N. Finnerup, I. Johannesen, S. Sindrup, F. Bach, and T. Jensen, Pain and dysesthesia in patients with spinal cord injury: A postal survey, Spinal Cord, vol.39, issue.5, pp.256-262, 2001.
DOI : 10.1038/sj.sc.3101161

T. Bryce, F. Biering-sørensen, N. Finnerup, D. Cardenas, and R. Defrin, International Spinal Cord Injury Pain Classification: part I. Background and description, Spinal Cord, vol.26, issue.6, pp.413-417, 2009.
DOI : 10.1038/sc.2008.64

N. Attal, G. Cruccu, R. Baron, M. Haanpaa, and P. Hansson, EFNS guidelines on pharmacological treatment of neuropathic pain, European Journal of Neurology, vol.32, issue.2, p.2010, 2010.
DOI : 10.1053/eujp.2001.0316

A. Nakae, K. Nakai, K. Yano, K. Hosokawa, and M. Shibata, The Animal Model of Spinal Cord Injury as an Experimental Pain Model, Journal of Biomedicine and Biotechnology, vol.71, issue.8, p.939023, 2011.
DOI : 10.1016/j.neuroscience.2008.12.022

C. Baastrup, C. Maersk-moller, J. Nyengaard, T. Jensen, and N. Finnerup, Spinal-, brainstem- and cerebrally mediated responses at- and below-level of a spinal cord contusion in rats: Evaluation of pain-like behavior, Pain, vol.151, issue.3, pp.670-679, 2010.
DOI : 10.1016/j.pain.2010.08.024

C. Baastrup, T. Jensen, and N. Finnerup, Pregabalin attenuates place escape/avoidance behavior in a rat model of spinal cord injury, Brain Research, vol.1370, pp.129-135, 2011.
DOI : 10.1016/j.brainres.2010.11.008

R. Yezierski, Pain following spinal cord injury: pathophysiology and central mechanisms, Prog Brain Res, vol.129, pp.429-449, 2000.
DOI : 10.1016/S0079-6123(00)29033-X

D. Basso, M. Beattie, and J. Bresnahan, Graded Histological and Locomotor Outcomes after Spinal Cord Contusion Using the NYU Weight-Drop Device versus Transection, Experimental Neurology, vol.139, issue.2, pp.244-256, 1996.
DOI : 10.1006/exnr.1996.0098

S. Onifer, A. Rabchevsky, and S. Scheff, Rat Models of Traumatic Spinal Cord Injury to Assess Motor Recovery, ILAR Journal, vol.48, issue.4, pp.385-395, 2007.
DOI : 10.1093/ilar.48.4.385

E. Crown, Z. Ye, K. Johnson, G. Xu, and D. Mcadoo, Increases in the activated forms of ERK 1/2, p38 MAPK, and CREB are correlated with the expression of at-level mechanical allodynia following spinal cord injury, Experimental Neurology, vol.199, issue.2, pp.397-407, 2006.
DOI : 10.1016/j.expneurol.2006.01.003

M. Antri, J. Barthe, C. Mouffle, and D. Orsal, Long-lasting recovery of locomotor function in chronic spinal rat following chronic combined pharmacological stimulation of serotonergic receptors with 8-OHDPAT and quipazine, Neuroscience Letters, vol.384, issue.1-2, pp.162-167, 2005.
DOI : 10.1016/j.neulet.2005.04.062

URL : https://hal.archives-ouvertes.fr/hal-00110200

P. Boulenguez, S. Liabeuf, R. Bos, H. Bras, and C. Jean-xavier, Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury, Nature Medicine, vol.26, issue.3, pp.302-307, 2010.
DOI : 10.1038/nm.2107

S. Rossignol and A. Frigon, Recovery of Locomotion After Spinal Cord Injury: Some Facts and Mechanisms, Annual Review of Neuroscience, vol.34, issue.1, pp.413-440, 2011.
DOI : 10.1146/annurev-neuro-061010-113746

A. Graziano, G. Foffani, E. Knudsen, J. Shumsky, and K. Moxon, Passive Exercise of the Hind Limbs after Complete Thoracic Transection of the Spinal Cord Promotes Cortical Reorganization, PLoS ONE, vol.171, issue.1, p.54350, 2013.
DOI : 10.1371/journal.pone.0054350.t001

