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Abstract

EGR1 is an immediate early gene with a wide range of activities as transcription factor, spanning from regulation of cell
growth to differentiation. Numerous studies show that EGR1 either promotes the proliferation of stimulated cells or
suppresses the tumorigenic growth of transformed cells. Upon interaction with ARF, EGR1 is sumoylated and acquires the
ability to bind to specific targets such as PTEN and in turn to regulate cell growth. ARF is mainly localized to the periphery of
nucleolus where is able to negatively regulate ribosome biogenesis. Since EGR1 colocalizes with ARF under IGF-1
stimulation we asked the question of whether EGR1 also relocate to the nucleolus to interact with ARF. Here we show that
EGR1 colocalizes with nucleolar markers such as fibrillarin and B23 in the presence of ARF. Western analysis of nucleolar
extracts from HeLa cells was used to confirm the presence of EGR1 in the nucleolus mainly as the 100 kDa sumoylated form.
We also show that the level of the ribosomal RNA precursor 47S is inversely correlated to the level of EGR1 transcripts. The
EGR1 iseffective to regulate the synthesis of the 47S rRNA precursor. Then we demonstrated that EGR1 binds to the
Upstream Binding Factor (UBF) leading us to hypothesize that the regulating activity of EGR1 is mediated by its interaction
within the transcriptional complex of RNA polymerase I. These results confirm the presence of EGR1 in the nucleolus and
point to a role for EGR1 in the control of nucleolar metabolism.
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Introduction

The early growth response gene EGR1 codes for a zinc finger

nuclear factor involved in the transcriptional regulation of

responses to a wide number of proliferative, differentiation and

stress stimuli [1–3]. In particular, EGR1 regulates key genes

controlling the growth and division of cancer cells, including p53

and PTEN, which form a regulatory network [4–6]. Working

coordinately, they can suppress transformed cell growth [7]. In

addition, EGR1 can suppress uncontrolled cell proliferation by

p53 independent mechanism(s) [7]. As a consequence, EGR1 is

often downregulated or lost in human cancer tissues and cell lines

[8–10]. Reexpression of EGR1 in EGR1-deficient transformed

cell lines limits cancer cell growth and tumorigenicity, suggesting a

role for EGR1 in promoting the growth arrest of transformed cell

variants [11–12,3] and it also augments the sensitivity to

chemotherapeutic treatments [13–15].

Recent studies have suggested a role for altered proto-

oncogenes and tumor suppressor genes in the subversion of

control mechanisms regulating ribosome biogenesis [16]. In

eukaryotic cells the assembly of rRNA with the ribosomal proteins

and the many small nucleolar RNAs (snoRNAs) takes place in the

nucleolus. It is a highly coordinated process involving both

transcriptional and post-transcriptional events that together

control ribosomal protein synthesis. Ribosomal protein synthesis

is increased in tumor cells [17], and it is crucial for tumor

progression [18]. In fact, particularly aggressive phenotypes of

cancer are associated with changes in nucleolar morphology

including increased size, and require elevated rates of biosynthesis

and higher levels of rRNA transcription [19–20]. Cell cycle

checkpoints are important in coordinating ribosome production

with cell-cycle progression [21–22], as also several tumor

suppressor agents such as P53, PTEN, RB and ARF. The ARF

protein has been shown to regulate the cell cycle through both

p53-dependent and p53-independent pathways. In addition to the

ARF-MDM2-p53 pathway, several partners of ARF have recently

been described that could partecipate in alternative regulatory

pathways such as MYC. In particular, the ARF-MYC interaction

is crucial for driving the MYC-induced synthesis of EGR1, which

in turn is essential for mediating the induction of p53-independent

apoptosis [23]. Moreover, it is known that ARF is a negative

regulator of rRNA transcription and maturation. For instance,

ARF binds to and inhibits the phosphorylation of the upstream
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binding transcription factor UBF1 [24]. ARF also promotes the

sumoylation of several ARF interacting proteins such as the

topoisomerase I, MDM2, p53 and EGR1 itself [25–28]. The

ARF-mediated sumoylation of EGR1 is strictly required for PTEN

activation in vivo, which in turn is directly involved in the

regulation of cell size and protein synthesis [29–30]. Sumoylation

is a post-translational modification that may alter the cellular

trafficking, thus affecting the subcellular localization of the

modified proteins.

