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We investigate a variant of the Graph Partitioning Problem with capacity constraints imposed
on the clusters, giving rise to quadratic constraints in 0-1 formulations. Several compact lin-
earized models of the problem are proposed and analyzed: a) a model featuring O(n3) binary
variables which results from the application of the standard Fortet linearization technique; b)
a more compact model featuring only O(n2) binary variables, obtained by linearization after
reformulation of the quadratic constraints as bilinear constraints; c) a strengthened version
of the latter model, still featuring O(n2) variables.
Computational experiments comparing the relative strength and efficiency of the various mod-
els on a series of test instances involving complete graphs with up to 50 nodes are reported
and discussed.
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1. Introduction

The graph partitioning problem is a fundamental problem in combinatorial optimization.
The basic version of the problem as defined in Garey and Johnson [6] (problem ND14) is
as follows. Given an undirected graph G = (V,E) with node set V = {1, . . . , n}, weights
wv ∈ Z+ for each node v ∈ V , lengths te ∈ Z+ for each edge e ∈ E and a positive integer
K, find a partition of V into disjoint sets (or clusters) V1, . . . , Vk such that

∑
v∈Vj

wv ≤ K
for j = 1, . . . , k minimizing the sum of the lengths of the edges whose endpoints are in
different clusters (i.e. the k-Cut defined by the partition). It was shown in [8] that the
problem is NP-hard.
In this paper, we consider a variant of the graph partitioning problem that we call graph
partitioning under capacity constraints (GPCC) where the constraints on the weights of
the clusters are replaced with constraints related to the edges incident to the nodes of
each cluster. The lengths te for all e ∈ E will be called the link capacities in our problem.
For any node subset U ⊆ V , we define the capacity of U as the sum of the link capacities
of the edges incident to at least one node of U , i.e. the edges in E(U)∪ δ(U) where E(U)
is the set of the edges with both end nodes in U and δ(U) is the set of the edges with
exactly one end in U . In our problem, the capacity constraint is to bound the capacity
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of each cluster by a given constant C. The objective function considered is the same as
in the definition in Garey and Johnson [6], i.e. to minimize the total link capacity of the
k-Cut between the clusters. Note that as well as in the definition in Garey and Johnson,
the number of the clusters k is not an input of our problem (it is part of the solution to
the problem).
The GPCC problem has applications in the field of telecommunication network opti-
mization, in particular it turns out to be a relevant model for optimum design of optical
networks (see e.g. references [1, 7, 10]). In this application, the node set V corresponds
to geographical sites and t(u,v) to the traffic demands between locations u and v. For var-
ious technological reasons, network operators often want to partition the node set V into
clusters on which a certain network topology is imposed. For instance, in SONET/SDH
optical networks, a common requirement is that every cluster is connected by a local
network forming a cycle. Local networks are then interconnected by a secondary federal
network which has one access node in each local network. Access nodes carry all the
traffics internal to their local network and all the traffic exiting it but have a limited
capacity. If we consider the traffic demand t(u,v) as the capacity of the edge (u, v), then
the capacity of a local network (cluster) with node set U ⊂ V agrees with our definition
of capacity. As the topology and the capacity of local networks are imposed, the cost of
these networks is almost fixed (except the cost of physical cables for building them) once
the partition of V is determined. Thus, the objective of the problem could be focused
on minimizing either the number of local networks (clusters) or the cost of the federal
network. For the latter, an objective function often used it to minimize the total link
capacity of the k-Cut.
The purpose of the present paper is to investigate and compare several 0-1 integer lin-
ear programming models for GPCC which can be qualified as compact, i.e. featuring a
polynomial number of variables and constraints (by contrast, the model underlying the
column generation approach in [10] which is a large scale set partitioning model with
exponentially many columns, is essentialy noncompact). Note that two main compact
0-1 models for graph partitioning, namely Node-Cluster models and Node-Node models,
have been investigated in the litterature where binary variables represent respectively
relations of membership between nodes and clusters (case of the Node-Cluster model)
and relations between nodes belonging to a same cluster (case of the Node-Node model).
Existing works in the litterature make use of these models in various ways depending on
which specific constraints are considered. This is the case of [9],[2], [3] and [4] which ad-
dress variants of graph partitioning different from GPCC. In [9], the authors discuss the
use of Node-Node model for balanced graph partionning and compare it with the SDP
approach. In [2], the author considers several Node-Cluster models for balanced graph
partitionning problems where the number of clusters and their size are constrained. In [3],
[4], the Node-Cluster model also has been investigated, in particular, a comparision of the
quadratic and linearized forms of Node-Cluster model has been discussed. Concerning
GPCC, we can mention [7], [1] and [11]. In [1], the authors have compared the perfor-
mance of Node-Node models and Node-Cluster models applied to GPCC. It is concluded
that for dense graphs, the Node-Cluster model outperforms the Node-Node model in
branch-and-bound algorithms in spite of a worse quality of continuous relaxation. How-
ever, for sparse graphs, we have shown in [11] that an improvement of the Node-Node
model can help to outperform the Node-Cluster model when applied to GPCC. In the
present paper, we aim at improving the best solution for GPCC presented in [1] and thus,
we restrict to complete graphs and to models of Node-Cluster type. Section 2 discusses
two basic Node-Cluster models for GPCC, namely:
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a) a basic node-cluster model denoted (NC), which is a quadratic 0-1 program involving
O(n2) variables, O(n) quadratic constraints and O(n2) linear constraints aimed
at breaking symmetry (a necessary ingredient in view of improving efficiency of
Branch-and-Bound procedures);

