As shown in figure 1, the post-discharge stability is weakened as the water vapor flow rate is increased. The main reaction that could 

explain this trend is [R-11] where Ar metastable species are consumed by water. This consumption of Ar metastables can also be 

indirectly evidenced through the decrease in the post-discharge current versus the water vapor flow rate (see figure 3). Indeed, Bogaerts 

et al have shown that for a DC argon glow discharge, Ar2
+ ions are predominantly formed by associative ionization, both through highly 

excited Ar** atoms (Hornback-Molar process) and by metastable-metastable collisions [43]. As [R-11] consumes the Ar metastable 

atoms, the Ar2
+ ions can no longer be formed through this reaction, and so there is a partial decrease of the current intensity with 

Φ(H2O). 

 

Conclusion 
 

The reactivity of water vapor introduced in the flowing post-discharge an atmospheric plasma torch was investigated firstly by 

correlating electrical characterization, OES and MS results and previous studies achieved with the same plasma source (one dealing with 

simulations and the other with experiments). Inhomogeneities were explained as resulting from the consumption of the Ar metastable 

species by H2O molecules. The gradual consumption in Ar2
+ ions was advanced as an indirect consequence of this consumption in Ar 

metastables. Moreover, we have also shown the absence of any Penning ionization of O2 and N2 observed in a flowing helium post-

discharge. The production and consumption reactions of O, OH and H radicals have been shown through various reactions, in particular 

the interdependency between O and OH. Finally, the interaction of the post-discharge with the ambient air has also been evidenced 

since molecular nitrogen was detected by OES. 
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