Based on the above relationships, we asked whether the

transcription factor EGR1 also could play a role in nucleolar

metabolism. Here we provide the molecular evidence that EGR1

localizes to the nucleolus. We also found that the level of ribosomal

RNA precursors varies inversely with level of EGR1 transcripts. In

fact, by treating the cells with siRNA specific for EGR1 we

observed a significant increase in the production of 47S pre-rRNA

in the HeLa cell line. Conversely, by increasing the level of EGR1

transcription we observed a significant reduction of the synthesis of

47S pre-rRNA. The effect of EGR1 on RNA polymerase I activity

is linked to ARF because it cannot be reproduced in ARF 2/2

NIH 3T3 cells but can be restored after ARF re-expression. Like

ARF, also EGR1 binds directly to UBF, which is required to

recruit the transcription complex at the rRNA promoter. Taken

together, these results suggest that the anti-proliferative properties

of EGR1 might also stem from its association with protein(s)

involved in the control of RNA polymerase I activity within the

nucleolus.

Materials and Methods

Cell Cultures
The cell lines (HeLa, NH 3T3, 293T and A172) were grown in

DMEM supplemented with 1% nonessential amino acids, 1% L-

glutamine, 100 IU/ml penicillin, 100 IU/ml streptomycin and

FBS (Sigma-Aldrich St. Louis, Mo, USA) 10% or 0.2% (serum

starvation) at 37uC in 5% CO2 humidified atmosphere in air.

HeLa cells (ATCC CCL2), NIH 3T3 (ATCC CR-1658), 293 T

(ATCC CRL-1573), A172 (ATCC CRL-1620) are provided by

American Type Collection, Rockville, MD.

Figure 1. Nucleolar localization of endogenous EGR1. Imaging analysis. (A) Confocal images of EGR1 and fibrillarin (upper row) or EGR1 and
B23 (lower row) in the nucleolus of HeLa cells. The images were obtained with a Leica SP2 and analyzed under HCX PL APO CS 63x. (B) Immunogold
electron microscopy (EM) labeling of EGR1 in the fibrillar center of the nucleolus. Ultrathin sections of HeLa cells were embedded in Lowicryl K4M. (FC,
Fibrillar center; DFC, Dense Fibrillar Component; GC, Granular Component. Arrow: labelling in the CF; arrowheads: labelling in the nucleoplasm).
doi:10.1371/journal.pone.0096037.g001
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Confocal Analysis
The cells were cultured in DMEM in 10% FBS or 0.2% FBS for

18h on Nuc Lab-Tek II chamber slide (Sigma-Aldrich). Cells were

washed with PBS, fixed for 15 min with 4% paraformaldehyde

(Sigma-Aldrich St. Louis, Mo, USA), washed with PBS, permea-

bilized with 0.5% Triton X-100 for 10 min and blocked for

40 min with 0.2% gelatin. All incubations with primary antibodies

were performed in PBS-Triton X-100 overnight at 4uC. The

following primary antibodies were used for immunofluorescence:

rabbit polyclonal against N-terminal of EGR1 (4153, Cell

Signaling Technology, Danvers, MA, USA), mouse monoclonal

antibody anti-fibrillarin (ab4566, Abcam, Cambridge, MA, USA),

mouse monoclonal antibody anti-B23 (ab10530, Abcam) and

mouse monoclonal anti-UBF antibody (sc-13125, Santa Cruz

Biotechnology, Dallas, TX, USA). Primary antibodies were diluted

at 1:200. Cells were than washed 3 6 5 min and incubated with

secondary antibodies, Alexa Fluor mouse 594 and Alexa Fluor

rabbit 488 diluted 1:1000. Confocal analysis was performed with a

Leica SP2. Transcription of rDNA genes was inhibited by

supplementing the medium with 0.04 mg/ml actinomycin D

(Sigma-Aldrich St. Louis, Mo, USA) for 1h at 37uC the cells were

than fixed and stained. The analysis was performed by immuno-

fluorescence microscopy (LEICA DM4000B).