b) a compact linear 0-1 model denoted (L-NC) deduced from (NC) by applying the well-
known standard linearization [5], and featuring O(n3) 0-1 variables and O(n2)
constraints. This is the Node-Cluster model for GPCC used in [1].

Clearly, in view of the large number of variables, the latter model, though linear, cannot
be expected to be practically useful to handle instances of GPCC with significantly
more than, say, 50-60 nodes. As an attempt at overcoming this limitation, we investigate
in section 3 alternative compact linear models featuring O(n2) variables only; these are
deduced by applying linearization after reformulating (NC) as a bilinear 0-1 programming
problem, a technique close in spirit to the one proposed by Sherali and Smith in [13]
which, as far as we know, has never been applied before to the GPCC problem. Our
contributions in the context of the GPCC are twofold:

a) it is shown how to exploit some special structures present in the GPCC problem to
derive more compact models; this gives rise to a first linear O(n2) model denoted
(BL-NC);

b) we show how relaxations stronger than those which can be obtained by applying the
standard approaches in [13] can be obtained, by proposing the efficient computa-
tion of improved bounds on the additional variables involved in the linearization;
this gives rise to a strengthened version of the latter model, denoted (S-BL-NC).

Finally the various compact linear 0-1 formulations are compared computationally in
section 4 on a series of test problems involving instances of complete graphs with up
to 50 nodes. The comparison of (L-NC), (BL-NC) and (S-BL-NC) shows that the latter
clearly outperforms the other two models both in terms of strength of the relaxations
and in terms of computation time.

2. Integer Programming Models

Further on, we consider the GPCC when G = Kn the complete graph of n nodes. Hence,
for every ordrered pair (u, v) of nodes, there is an edge (u, v) and a capacity t(u,v). Note
that this is not restrictive since the models can be applied to arbitrary graph G = (V,E)
by fixing t(u,v) = 0 for every ordrered pair (u, v) of nodes such that (u, v) /∈ E.

2.1 Node-Cluster Model [7]

We first present the model for GPCC given by Goldschmidt et al. in [7]. Note that the
model was originally designed for the so called k-SRAP problem where the number of
clusters in the partition is at most k but we adapt it here to the case when the number of
clusters is not constrained (we later show how to modify it back to the k-SRAP problem).
Also the model presented in [7] was a linearization of the quadratic model we present
here using a standard technique that we recall in Section 2.3. Let xui = 1 if the node
u is assigned to cluster i and xui = 0 otherwise. Define Tu =

∑
v 6=u t(u,v) as the total

capacities of the edges incident to node u. The total capacities outside the clusters is

3
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then equal to the total capacities minus the capacities inside the clusters, i.e.

1

2

n∑
u=1

Tu −
n∑

i=1

n−1∑
u=1

n∑
v=u+1

t(u,v)xuixvi

The model can be written as follows:

min
1

2

n∑
u=1

Tu −
n∑

i=1

n−1∑
u=1

n∑
v=u+1

t(u,v)xuixvi

s. t.:
n∑

u=1

xuiTu −
n−1∑
u=1

n∑
v=u+1

xuixvit(u,v) ≤ C i = 1, . . . , n (1)

n∑
i=1

xui = 1 u = 1, . . . , n (2)

xui ∈ {0, 1}

The first constraints are the capacity constraints for each cluster i for all i = 1, . . . , n.
The second constraint imposes that each node is assigned to exactly one cluster. The
objective function is to minimize the total capacity between the clusters.