D. Humanes-valera, J. Aguilar, and G. Foffani, Reorganization of the Intact Somatosensory Cortex Immediately after Spinal Cord Injury, PLoS ONE, vol.19, issue.7, p.69655, 2013.
DOI : 10.1371/journal.pone.0069655.g006

E. Santos-nogueira, R. Castro, E. Mancuso, R. Navarro, and X. , Randall-Selitto Test: A New Approach for the Detection of Neuropathic Pain after Spinal Cord Injury, Journal of Neurotrauma, vol.29, issue.5, pp.898-904, 2012.
DOI : 10.1089/neu.2010.1700

C. Hubscher, E. Kaddumi, and R. Johnson, Segmental Neuropathic Pain Does Not Develop in Male Rats with Complete Spinal Transections, Journal of Neurotrauma, vol.25, issue.10, pp.1241-1245, 2008.
DOI : 10.1089/neu.2008.0515

V. Densmore, A. Kalous, J. Keast, and P. Osborne, Above-level mechanical hyperalgesia in rats develops after incomplete spinal cord injury but not after cord transection, and is reversed by amitriptyline, morphine and gabapentin, Pain, vol.151, issue.1, pp.184-193, 2010.
DOI : 10.1016/j.pain.2010.07.007

M. Zimmermann, Ethical guidelines for investigations of experimental pain in conscious animals, Pain, vol.16, issue.2, pp.109-110, 1983.
DOI : 10.1016/0304-3959(83)90201-4

S. Chaplan, F. Bach, J. Pogrel, J. Chung, and T. Yaksh, Quantitative assessment of tactile allodynia in the rat paw, Journal of Neuroscience Methods, vol.53, issue.1, pp.55-63, 1994.
DOI : 10.1016/0165-0270(94)90144-9

A. Latrémolière, A. Mauborgne, J. Masson, S. Bourgoin, and V. Kayser, Differential Implication of Proinflammatory Cytokine Interleukin-6 in the Development of Cephalic versus Extracephalic Neuropathic Pain in Rats, Journal of Neuroscience, vol.28, issue.34, pp.8489-8501, 2008.
DOI : 10.1523/JNEUROSCI.2552-08.2008

K. Hole and A. Tjølsen, The tail-flick and formalin tests in rodents: changes in skin temperature as a confounding factor, Pain, vol.53, issue.3, pp.247-254, 1993.
DOI : 10.1016/0304-3959(93)90220-J

V. Kayser, I. Elfassi, B. Aubel, M. Melfort, and D. Julius, Mechanical, thermal and formalin-induced nociception is differentially altered in 5, Pain, vol.5, issue.130, pp.235-248, 2007.

N. Attal, F. Jazat, V. Kayser, and G. Guilbaud, Further evidence for ???pain-related??? behaviours in a model of unilateral peripheral mononeuropathy, Pain, vol.41, issue.2, pp.235-251, 1990.
DOI : 10.1016/0304-3959(90)90022-6

C. Mestre, T. Pelissier, J. Fialip, G. Wilcox, and A. Eschalier, A method to perform direct transcutaneous intrathecal injection in rats, Journal of Pharmacological and Toxicological Methods, vol.32, issue.4, pp.197-200, 1994.
DOI : 10.1016/1056-8719(94)90087-6

T. Schmittgen and K. Livak, Analyzing real-time PCR data by the comparative CT method, Nature Protocols, vol.2, issue.6, pp.1101-1108, 2008.
DOI : 10.1038/nprot.2008.73

P. Fenollosa, J. Pallares, J. Cervera, F. Pelegrin, and V. Inigo, Chronic pain in the spinal cord injured: statistical approach and pharmacological treatment, Paraplegia, vol.65, issue.11, pp.722-729, 1993.
DOI : 10.1093/bja/59.6.791

C. Norrbrink and T. Lundeberg, Tramadol in Neuropathic Pain After Spinal Cord Injury, The Clinical Journal of Pain, vol.25, issue.3, pp.177-184, 2009.
DOI : 10.1097/AJP.0b013e31818a744d

T. Tzschentke, C. T. Kogel, B. Schiene, K. Hennies, and H. , ( )-(1R,2R)-3-(3-Dimethylamino-1-ethyl-2-methyl-propyl)-phenol Hydrochloride (Tapentadol HCl): a Novel ??-Opioid Receptor Agonist/Norepinephrine Reuptake Inhibitor with Broad-Spectrum Analgesic Properties, Journal of Pharmacology and Experimental Therapeutics, vol.323, issue.1, pp.265-276, 2007.
DOI : 10.1124/jpet.107.126052