Electron Microscopy
To study the intranuclear localization of the transcription factor

EGR1, we realised several immunogold labelings on ultrathin

sections of HeLa cells. Cells were fixed for 1 h at 4uC in 4%

formaldehyde in 0.1 M Sörensen’s buffer (pH 7.4), dehydrated

through graded ethanol solutions, and embedded in Lowicryl

K4M as in [31]. Ultrathin sections of Lowicryl K4M-embedded

cells were incubated for 30 min in PBS (0.14 M NaCl, 6 mM

Na2HPO4, 4 mM KH2PO4, pH 7.2) containing normal goat

serum (NGS) diluted 1/30 and 1% BSA, then rinsed with PBS

containing 1% BSA. After a 4 h incubation with rabbit polyclonal

antibody against N-terminal of EGR1 (Cell Signaling Technology,

Danvers, MA, USA) diluted 1/2.5 in PBS containing 1/50 NGS

and 0.2% BSA, the sections were washed with PBS containing 1%

BSA, and incubated for 60 min with goat anti-rabbit IgG coupled

to colloidal gold (10 nm in diameter) (Amersham Life Science)

diluted 1/40 with PBS (pH 8.2) containing 0.2% BSA. After

washing with PBS containing 1% BSA, the sections were rinsed in

deionized water. Finally, the ultrathin sections were mounted on

nickel grids, and stained with uranyl acetate and lead citrate before

examination in a Jeol CX 100 II transmission electron microscope

at 60 kV. A control experiment was carried out, in which the

primary antibodies were omitted.

Immunoblotting and Immunoprecipitation
Western blot analysis was performed using nuclear and

nucleolar extracts. The following primary antibodies were used

for immunoblotting: rabbit polyclonal anti-EGR1 (sc-101, Santa

Cruz Biotechnology, Dallas, Tx, USA) mouse monoclonal

antibody anti-fibrillarin (ab4566), monoclonal anti-Sumo1

(SAB4200189, Sigma-Aldrich St. Louis, Mo, USA) and mouse

monoclonal anti-UBF antibody (sc-13125). The secondary anti-

bodies used for western blot are anti-mouse and anti-rabbit (GE

Healthcare Bio-Sciences, Piscataway, NJ, USA) (dilution 1:10000).

Whole extracts. Total extract were prepared from subconfluent

cultures by resuspending cells in RIPA-Buffer (20 mM Hepes,

pH 6.8, 5 mM KCl, 5 mM MgCl2, 0.5% NP-40, 0.1% sodium

Figure 2. Nucleolar localization of endogenous EGR1. Biochemical evidences. (A) Detection by immunoblotting of EGR1 in nuclei, nuclear and
nucleolar extracts of HeLa grown at 0.2% or 10% FBS. The sumoylated form of EGR1 present within the nucleolar extracts is detected by an anti-
sumo1 antibody (Sigma-Aldrich). The band signals were quantitated for comparison between extracts of cells grown at 0.2% and 10% FBS. Signals
were normalized to the loading control. Beta-tubulin and fibrillarin are shown as loading control. (B) Immunofluorescence of EGR1 after treatment
with actinomycin D (0.04 mg/ml) for 1h at 37uC. HeLa cells were treated and stained for EGR1 and fibrillarin by immunofluorescence. The images were
taken by under a 40X objective with a LEICA DM4000B. The pictures at the right show the merging of the two fluorescing proteins. (C) Nuclei of HeLa
cells were extracted and immunoblotted to quantitate the expression of EGR1 following Actinomycin D treatment. Both immunofluorescence and
western blotting show that the endogenous levels of EGR1 are not significantly affected by the treatment. Representative results of at least three
separate experiments are shown. Comparison tests were assessed by one way ANOVA, and significances are shown where applicable. Asterisk (*)
represent p#0.05 when compared to relative controls.
doi:10.1371/journal.pone.0096037.g002
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deoxycholate, protease inhibitor (Sigma), 0.1 mM phenylmethyl-

sulfonyl fluoride) after incubation for 30 min at 0uC centrifuge at

10000 rpm 6 15 min 4uC. Nuclear extracts: cells at 80% of

confluence were washed twice with PBS, and incubated in NE1

buffer (10 mM Hepes pH 8.0, 1.5 mM MgCl2, 10 mM KCl,

1 mM DTT) for 15 min at 4uC. Homogenization of the cells was

performed using a Dounce homogenizer and the lysate was

centrifuged at 12.000 rpm for 5 min at 4uC. The nuclear pellet

was resuspended in NE2 buffer (20 mM Hepes pH 8.0, 1.5 mM

MgCl2, 25% glycerol, 420 mM NaCl, 0.2 mM EDTA, 1 mM

DTT and 0.5 mM PMSF) and incubated for 30 min at 4uC (41).