2.2 The Node-Cluster Model with symmetry breaking

As noted by [10] the Node-Cluster model is highly symmetric (it is easy to see that the
same partition has many representations in the model) and gives poor results in practice.
Some constraints were proposed in [10] to remove some of the symmetry of the model. In
[1], the authors have proposed two families of constraints that remove all the symmetry
related to having several different representations for the same partition. They impose
that if the cluster indexed by i is not empty then the node of index i should be the
smallest index of a node contained in it by adding the constraints:

xui ≤ xii i = 1, . . . , n− 1 and u = i+ 1, . . . , n

xui = 0 i = 2, . . . , n and u = 1, . . . , i− 1

From now on, we shall omit the variables xui for 1 ≤ u < i ≤ n in our models as they
are equal to 0. Moreover, note that we can now model the k-SRAP problem by simply
bounding the number of non-empty clusters (i.e.

∑n
i=1 xii ≤ k). In summary, the final

Node-Cluster model with symmetry breaking is as follows:

min
1

2

n∑
u=1

Tu −
n∑

i=1

n−1∑
u=1

n∑
v=u+1

t(u,v)xuixvi

s. t.:constraints (1), (2)

xui ≤ xii 1 ≤ i < u ≤ n (3)

xui ∈ {0, 1} 1 ≤ i ≤ u ≤ n

4
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2.3 A first compact linearized model with O(n3) variables

2.3.0.1 . This is obtained by applying the classical linearization technique intro-
duced by Fortet [5]. In this linearization, each product xuixvi for all (u, v) ∈ E and
i = 1, . . . ,min(u, v) is replaced with a variable yuvi and the following constraints are
added in (NC): for all (u, v) ∈ E, i = 1, . . . ,min(u, v),

yuvi ≤ xui (4)

yuvi ≤ xvi (5)

yuvi ≥ xui + xvi − 1 (6)

yuvi ≥ 0 (7)

The objective function and the capacity constraints can then be rewritten as

min
1

2

n∑
u=1

Tu −
n−1∑
i=1

n−1∑
u=i

n∑
v=u+1

t(u,v)yuvi,

n∑
u=i

xuiTu −
n−1∑
u=i

n∑
v=u+1

yuvit(u,v) ≤ C for all i = 1, . . . , n (8)

As tuv ≥ 0 for each (u, v) ∈ E and as the constant C in the capacity constraints is
positive, it is clear that solutions that are optimal for the objective function and comply
with the capacity constraints will also maximize the value of yuvi for all (u, v) ∈ E and
i = 1, . . . ,min(u, v). Hence, in the linearized model of (NC), the constraints (6) and (7)
which bound yuvi from bottom can be omitted, thus leading to the follwing linearized
model for (NC):

(L− NC)



min 1
2

n∑
u=1

Tu −
n−1∑
u=i

n∑
v=u+1

t(u,v)yuvi

s.t.: constraints (8), (2), (3)
yuvi ≤ xui 1 ≤ i ≤ u < v ≤ n
yuvi ≤ xvi 1 ≤ i ≤ u < v ≤ n
xui ∈ {0, 1} 1 ≤ i ≤ u ≤ n

3. Towards more compact linearized models with O(n2) variables

3.1 General principles

We can see that in (NC) the quadratic terms
∑n−1

u=i

∑n
v=u+1 t(u,v)xuixvi for i = 1, . . . , n

are the same in both the objective function and in the capacity constraints. They can
be rewritten as

∑n−1
u=i xui(

∑n
v=u+1 t(u,v)xvi) for i = 1, . . . , n. The method introduced by

Sherali and Smith in [13] applied to linearized these quadratic terms consists in two
phases.

• In the first phase, the quadratic term
∑n−1

u=i xui(
∑n

v=u+1 t(u,v)xvi) is restated as a

5
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bilinear term
∑n−1

u=i xuiλui with

n∑
v=u+1

t(u,v)xvi = λui, (9)

• In the second phase, the latter is linearized by introducing zui = xuiλui and setting

λuiminxui ≤ zui ≤ λuimaxxui (10)

λuimin(1− xui) ≤ λui − zui ≤ λuimax(1− xui) (11)

where λuimin /max = min /max{
∑n

v=u+1 t(u,v)xvi : x ∈ X̄} where X̄ is a suitable relax-

ation of the subprogram of (NC) which does not involve the quadratic constraints.