A. Bennett, A. Everhart, and C. Hulsebosch, Intrathecal administration of an NMDA or a non-NMDA receptor antagonist reduces mechanical but not thermal allodynia in a rodent model of chronic central pain after spinal cord injury, Brain Research, vol.859, issue.1, pp.72-82, 2000.
DOI : 10.1016/S0006-8993(99)02483-X

Y. Gwak, H. Tan, T. Nam, K. Paik, and C. Hulsebosch, Activation of Spinal GABA Receptors Attenuates Chronic Central Neuropathic Pain after Spinal Cord Injury, Journal of Neurotrauma, vol.23, issue.7, pp.1111-1124, 2006.
DOI : 10.1089/neu.2006.23.1111

T. Yasuda, T. Iwamoto, M. Ohara, S. Sato, and H. Kohri, The Novel Analgesic Compound OT-7100(5-n-Butyl-7-(3,4,5-trimethoxybenzoylamino)pyrazolo(1,5-.ALPHA.)pyrimidine Attenuates Mechanical Nociceptive Responses in Animal Models of Acute and Peripheral Neuropathic Hyperalgesia., The Japanese Journal of Pharmacology, vol.79, issue.1, pp.65-73, 1999.
DOI : 10.1254/jjp.79.65

J. Wallin, J. Cui, V. Yakhnitsa, G. Schechtmann, and B. Meyerson, Gabapentin and pregabalin suppress tactile allodynia and potentiate spinal cord stimulation in a model of neuropathy, European Journal of Pain, vol.79, issue.4, pp.261-272, 2002.
DOI : 10.1053/eujp.2002.0329

L. Constandil, M. Goich, A. Hernàndez, L. Bourgeais, and M. Cazorla, Cyclotraxin-B, a New TrkB Antagonist, and Glial Blockade by Propentofylline, Equally Prevent and Reverse Cold Allodynia Induced by BDNF or Partial Infraorbital Nerve Constriction in Mice, The Journal of Pain, vol.13, issue.6, pp.579-589, 2012.
DOI : 10.1016/j.jpain.2012.03.008

V. Kayser, B. Aubel, M. Hamon, and S. Bourgoin, The antimigraine 5-HT 1B/1D receptor agonists, sumatriptan, zolmitriptan and dihydroergotamine, attenuate pain-related behavior in a rat model of trigeminal neuropathic pain, 2002.

V. Kayser, S. Bourgoin, F. Viguier, B. Michot, and M. Hamon, Toward deciphering the respective roles of multiple 5-HT receptors in the complex serotonin-mediated control of pain, Pharmacology of pain, pp.185-206, 2010.

V. Kayser, A. Latrémolière, M. Hamon, and S. Bourgoin, N-methyl-d-aspartate receptor-mediated modulations of the anti-allodynic effects of 5-HT1B/1D receptor stimulation in a rat model of trigeminal neuropathic pain, European Journal of Pain, vol.95, issue.5, pp.451-458, 2011.
DOI : 10.1016/j.ejpain.2010.09.012

R. Suzuki, W. Rahman, S. Hunt, and A. Dickenson, Descending facilitatory control of mechanically evoked responses is enhanced in deep dorsal horn neurones following peripheral nerve injury, Brain Research, vol.1019, issue.1-2, pp.68-76, 2004.
DOI : 10.1016/j.brainres.2004.05.108

P. Vanelderen, T. Rouwette, T. Kozicz, R. Heylen, and J. Van-zundert, Effects of Chronic Administration of Amitriptyline, Gabapentin and Minocycline on Spinal Brain-Derived Neurotrophic Factor Expression and Neuropathic Pain Behavior in a Rat Chronic Constriction Injury Model, Regional Anesthesia and Pain Medicine, vol.38, issue.2, pp.124-130, 2013.
DOI : 10.1097/AAP.0b013e31827d611b

L. Fellner, R. Irschick, K. Schanda, M. Reindl, and L. Klimaschewski, Toll-like receptor 4 is required for ??-synuclein dependent activation of microglia and astroglia, Glia, vol.19, issue.Suppl 1, pp.349-360, 2013.
DOI : 10.1002/glia.22437

K. Inoue, Microglial activation by purines and pyrimidines, Glia, vol.643, issue.2, pp.156-163, 2002.
DOI : 10.1002/glia.10150