Finally, the supernatant was cleared from the insoluble nucleolar

fraction by centrifuging for 2 min at 12.000 rpm and was diluted

1:4 with water. Nucleolar extracts: the nucleolar extracts were

prepared as followed. Actively growing cells were washed in cold

PBS and lysed at 4uC in a hypotonic buffer (10 mM Tris-HCl,

pH 7.4, 25 mM NaCl, and 3 mM MgCl2). Lysis performed with

the Tissue Master 125 homogenizer (OMNI international) was

Figure 3. The C-terminal region of EGR1 contains the nucleolar localization sequence. Confocal images of HeLa cells transfected with (A)
the full length EGR1 (1–543 AA), (B) the N-terminal (DC-EGR1) (1–314 AA), (C) the C-terminal EGR1 (DN-EGR1) (315–543 AA). Each construct was fused
to the GFP. (D) Empty pEGFP vector. Full length EGR1, N-terminal EGR1, C-terminal EGR1 and stained with an antibody to fibrillarin.
doi:10.1371/journal.pone.0096037.g003
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stopped when the nuclei appeared free of cytoplasmic components

as assessed by phase microscopy. The nuclei were then collected

by centrifugation at 1200 g for 5 min, resuspended in 10 mM

Tris-HCl, pH 7.4, 10 mM NaCl, 10 mM MgCl2, 0.25 M sucrose

and purified on a 0.88 M sucrose cushion prepared in 10 mM

Tris-HCl, pH 7.4, 10 mM NaCl, 1.5 mM MgCl2 at 1200 g for

10 min. The nucleoli were isolated by sonication of nuclei

suspended in 10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 1.5 mM

MgCl2, 0.34 M sucrose, and 0.25% NP40. The nucleoli were then

purified on a 0.88 M sucrose cushion prepared as previously at

2000 g for 20 min. The purified nucleoli were washed by

suspension in 10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 1.5 mM

MgCl2, 0.34M sucrose and centrifugation at 2000 g for 5 min. All

steps were performed at 4uC and all the solutions contained a

cocktail of protease inhibitors (complete, Roche Molecular

Diagnostics, Pleasanton, CA, USA). For immunoprecipitation

experiments, an equal amount of whole protein extracts (150 mg)
from transfected HeLa cells were immunoprecipitated with anti-

UBF antibody (sc-13125, Santa Cruz Biotechnology, Dallas, TX,

USA) or with anti-EGR1 antibody, or with secondary antibody

(IgG anti-mouse) 3h at 4uC in binding buffer (50 mM Tris pH 7.8

and 150 mM NaCl) using magnetic beads (Merk Millipore,

Darmstadt, Germany) as recommended by the manufacturer.

Total extract were prepared from subconfluent cultures by

resuspending cells in RIPA-Buffer (20 mM Hepes, pH 6.8,

5 mM KCl, 5 mM MgCl2, 0.5% NP-40, 0.1% sodium deoxycho-

late, protease inhibitor (Sigma-Aldrich St. Louis, Mo, USA),

0.1 mM PMSF (phenylmethylsulfonyl fluoride, Sigma-Aldrich St.

Figure 4. 47S rRNA and EGR1. (A) The synthesis of 47S rRNA is strongly upregulated following inhibition of EGR1. 47S synthesis in Hela cells
grown in 0.2% FBS is significantly increased following endogenous EGR1 silencing with either 10 nM or 15 nM specific siRNA (middle graph). 47S
synthesis is not affected in cells treated with a scrambled sequence compared to the untreated cells taken as control. The levels of expression of EGR1
and p300 following the siRNA treatment are shown in the left and right graphs, respectively. Both levels are significantly diminished after EGR1
silencing. (B) 47S synthesis in HeLa cells grown in 0.2% or 10% FBS is significantly depressed after transfection of full length EGR1. The levels of
expression of EGR1 and p300 are shown in the left and right graphs, respectively. As expected, both levels are significantly upregulated after EGR1
transfection compared to control cells. Representative results of at least three separate experiments are shown. Comparison tests were performed by
one way ANOVA, and significant results are highlighted with asterisks (* p#0.05, ** p#0.01 in comparison with relative controls).
doi:10.1371/journal.pone.0096037.g004
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Louis, Mo, USA) and 25 mM NEM (N-Ethylmaleimide, Sigma-

Aldrich St. Louis, Mo, USA). After incubation for 30 min at 4uC
the extract were centrifuged at 10000 rpm615 min at 4uC. The
beads were washed three times with binding buffer and incubated

at 95uC for 10 min with 50 ml of 26SDS loading buffer.