Proposition 3.1 In the application of the Sherali-Smith approach to (NC),

(i) for all i = 1, . . . , n and u = i+ 1, . . . , n, λuimin = 0 holds.
(ii) for a given u = 1, . . . , n, we have λuimax = λui

′

max for all i, i′ <= u.

Proof. (i) It is easy to see that λuimin = 0 for any X̄ as we can always have a solution in
X̄ such that xvi = 0 for all v = u+ 1, . . . n.

(ii) Given 1 < u ≤ n, let X̄ be any relaxation of (NC) which may include the capacity
constraints and let 1 ≤ i < i′ ≤ n, we have λuimax = max{

∑n
v=u+1 t(u,v)xvi : x ∈

X̄} and λui
′

max = max{
∑n

v=u+1 t(u,v)xvi′ : x ∈ X̄} as we can see that the contraints
and the objective are totally separable and interchangeable for i and i′. Thus,
λuimax = λui

′

max = λumax for any relaxation X̄.
�

Hence, as λuimax = λui
′

max for all i, i′ <= u (Proposition 3.1(ii)), let λumax denote this
common value.

Remark 1 λnmax = 0.

Proof. The remark obviously follows from the formula λnimax = max{
∑n

v=n+1 t(n,v)xvi :

x ∈ X̄}. �

Taking into account Proposition 3.1 and setting hui = λui − zui, we can rewrite the
linearization constraints (9), (10) et (11) as follows:

n∑
v=u+1

t(u,v)xvi = hui + zui, (12)

0 ≤ zui ≤ λumaxxui (13)

0 ≤ hui ≤ λumax(1− xui) (14)

6
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We can then state the compact linearized (NC) model (called p-BL-NC for preliminary
bilinear NC ) as follows.

(p-BL-NC) min
1

2

n∑
u=1

Tu −
n∑

i=1

n∑
u=i

zui (15)

s.t.:
n∑

v=u+1

t(u,v)xvi = hui + zui i = 1..n, u = i..n (16)

n∑
u=i

xuiTu −
n−1∑
u=i

zui ≤ C i = 1..n (17)

constraints (2), (3)

0 ≤ zui ≤ λumaxxui i = 1..n, u = i..n (18)

0 ≤ hui ≤ λumax(1− xui) i = 1..n, u = i..n (19)

xui ∈ {0, 1} i = 1..n, u = i..n

Since optimal solutions of (p-BL-NC) should maximize as much as possible the variables
zui for i = 1, . . . , n and for u = i, . . . , n, we note that the variables hui play the role of
slack variables in (16). The latter is the only constraint involving hui except the bound
constraint (19). Hence, without loss of generality, we can eliminate the variables hui from
the model, leading to the equivalent formulation.

(g-BL-NC) min
1

2

n∑
u=1

Tu −
n∑

i=1

n∑
u=i

zui

s.t.:

n∑
v=u+1

t(u,v)xvi ≥ zui i = 1..n, u = i..n (20)

constraints (17), (2), (3)

0 ≤ zui ≤ λumaxxui i = 1..n, u = i..n

xui ∈ {0, 1} i = 1..n, u = i..n

where (g-BL-NC) stands for generic bilinear NC.
Note that in [13], the general forms of (p-BL-NC) and (g-BL-NC) have also been pre-
sented. The latter is only a relaxation of the former in the general case. In spite of this,
the authors in [13] show that the general form of (g-BL-NC) outperforms the one of
(p-BL-NC) in their numerical experiments. By above arguments, in the case of (NC), we
can deduce the following stronger theoretical result.

Proposition 3.2 The optimal values of the linear programming relaxation of (p-BL-
NC) and (g-BL-NC) coincide.

3.2 First estimates of the upper-bound parameters and the model (BL-NC)

In this section, we discuss how to estimate the parameters λumax for u = 1, . . . , n
in (g-LB-NC). Recall that in the original method suggested in [13], λuimax =
max{

∑n
v=u+1 t(u,v)xvi|x ∈ X̄} where X̄ is suitable relaxation of the subprogram of (NC)

which does not contain the quadratic constraints. A first way of estimating λuimax is to

7
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simply pick X̄ = {0, 1}n which implies λuimax =
∑n

v=u+1 t(u,v) for all i = 1, . . . , u. We
obtain then the following model.