K. Inoue, The function of microglia through purinergic receptors: Neuropathic pain and cytokine release, Pharmacology & Therapeutics, vol.109, issue.1-2, pp.210-226, 2006.
DOI : 10.1016/j.pharmthera.2005.07.001

R. Singh, R. Rohilla, K. Sangwan, R. Siwach, and N. Magu, Bladder management methods and urological complications in spinal cord injury patients, Indian Journal of Orthopaedics, vol.45, issue.2, pp.141-147, 2011.
DOI : 10.4103/0019-5413.77134

J. Ramsey, L. Ramer, J. Inskip, A. N. Ramer, and M. , Care of Rats with Complete High-Thoracic Spinal Cord Injury, Journal of Neurotrauma, vol.27, issue.9, pp.1709-1722, 2010.
DOI : 10.1089/neu.2010.1382

S. Lotta, R. Scelsi, E. Alfonsi, A. Saitta, and D. Nicolotti, Morphometric and neurophysiological analysis of skeletal muscle in paraplegic patients with traumatic cord lesion, Paraplegia, vol.6, issue.4, pp.247-252, 1991.
DOI : 10.1016/0014-4886(86)90035-X

B. Calancie, J. Broton, K. Klose, M. Traad, and J. Difini, Evidence that alterations in presynaptic inhibition contribute to segmental hypo- and hyperexcitability after spinal cord injury in man, Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, vol.89, issue.3, pp.177-186, 1993.
DOI : 10.1016/0168-5597(93)90131-8

M. Garrison, C. Yates, N. Reese, R. Skinner, and E. Garcia-rill, Wind-up of stretch reflexes as a measure of spasticity in chronic spinalized rats: The effects of passive exercise and modafinil, Experimental Neurology, vol.227, issue.1, pp.104-109, 2011.
DOI : 10.1016/j.expneurol.2010.09.019

K. Murray, A. Nakae, M. Stephens, M. Rank, D. Amico et al., Recovery of motoneuron and locomotor function after spinal cord injury depends on constitutive activity in 5-HT2C receptors, Nature Medicine, vol.32, issue.6, pp.694-700, 2010.
DOI : 10.1038/nm.2160

L. Budh, C. Hultling, C. Molander, and C. , Neuropathic pain after traumatic spinal cord injury -relations to gender, spinal level, completeness, and age at the time of injury, Spinal Cord, vol.42, pp.665-673, 2004.

E. Hoschouer, D. Basso, and L. Jakeman, Aberrant sensory responses are dependent on lesion severity after spinal cord contusion injury in mice, Pain, vol.148, issue.2, pp.328-342, 2009.
DOI : 10.1016/j.pain.2009.11.023

J. Jung, J. Kim, S. Hong, and Y. Yoon, Long-term Follow-up of Cutaneous Hypersensitivity in Rats with a Spinal Cord Contusion, The Korean Journal of Physiology and Pharmacology, vol.12, issue.6, pp.299-306, 2008.
DOI : 10.4196/kjpp.2008.12.6.299

C. Hulsebosch, B. Hains, E. Crown, and S. Carlton, Mechanisms of chronic central neuropathic pain after spinal cord injury, Brain Research Reviews, vol.60, issue.1, pp.202-213, 2009.
DOI : 10.1016/j.brainresrev.2008.12.010

N. Finnerup, C. Norrbrink, K. Trok, F. Piehl, and I. Johannesen, Phenotypes and Predictors of Pain Following Traumatic Spinal Cord Injury: A Prospective Study, The Journal of Pain, vol.15, issue.1, pp.40-48, 2014.
DOI : 10.1016/j.jpain.2013.09.008

T. Gao, J. Hao, Z. Wiesenfeld-hallin, and X. Xu, Quantitative test of responses to thermal stimulation in spinally injured rats using a Peltier thermode: A new approach to study cold allodynia, Journal of Neuroscience Methods, vol.212, issue.2, pp.317-321, 2013.
DOI : 10.1016/j.jneumeth.2012.11.008

J. Wang, M. Kawamata, and A. Namiki, Changes in Properties of Spinal Dorsal Horn Neurons and Their Sensitivity to Morphine after Spinal Cord Injury in the Rat, Anesthesiology, vol.102, issue.1, pp.152-164, 2005.
DOI : 10.1097/00000542-200501000-00024