Precipitated proteins were resolved by 10% SDS-PAGE and

immunoblotted with anti-EGR1 or anti-UBF antibodies. The

membrane was incubated for the primary antibodies over night in

5% dry milk at 4uC. The incubation with secondary antibodies (1h

at room temperature) followed by ECL reaction (Amersham,

Buckinghamshire, UK) according to the manufacturer’s instruc-

tions. The membrane was exposed to Kodak film (Amersham

Hyperfilm ECL). All experiments have been done in triplicate.

qRT-PCR
RNA extraction was performed after EGR1 silencing and

EGR1 overexpression. Total RNA extraction and cDNA prepa-

ration were accomplished using RNeasy (Qiagen, Valencia, CA)

and Superscript III RT (Invitrogen, Grand Island, NY USA)

according to the manufacturer’s recommendations. For silencing,

Figure 5. EGR1 downregulates the expression of 47S rRNA in association with ARF. (A) The synthesis of 47S rRNA in NIH 3T3 (ARF2/2)
cells grown in 0.2% FBS (right graph) is not affected when the expression of endogenous EGR1 is silenced with 10 nM of specific siRNA (left graph).
(B) Viceversa, the synthesis of 47S rRNA (left graph) is greatly reduced when both EGR1 (middle graph) and p19ARF genes (right graph) are
transfected and expressed in NIH 3T3 following transfection with plasmid expression vectors. Transfection with pEGFP is shown as control.
Comparison tests were assessed by one way ANOVA, and significant differences are highlighted with asterisks (* p,0.05; ** p,0.01).
doi:10.1371/journal.pone.0096037.g005
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EGR1 pre-designed siRNA (Invitrogen, Grand Island, NY USA,

4390822 for Hela cells and 4390817 for NIH 3T3 or scrambled

sequence RNA oligonucleotide, Negative Control siRNA

4390846) were transiently transfected at 10 nM or 15 nM into

HeLa and NIH 3T3 cells using High-Perfect Transfecting Agent

(Quiagen, Valencia, CA) following the Quiagen protocol. Full

length EGR1 (1–543) and deleted forms were cloned into pEGFP

(Clontech, Mountain View, CA, USA). Each construct was

confirmed by DNA sequencing (3130 Genetic Analyzer, Applied

Biosystem). The experiments of DNA transfection in NIH 3T3

were performed with 2 mg of DNA for each expression vector.

p19ARF expression vector correspond to Image ID 5342027

clone. Proteins expression was verified by fluorescence.

Quantitative RT-PCR was performed using Fast SYBR Green

Master mix and the StepOnePlus real-time PCR system (both

from Applied Biosystems). Each experiment was performed in

triplicate and is expressed as mean 6 SEM. Experiments were

independently repeated three times. Gene expression levels were

quantified from real-time PCR data by the comparative threshold

cycle (CT) method using 18S as an internal control gene. The

following gene-specific primers were used: EGR1: FW 59-

AGCCCTACGAGCACCTGAC-39 and Rev 59-

GGTTTGGCTGGGGTAACTG-39 (for human gene); FW 59-

CCTATGAGCACCTGACCACA-39 and Rev 59-

TCGTTTGGCTGGGATAACTC-39 (for mouse gene). 47S:

FW 59-TGTCAGGCGTTCTCGTCTC-39 and REV 59-gagag-

cacgacgtcaccac-39 (for human gene) and FW 59-CCCGAGTG-

CATTTCTTTTTG -39 and Rev 59-TGGACACCACAGACAG-

GAGT -39 (for mouse gene). P300: FW 59-

GGTCAAGCTCCAGTGTCTCAA-39 and Rev 59-

CCCTGGAGGCATTATAGGAGA-3 (for human gene). 18S:

FW 59-GCAATTATTCCCCATGAACG-39 and REV

Figure 6. EGR1 binds to UBF in HeLa cells. (A) Confocal analysis of Hela cells transfected with the C-terminal EGR1 (DN 1–314) shows the
colocalization of EGR1 fragment with UBF. (B) Extracts (150 mg) of HeLa cells transfected with full length EGR1-GFP are immunoprecipitated with an
antibody to UBF. (C) Chromatin precipitation assay. DNA fragments of ribosomal RNA promoter are immunoprecipitated with an antibody to EGR1
from extracts of HeLa cells transfected with full length EGR1. A six fold enrichment in ribosomal RNA promoter fragments was obtained from extracts
of transfected cells compared to mock extracts. Representative results of at least three separate experiments are shown. Comparison tests were
performed as above described (** p#0.01).
doi:10.1371/journal.pone.0096037.g006
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59GGGACTTAATCAACGCAAGC-39 (for human gene) and

FW 59-AAATCAGTTATGGTTCCTTTGGTC-39 and Rev 59-

GCTCTAGAATTACCACAGTTATCCAA -39 (for mouse

gene).