(BL− NC)



min
1

2

n∑
u=1

Tu −
n∑

i=1

n∑
u=i

zui

s.t.:
n∑

v=u+1

t(u,v)xvi ≥ zui i = 1..n, u = 1..n

constraints (17), (2), (3)
n∑

i=1

i−1∑
u=1

xui = 0

0 ≤ zui ≤

(
n∑

v=u+1

t(u,v)

)
xui i = 1..n, u = 1..n

xui ∈ {0, 1} 1 ≤ i < u ≤ n

3.2.0.2 .

Proposition 3.3 The linear programming relaxation of (BL-NC) is weaker than the
one of (L-NC).

Proof. We can see that the linear programming relaxation of (L-NC) can be rewritten
as follows.

min
1

2

n∑
u=1

Tu −
n−1∑
i=1

n−1∑
u=i

n∑
v=u+1

t(u,v) min(xui, xvi)

s.t.:
n∑

u=i

xuiTu −
n−1∑
u=i

n∑
v=u+1

t(u,v) min(xui, xvi) ≤ C i = 1..n

constraints (2), (3)
xui ∈ [0, 1] 1 ≤ i ≤ u ≤ n

and the one of (BL-NC) is equivalent to

min 1
2

∑n
u=1 Tu −

∑n
i=1

∑n−1
u=1 min(

∑n
v=u+1 t(u,v)xvi,

(∑n
v=u+1 t(u,v)

)
xui)

s.t. :

n∑
u=i

xuiTu −
n−1∑
u=1

min(

n∑
v=u+1

t(u,v)xvi,

(
n∑

v=u+1

t(u,v)

)
xui) ≤ C i = 1..n

constraints (2), (3)
n∑

i=1

i−1∑
u=1

xui = 0

xui ∈ [0, 1] 1 ≤ i < u ≤ n

As we have
∑n

v=u+1 t(u,v) min(xui, xvi) ≤ min(
∑n

v=u+1 t(u,v)xvi,
(∑n

v=u+1 t(u,v)
)
xui)

where xui ∈ [0, 1] for all 1 ≤ i < u ≤ n, (L-NC) has a tighter capacity constraint
and a tighter objective than (BL-NC). �

8
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3.3 Improved estimates of upper-bound parameters and the model
(S-BL-NC)

Clearly, to improve the quality of the n bounds λumax (more precisely n−1 since λnmax = 0
(see Proposition 3.1)), we should take a set X̄ more complicated than the set {0, 1}n.
For each 1 ≤ u ≤ n− 1, by Propostion 3.1, we can estimate λumax by fixing any 1 ≤ i ≤ u
and by maximizing

∑n
v=u+1 tvixvi with the variables xvi for 1 ≤ v ≤ n, over a subset of

constraints X̄u
i of (NC) which involves these variables. It is interesting to remark that

in view of the separable character of (NC), such a subset X̄u
i will contain at most one

quadratic capacity constraint. The following proposition tells us how to choose X̄u
i as

tight as possbile.

Proposition 3.4 The set X̄u
i defined as

X̄u
i = {

n∑
v=i

xviTv −
n−1∑
v=i

n∑
v′=v+1

xvixv′it(v,v′) ≤ C and xvi ∈ {0, 1} for v=i,..,n}

is as tight as possible for the estimation of λumax.

Proof. We can see that all the constraints of (NC) are separable in i, the second index
of the variables xui except the constraints (2). But when i is fixed, the constraints (2)
together with the constraints (3) can be reduced to just xvi ≤ 1 for v = i, . . . , n which is
implied by the constraints xvi ∈ {0, 1}. �

The constraints in X̄u
i can be linearized by classical linearization. As the 0/1 constraints

are imposed, we obtain an equivalent set. Hence, denoting λ̄umax the parameter estimated
by maximizing

∑n
v=u+1 tvixvi over X̄u

i , λ̄umax can be obtained by solving the following
0/1 linear program.

λ̄umax = max

n∑
v=u+1

tvxv

s.t.:
n∑

v=i

xvTv −
n−1∑
v=i

n∑
v′=v+1

yvv′t(v,v′) ≤ C

yvv′ ≤ xv
yvv′ ≤ xv′ for all i ≤ v < v′ ≤ n
xv ∈ {0, 1} for all u ≤ v ≤ n

where xv denotes xvi for v = i, .., n as i is fixed.
In the sequel, we denote (S-BL-NC) the model deduced from (BL-NC) in Section 3.2 by
substituting the bounds

∑n
v=u+1 tvi with λ̄umax. Finally, we establish theoretical relation-

ships between the continuous relaxations of (BL-NC) and (S-BL-NC) in the following
proposition.