M. Millan, Descending control of pain, Progress in Neurobiology, vol.66, issue.6, pp.355-474, 2002.
DOI : 10.1016/S0301-0082(02)00009-6

K. Kim, M. Mishina, R. Kokubo, T. Nakajima, and D. Morimoto, Ketamine for acute neuropathic pain in patients with spinal cord injury, Journal of Clinical Neuroscience, vol.20, issue.6, pp.804-807, 2013.
DOI : 10.1016/j.jocn.2012.07.009

T. Rekand, Clinical assessment and management of spasticity: a review, Acta Neurologica Scandinavica, vol.1, issue.Suppl. 4, pp.62-66, 2010.
DOI : 10.1111/j.1600-0404.2010.01378.x

F. Colpaert, W. Wu, J. Hao, I. Royer, and F. Sautel, High-efficacy 5-HT1A receptor activation causes a curative-like action on allodynia in rats with spinal cord injury, European Journal of Pharmacology, vol.497, issue.1, pp.29-33, 2004.
DOI : 10.1016/j.ejphar.2004.06.026

E. Amaya-castellanos, J. Pineda-farias, G. Castaneda-corral, G. Vidal-cantu, and J. Murbartian, Blockade of 5-HT7 receptors reduces tactile allodynia in the rat, Pharmacology Biochemistry and Behavior, vol.99, issue.4, pp.591-597, 2011.
DOI : 10.1016/j.pbb.2011.06.005

M. Aguggia, M. Saracco, M. Cavallini, G. Bussone, and P. Cortelli, Sensitization and pain, Neurological Sciences, vol.161, issue.Suppl4, pp.37-40, 2013.
DOI : 10.1007/s10072-013-1382-0

G. Mccleane, R. Suzuki, and A. Dickenson, Does a single intravenous injection of the 5-HT 3 receptor antagonist ondansetron have an analgesic effect in neuropathic pain? A double-blinded, placebo-controlled cross-over study, Anesth Analg, vol.97, pp.1474-1478, 2003.

Y. Chen, M. Oatway, and L. Weaver, receptor for days causes sustained relief from mechanical allodynia following spinal cord injury, Journal of Neuroscience Research, vol.16, issue.2, pp.418-424, 2009.
DOI : 10.1002/jnr.21860

T. Tzellos, G. Papazisis, E. Amaniti, and D. Kouvelas, Efficacy of pregabalin and gabapentin for neuropathic pain in spinal-cord injury: an evidence-based evaluation of the literature, European Journal of Clinical Pharmacology, vol.35, issue.9, pp.851-858, 2008.
DOI : 10.1007/s00228-008-0523-5

A. Merighi, C. Salio, A. Ghirri, L. Lossi, and F. Ferrini, BDNF as a pain modulator, Progress in Neurobiology, vol.85, issue.3, pp.297-317, 2008.
DOI : 10.1016/j.pneurobio.2008.04.004

T. Trang, S. Beggs, and M. Salter, Brain-derived neurotrophic factor from microglia: a molecular substrate for neuropathic pain, Neuron Glia Biology, vol.22, issue.01, pp.99-108, 2011.
DOI : 10.1016/0306-4522(95)00103-P

Z. Hajebrahimi, S. Mowla, M. Movahedin, and M. Tavallaei, Gene expression alterations of neurotrophins, their receptors and prohormone convertases in a rat model of spinal cord contusion, Neuroscience Letters, vol.441, issue.3, pp.261-266, 2008.
DOI : 10.1016/j.neulet.2008.06.046

Z. Ying, R. Roy, V. Edgerton, and F. Gomez-pinilla, Exercise restores levels of neurotrophins and synaptic plasticity following spinal cord injury, Experimental Neurology, vol.193, issue.2, pp.411-419, 2005.
DOI : 10.1016/j.expneurol.2005.01.015

S. Carlton, J. Du, H. Tan, O. Nesic, and G. Hargett, Peripheral and central sensitization in remote spinal cord regions contribute to central neuropathic pain after spinal cord injury, Pain, vol.147, issue.1, pp.265-276, 2009.
DOI : 10.1016/j.pain.2009.09.030

T. Hai and M. Hartman, The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis, Gene, vol.273, issue.1, 2001.
DOI : 10.1016/S0378-1119(01)00551-0