Chromatin Immunoprecipitation (ChIP)
Hela cells were transfected with full length EGR1 expression

vector or pEGFP empty vector using lipofectamine 2000 (see

above) fixed 48 h after transfection with 1% formaldehyde for

15 min at room temperature and the reaction stopped by addition

of 125 mM glycine for 5 min. The other steps of the ChIP

experiments were performed according to the manufacturer’s

instructions (Magna ChIP, Millipore). The extracts were immu-

noprecipitated with anti EGR1 (Cell signaling) or anti UBF

antibodies (Santa Cruz). The samples obtained were analysed by

PCR and qPCR. The products of PCR were analyzed on 2%

agarose. Primers sequence used for PCR and real time analysis

are: 47S rRNA promoter FW (59-GTTTTTGGGGA-

CAGGTGT-39); 47S rRNA promoter Rev (59-CCAGAGGA-

CAGCGTGTCAGCA-39); 18S Fw and 18S Rev, see above.

Statistical Analysis
The analyses data have been described above. For all

experiments analysis was carried out followed by post hoc

comparision (ANOVA Scheffè F-test). Data were expressed as

mean +/2 SEM.

Results and Discussion

EGR1 Colocalizes with Specific Nucleolar Markers in HeLa
Cells
When EGR1 is labeled with an antibody that recognizes the N-

terminal region of the protein and is detected by immunofluores-

cence, an intense nuclear staining concentrated at relatively large

nucleolar-like structures is observed in near 60% of the cells

cultivated in 10% FBS or more than 90% of the cells cultivated in

0.2% FBS. Two specific nucleolar markers, fibrillarin and

nucleophosmin/B23, colocalize with EGR1 in 90% and 30% of

the cells, respectively, as assessed by confocal microscopy

(Figure 1A). The specificity of EGR1 labeling within the nucleolus

was tested by preincubating the antibody with an EGR1 peptide,

effectively preventing the recognition of the endogenous protein in

the nucleolar complex (Figure S1). Overlapping results were

obtained with the human cell line 293T, carrying the expression of

p53 WT, and the glioma cell line A172 (Figure S2 A and B),

showing that the location of EGR1 to the nucleoli is not dependent

on the specific cellular context. In this work for the first time

EGR1 is recognized within the central region of the nucleolar

compartment of cells grown either in 10% or 0.2% FBS

(Figure 1A). This region corresponds to the fibrillar centers where

the active sites of ribosomal RNA transcription are located [32],

suggesting an involvement of the protein in ribosomal RNA

transcription. For the sub-nucleolar localization we showed by

immune electron microscopy on HeLa cells (Figure 1B) that

EGR1 is found mostly in the fibrillar centers, particularly in the

peripheral region near to the dense fibrillar component (Fig. 1B).

Some immune gold labelling can be found in the nucleoplasm. It is

interesting to note that this nucleolar labeling is consistent with the

distribution of DNA, including rDNA, within the mammalian

nucleolus.

However, we also found that EGR1 merges with B23 in a low

fraction of cells. B23 is a nucleolar marker localized to the

periphery of the nucleolus like ARF which EGR1 has been found

to interact with (28). Whether these findings suggest for EGR1 an

alternative site within the nucleolus, where it would exercises a

biological role, it is matter of speculation.

We therefore performed western blotting of crude nuclei,

nuclear (nucleolar-free) and nucleolar extracts of HeLa cells grown

in normal and serum deprived conditions (Figure 2A). EGR1 from

crude nuclei is resolved as two bands of 100 kDa and 80 kDa, as

expected. The expression in cells grown at 0.2% FBS is twice the

expression at 10% FBS. EGR1 in nucleolar-free nuclear extracts

appears as a single band of 80 kDa, while the EGR1 from the

nucleolar compartment is detected mostly as a 100 kDa molecule.