Proposition 3.5 The linear programming relaxation of (S-BL-NC) is stronger than
the one of (BL-NC).

Proof. This simply follows from the fact that X̄u
i ⊂ {0, 1}n−u+1. �

We will see in the next section that in fact in all numerical experiments that we have

9
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conducted, the linear relaxation of (S-BL-NC) turns out to be signicantly stronger than
the one of (L-NC). A possible explanation (though not a formal proof) of this is as
follows. We can see that the sum

∑n
v=u+1 tvixvi is a part to be maximized of both the

objective function and the capacity constraints. This fact together with the zero-one
constraints (considered collectively) are taken into account in the computation of λ̄umax

while in classical linearization, only the zero-one constraints have been considered. In
general, this advantage could be balanced by the fact that the classical linearization use
better the zero-one constraints as it considers them invidually. But in the case of GPCC,
it is particularly favorable for applying the Sherali-Smith’s method as the quadratic terms
are the same in both the objective function and the constraints.

4. Computational results

In this section, we present computational results comparing the three linearized mod-
els (L-NC), (BL-NC) and (S-BL-NC). First, we compare the three models in term of
computational efficiency and strength of their linear programming relaxations. Next, we
compare the efficiency of the three models at getting exact 0/1 optimal solutions by
branch-and-bound.
The test set is composed of 9 randomly generated instances of GPCC with a number of
nodes n ∈ {30, 40, 50}. These instances have been generated as follows.

• First, n points with coordinates (ai, bi) in 2-dimensional space are generated randomly
by drawing independently ai and bi from the uniform distribution on the interval
[0, 1000].

• Next, a positive weight wi drawn from uniform distribution on the interval [wmin, wmax]
and assigned to each of the n above points.

• Then the capacity of each link (i, j) is computed as:

t(i,j) =
wi × wj

(dist(i, j))2
× βij ,

where dist(i, j) =
√

(ai − aj)2 + (bi − bj)2 (the euclidian distance between j and i)
and βij is randomly chosen from the uniform distribution on [βmin, βmax], βmin and
βmax being to given positive numbers.

• Finally, the capacity upper-bound C is chosen experimentally in order to correspond
to the hardest possible instances for the considered methods.

We note that this way of choosing the capacity values t(i,j) is inspired from the so-
called ”gravity model” which is considered as realistic in the fields of transportation and
telecommunications [12]. For each value of n ∈ {30, 40, 50}, we generate three instances
(labelled v1, v2, v3 in the tables).
All experiments are run on a machine with i7-3820 Intel 3.60GHz 8 cores processor and
16 GB of RAM. The solver CPLEX 12.3 is used to solve all linear programs and mixed
integer programs. CPLEX is set to run using 8 threads in deterministic mode and using
the branch-and-bound algorithm only.

4.1 Comparing continuous relaxations

In this first experiment, we only seek to compute the continuous relaxations of (L-NC),
(BL-NC) and (S-BL-NC). For each instance, we report the CPU time, the objective
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function value and the integrality gap. The numerical results presented in Table 4.1

Table 4.1. Continuous relaxations comparisons

Ins.
(L-NC) (BL-NC) (S-BL-NC)

CPU value gap CPU value gap CPU value gap
30v1 4.11 44674.0 64.6% 0.47 29571 76.6% 0.48 52460.0 58.4%
30v2 4.55 20146.0 73.1% 0.45 15220 86.5% 0.44 63015.8 44.1%
30v3 3.58 58933.8 69.7% 0.43 42461 78.1% 0.44 82027.0 57.8%
40v1 12.37 6014.7 92.8% 0.75 5950 92.9% 0.82 47319.0 43.5%
40v2 16.34 28328.0 75.5% 0.78 21376 81.5% 0.80 76540.9 33.9%
40v3 15.19 14684.8 79.7% 0.74 10502 85.4% 0.83 44302.6 38.6%
50v1 29.02 6356.5 93.9% 1.50 3737 96.4% 1.32 31814.1 69.7%
50v2 28.55 1707.9 95.6% 1.21 1465 96.2% 1.29 16770.1 57.0%
50v3 37.66 24869.5 82.9% 1.52 17022 88.3% 1.57 64723.9 55.5%

confirm the theoretical result in Proposition 3.3 that the linear programming relaxation
of (BL-NC) is slightly weaker than the one of (L-NC). In spite of this, we can observe
that solving the linear programming relaxation of (BL-NC) is ten to twenty times faster
than solving the one of (L-NC). We will see in the next section that this turns out to
be a major advantage in branch-and-bound algorithms for solving GPCC. The linear
programming relaxation of (S-BL-NC) presents all the advantages:

• It is the strongest in all the tests. For most instances, the integrality gap is divided by
a factor 2 on average;

• The time for solving it is very short, nearly the same as for the linear programming
relaxation of (BL-NC).

These good characteristics of (S-BL-NC) result in reducing signicantly the time for solv-
ing GPCC by branch-and-bound algorithms and thus leading to a significant increase in
the size of the instances solved to optimality as compared with the tests in [1].

4.2 Comparing exact solutions

We now present results on the computations for exact solutions for GPCC using respec-
tively the models (L-NC), (BL-NC) and (S-BL-NC). We solve the three models by using
the CPLEX 12.3 solver. To ensure that comparisons will not be biased, we switch off the
CPLEX pre-solve and inactivate all its generic MIP cuts. Thus the algorithm used to
solve the three models is in fact a branch-and-bound algorithm based on its linear relax-
ation. We set the CPU time limit equal to 7200 seconds. For each model and instance,
we report in Table 4.2 the CPU time and the number of nodes in the branch-and-bound
search tree. It can be seen from the table that (S-BL-NC) is the most efficient model
for branch-and-bound algorithms. The two ”compact” models (BL-NC) and (S-BL-NC)
generate more nodes in branch-and-bound trees than (L-NC) but as the time required for
solving the linear relaxation is much smaller than for (L-NC), these two models can ex-
plore more branch-and-bound nodes and reach the exact optimal solutions more quickly
than (L-NC). Note that we have included in the CPU time of (S-BL-NC) the additional
time for computing the n bound parameters λumax for u = 1, . . . , n. Even with this, the
reduction of CPU time is important by a factor up to 20 for the larger instances. It is
interesting to note that although the (S-BL-NC) model turns out to be stronger than
(L-NC) at the root node of the branch-and-bound tree as observed in Section 4.1, the
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Table 4.2. Exact solution comparisons

Ins.
(L-NC) (BL-NC) (S-BL-NC)

CPU Nodes CPU Nodes CPU Nodes
30v1 19.4 593 4.2 3485 8.3 2211
30v2 105.2 9654 17.1 28964 14.8 16860
30v3 21.0 733 2.4 2440 7.6 2076
40v1 2235.0 14906 342.1 195508 202.6 72989
40v2 7200 * 48172 4475.3 2780683 366.9 188515
40v3 1835.4 21647 493.4 403661 209.8 151315
50v1 4056.6 9671 339.9 73296 221.2 36636
50v2 619.8 1081 186.9 42442 156.2 14202
50v3 7200 ** 10018 2482.2 531678 646.9 85575
* . Time limit exceeded, gap of the best known solution: 7.9%
**. Time limit exceeded, gap of the best known solution: 36.3%

former generates more nodes than the latter in branch-and-bound search trees. A pos-
sible explanation is that once computed, the parameters λumax are fixed thoughout the
branch-and-bound process and thus the linear relaxation of (BL-NC) may loose its ad-
vantage comparing with the one of (L-NC) once a number of binary variables xui have
been fixed.

5. Conclusions and perspectives

Several models for the graph partitioning problems with cluster capacity constraints have
been discussed and compared, highlighting the superiority of models based on bilinear re-
formulation of the quadratic constraints. Exact solutions of instances involving complete
graphs with up to 50 nodes have been reported where for one of the largest instances, the
proposed method yields the optimal solution within about 10 minutes while the classical
linearized model only gives a feasible 0/1 solution with 36.3% residual gap after two
hours. A key ingredient in achieving efficiency is the computation of stronger bounds for
the additional variables linearizing the bilinear expressions. In the experiments reported,
these bounds are computed only once at the root node of the branch-and-bound tree. An
interesting direction for future investigation would be to recompute these bounds in the
course of the branch-and-bound process in an attempt at further reducing the number
of nodes explored. This is left to future research.
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