M. Block, L. Zecca, and J. Hong, Microglia-mediated neurotoxicity: uncovering the molecular mechanisms, Nature Reviews Neuroscience, vol.13, issue.1, pp.57-69, 2007.
DOI : 10.1523/JNEUROSCI.4306-04.2005

Y. Gwak, E. Crown, G. Unabia, and C. Hulsebosch, Propentofylline attenuates allodynia, glial activation and modulates GABAergic tone after spinal cord injury in the rat, Pain, vol.138, issue.2, pp.410-422, 2008.
DOI : 10.1016/j.pain.2008.01.021

Y. Gwak, J. Kang, G. Unabia, and C. Hulsebosch, Spatial and temporal activation of spinal glial cells: Role of gliopathy in central neuropathic pain following spinal cord injury in rats, Experimental Neurology, vol.234, issue.2, pp.362-372, 2012.
DOI : 10.1016/j.expneurol.2011.10.010

J. Kim, G. Choi, Y. Cho, H. Cho, and S. Hwang, Attenuation of Spinal Cord Injury-Induced Astroglial and Microglial Activation by Repetitive Transcranial Magnetic Stimulation in Rats, Journal of Korean Medical Science, vol.28, issue.2, pp.295-299, 2013.
DOI : 10.3346/jkms.2013.28.2.295

A. Marcillo, B. Frydel, H. Bramlett, and W. Dietrich, A reassessment of P2X7 receptor inhibition as a neuroprotective strategy in rat models of contusion injury, Experimental Neurology, vol.233, issue.2, pp.687-692, 2012.
DOI : 10.1016/j.expneurol.2011.06.008

K. Kigerl, W. Lai, S. Rivest, R. Hart, and A. Satoskar, Toll-like receptor (TLR)-2 and TLR-4 regulate inflammation, gliosis, and myelin sparing after spinal cord injury, Journal of Neurochemistry, vol.175, issue.1, pp.37-50, 2007.
DOI : 10.1074/jbc.274.12.7611

F. Marchand, C. Tsantoulas, D. Singh, J. Grist, and A. Clark, Effects of Etanercept and Minocycline in a rat model of spinal cord injury, European Journal of Pain, vol.16, issue.45, pp.673-681, 2009.
DOI : 10.1016/j.ejpain.2008.08.001

K. Chen, K. Uchida, H. Nakajima, T. Yayama, and T. Hirai, Tumor Necrosis Factor-?? Antagonist Reduces Apoptosis of Neurons and Oligodendroglia in Rat Spinal Cord Injury, Spine, vol.36, issue.17, pp.1350-1358, 2011.
DOI : 10.1097/BRS.0b013e3181f014ec

J. Guptarak, S. Wanchoo, J. Durham-lee, Y. Wu, and D. Zivadinovic, Inhibition of IL-6 signaling: A novel therapeutic approach to treating spinal cord injury pain, Pain, vol.154, issue.7, pp.1115-1128, 2013.
DOI : 10.1016/j.pain.2013.03.026

T. Genovese, E. Esposito, E. Mazzon, D. Paola, R. Caminiti et al., Absence of endogenous interleukin-10 enhances secondary inflammatory process after spinal cord compression injury in mice, Journal of Neurochemistry, vol.50, issue.6, pp.1360-1372, 2009.
DOI : 10.1111/j.1471-4159.2009.05899.x

Z. Zhou, X. Peng, R. Insolera, D. Fink, and M. Mata, IL-10 promotes neuronal survival following spinal cord injury, Experimental Neurology, vol.220, issue.1, pp.183-190, 2009.
DOI : 10.1016/j.expneurol.2009.08.018

G. John, S. Lee, and C. Brosnan, Cytokines: Powerful Regulators of Glial Cell Activation, The Neuroscientist, vol.9, issue.1, pp.10-22, 2003.
DOI : 10.1177/1073858402239587

D. Tian, Q. Dong, D. Pan, Y. He, and Z. Yu, Attenuation of astrogliosis by suppressing of microglial proliferation with the cell cycle inhibitor olomoucine in rat spinal cord injury model, Brain Research, vol.1154, pp.206-214, 2007.
DOI : 10.1016/j.brainres.2007.04.005

M. Cronin, P. Anderson, J. Cook, C. Green, and D. Becker, Blocking connexin43 expression reduces inflammation and improves functional recovery after spinal cord injury, Molecular and Cellular Neuroscience, vol.39, issue.2, pp.152-160, 2008.
DOI : 10.1016/j.mcn.2008.06.005