This corresponde to the sumoylated form of the protein [28], as

confirmed by staining with an anti-sumo1 antibody. A quantitative

comparison of the nucleolar 100 kDa isoform at the two different

serum concentrations shows that EGR1 is significatly more

abundant in cells grown at 0.2% FBS. The measure of the

expression levels of EGR1 in all three extracts has been taken in at

least three independent experiments.

HeLa cells treated with a low dose of actinomycin D (0.04 mg/
ml actinomycin D), which inihibits mainly the RNA polymerase I

dependent rRNA transcription [33] have less EGR1 in the

nucleolus. In fact EGR1 is detected by immunofluorescence at its

localization likely because after treatment it is relocated with

fibrillarin into the nuclear cups shown in Figure 2B. This suggests

that EGR1 localization to the nucleolus is dependent, at least in

partially, on ongoing transcription of rRNA in intact nucleoli.

The Nucleolar Localization of EGR1 is Specified by the C-
terminal Region
HeLa cells were transfected with plasmids expressing either the

full length or two truncated forms of EGR1 fused with the N-

terminal region of GFP. Protein expression was monitored by

confocal microscopy. The first deletion construct contained the N-

terminal region of EGR1 from amino acid 1 to 314 including the

transactivation (1–281 AA) and the repression domains (282–315

AA). The second fusion protein contained the C-terminal region of

EGR1 from amino acid 315 to 543 including the DNA binding

domain (338–418 AA). The C-terminus but not the N-terminus

(Figure 3C and 3B, respectively) nor the GFP alone (Figure 3D)

colocalized with fibrillarin and showed strong nucleolar staining.

The full EGR1/GFP fusion protein did localize mostly in the

nucleus and it is associated with the nucleolus (Figure 3A). Thus,

the N-terminus deprived EGR1-GFP fusion protein has appar-

ently a greater ability to accumulate to the nucleolus than the full

lenght protein. This might be a consequence of the less complex

structure of the truncated EGR1 polypeptide. It is conceivable that

the relocation of EGR1 to the nucleolus is subjected to regulation

by an array of cognate molecules physically interacting with yet

unknown domains spread over the EGR1 molecule. If this is true,

a smaller EGR1 would have a lower binding valence and, in turn,

less obligations limiting the EGR1 localization to the nucleolus.

These results suggest that the C-terminal region is important for

promoting the association of EGR1 with nucleolar components,

and that a specific nucleolar localization signal may reside in this

region of the protein. To address this hypothesis EGR1 protein

was analysed with a specific program (NoD, Nucleolar localization

sequence detector available at http://www.compbio.dundee.ac.

uk) and a NoLS sequence between residues 408 and 430 was

found, within the third zinc finger of the protein. It has been

suggested recently that nuclear factors containing a zinc finger

DNA binding domain may actually localize to the nucleolus and

have the ability to bind to RNA [34]. Indeed, p53 localizes to the

nucleolus and binds to RNA with the C-terminal portion [35].

Interestingly, the C-terminal region of EGR1 is important for the
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interaction with ARF that in turn is involved in sumoylation of

EGR1 itself [28].

EGR1 Interferes with the Production of 47S rRNA
Precursor
RNA polymerase I directs the transcription of the 47S rRNA

genes, a class of genes found in multiple copies in the nucleoli of

eukaryotic cells. To test whether EGR1 regulates the biogenesis of

ribosomes, HeLa cells were either incubated with EGR1 specific

siRNA (Figure 4A) or transfected with a vector carrying a full

length EGR1 cDNA (Figure 4B). The use of siRNA specific for

EGR1 but not of a scrambled control oligonucleotide effectively

suppresses the level of EGR1 (Figure 4A) and slightly reduces its

staining within the nucleolus (Figure S3).

We also observed that the levels of 47S rRNA precursor

correlated inversely with the expression of EGR1 and that of p300,

a known target of EGR1 [36]. These results could be successfully

replicated with the 293T cell line (Figure S2 C). On the other

hand, the endogenous EGR1 is not localized to the nucleolus in

cells deficient for ARF such as NIH 3T3 [37] and silencing with

siRNA EGR1 does not alter the 47S pre-rRNA levels (Figure 5A).

Transfection of these cells with full length EGR1 has only a limited

effect on the expression of the 47S pre-rRNA levels. However,

when NIH 3T3 are cotransfected with plasmids containing both

the full length EGR1 and ARF cDNA, the levels of 47S ribosomal

RNA are significantly downregulated up to 60% (Figure 5B).

Consistently with our results, ARF 2/2 mice do not exhibit

sumoylated forms of EGR1 [28], display significant alterations of

nucleolar morphology and abundance, and have higher level of

rRNA transcription compared to wild-type animals [38].

We do not know yet the mechanism by which variation in

EGR1 expression is linked to suppression of ribosomal precursor

synthesis. For example one can speculate that EGR1 may interfere

with rRNA transcription. Very preliminary results show that

following EGR1 silencing in HeLa cells only the 47S pre-RNA is

increased but no other ribosomal precursors, suggesting that the

control of EGR1 over ribosomal RNA synthesis might be

exercised through an enhacement of RNA polymerase I activity

(data not shown).

EGR1 Affects the RNA Polymerase I Activity by Interacting
with UBF
The above experiments strongly suggest that EGR1 participates

in the pre-rRNA synthesis. UBF, together with SL1, is a key

regulator of RNA polymerase I and pre-rRNA synthesis [39] by

binding to upstream control elements and core sequences within

the rRNA promoter, and by directly associating with the RNA

polymerase I. It is possible that EGR1 could exert an inhibitory

role on the RNA polymerase by interacting with UBF, a known

partner of the RNA polymerase I. To test this idea, we transfected

HeLa cells with the C-terminus-EGR1/GFP construct (DN 315–

543 AA), and found by confocal analysis that EGR1 colocalizes

with UBF in the nucleolus (Figure 6A). This fusion protein

colocalizes better than the full length EGR1/GFP protein.

Furthermore, by applying an anti-UBF antibody to lysates of

HeLa cells transfected with the full length EGR1 expression

vector, we observed that EGR1 co-immunoprecipitates with UBF

(Figure 6B). It is possible that EGR1 interferes with the activity of

RNA polymerase I by interacting with the ribosomal promoter,

either directly or indirectly. To test this idea we have first

performed a chromatin precipitation assay where DNA fragments

of ribosomal RNA promoter were incubated in presence of

extracts of HeLa cells either transfected with full length EGR1 or

mock extracts. As clearly shown in Figure 6C, following EGR1

overexpression we observed a six fold enrichment in ribosomal

RNA promoter fragments, compared to the control. It is already

known that UBF is stably associated with the ribosomal promoter

[40]. The above results may suggest that the interaction between

EGR1 and UBF would take place on ribosomal promoter itself

leading to a disregulation of ribosomal RNA transcription.

Currently we are working to test this hypothesis. An interaction

with UBF may have destabilizing effects of the UBF-SL1 complex.

Similar mechanisms have been found with other UBF-interacting

tumor suppressors, such as pRB or p130. They have been shown

to interact with UBF directly and to inhibit the recruitment of

cofactors required for rRNA transcription [41]. Also p53 interferes

with the RNA polymerase I activity by interacting with SL1 [42].

Conclusions

We suggest that nucleolar localization of EGR1 occurs via its C-

terminal region and this event requires the interaction with ARF.

In the nucleolus EGR1 binds to UBF and contributes to the

regulation of RNA polymerase I activity in fact the levels of the

47S rRNA precursor fluctuate up or down following EGR1

silencing or overexpression, respectively. We hypothesize that

EGR1 by binding to 47S rRNA prevents UBF from interacting

with the rDNA promoter and thus the initiation complex

formation.

All together our findings point to a new mechanism for EGR1

as a regulator of cell proliferation.

Supporting Information

Figure S1 Specificity of immunofluorescence staining of
endogenous EGR1 in HeLa cells. (A) The anti-EGR1 specific

antibody is first reacted with a blocking peptide (Cell Signaling

cod. 1015) carrying an immunogenic sequence from the N-

terminal portion of EGR1 protein, and then incubated with the

fixed cells. (B) Control staining with unadsorbed anti-EGR1

specific antibody.

(PDF)

Figure S2 Endogenous EGR1 localizes to the nucleolus
of 293T and A172 cell lines, affecting the level of 47S
precursor rRNA. EGR1 colocalizes with fibrillarin in the

nucleolus of 293T (A) and the glioma cell line A172 (B). EGR1,

47S and p300 RNA expression in 293T cells treated with 15 nM

siRNA EGR1 (C).

(PDF)

Figure S3 Immunofluorescence of endogenous EGR1 in
HeLa cells after EGR1 silencing. (A) Cells treated with

scramble control oligonucleotides (A) or (B) 15 nM siRNA specific

for EGR1.

(PDF)
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