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Abstract

The identification of transcription factor binding sites (TFBSs) on genomic DNA is of crucial importance for understanding
and predicting regulatory elements in gene networks. TFBS motifs are commonly described by Position Weight Matrices
(PWMs), in which each DNA base pair contributes independently to the transcription factor (TF) binding. However, this
description ignores correlations between nucleotides at different positions, and is generally inaccurate: analysing fly and
mouse in vivo ChIPseq data, we show that in most cases the PWM model fails to reproduce the observed statistics of TFBSs.
To overcome this issue, we introduce the pairwise interaction model (PIM), a generalization of the PWM model. The model is
based on the principle of maximum entropy and explicitly describes pairwise correlations between nucleotides at different
positions, while being otherwise as unconstrained as possible. It is mathematically equivalent to considering a TF-DNA
binding energy that depends additively on each nucleotide identity at all positions in the TFBS, like the PWM model, but
also additively on pairs of nucleotides. We find that the PIM significantly improves over the PWM model, and even provides
an optimal description of TFBS statistics within statistical noise. The PIM generalizes previous approaches to interdependent
positions: it accounts for co-variation of two or more base pairs, and predicts secondary motifs, while outperforming
multiple-motif models consisting of mixtures of PWMs. We analyse the structure of pairwise interactions between
nucleotides, and find that they are sparse and dominantly located between consecutive base pairs in the flanking region of
TFBS. Nonetheless, interactions between pairs of non-consecutive nucleotides are found to play a significant role in the
obtained accurate description of TFBS statistics. The PIM is computationally tractable, and provides a general framework
that should be useful for describing and predicting TFBSs beyond PWMs.
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Introduction

Gene regulatory networks are at the basis of our understanding

of cell states and of the dynamics of their response to

environmental cues. Central effectors of this regulation are

Transcription Factors (TFs), which bind on short DNA regulatory

sequences and interact with the transcription apparatus or with

histone-modifying proteins to alter target gene expressions [1].

The determination of Transcription Factor Binding Sites (TFBSs)

on a genome-wide scale is thus of central importance, and is the

focus of many current experiments [2]. In eukaryotes the TF

binding specificity is only moderate, meaning that a given TF may

bind to a variety of different sequences in vivo [3]. The collection of

such binding sequences is typically described by a Position Weight

Matrix (PWM) which simply gives the probability that a particular

base pair stands at a given position in the TFBS. The PWM

provides a full statistical description of the TFBS collection when

there are no correlations between the occurrences of nucleotides at

different positions. In addition, the PWM description has a simple

biophysical interpretation: it is exact in the special case where

base-pairs of the TFBS contribute additively to the TF-DNA

binding free energy at thermodynamic equilibrium, provided that

the TF concentration is far from saturation [4–6].

Despite the widespread use and success of PWMs, there is

mounting evidence that its central hypothesis of independence

between positions is not always justified. Several works have

reported cases of correlations between nucleotides at different

positions in TFBSs [7–11]. A systematic in vitro study of 104 TFs

using DNA microarrays has revealed a rich picture of binding

patterns [10], including the existence of multiple motifs, strong

nucleotide position interdependence, and variable spacers between

determining subregions, none of which can be described by

PWMs. Recently, the in vitro specificity of several hundred human

and mouse DNA-binding domains was investigated using high-

throughput SELEX. Correlations between nucleotides were found

to be widespread among TFBSs and predominantly located

between adjacent flanking bases in the TFBS [11]. However,

TFBSs in vivo are certainly determined in multiple ways besides in

vitro measured TF binding affinities and the extent of correlations

between their nucleotide positions remains to be fully assessed.

On the computational side, a number of probabilistic models

have been proposed to describe nucleotide correlations in TFBSs,
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generally based on specific simplifying assumptions, such as

mutually exclusive groups of co-varying nucleotide positions

[8,12–14] or the computationally-friendly probabilistic structures

of Bayesian networks or Markov chains [11,15–17]. A systematic

and general framework is yet to be applied to account for and to

analyze the rich landscape of observed TF binding behaviours.

The recent breakthrough in the experimental acquisition of

precise, genome-wide TF-bound DNA regions with the ChIPseq

technology offers the opportunity to address these two important

issues.

Here, using a variety of ChIPseq experiments coming both from

fly and mouse, we first show that the PWM model generally does

not reproduce the observed in vivo TFBS statistics for a majority of

TFs. This calls for a refinement of the PWM description that

includes interdependence between nucleotide positions.

To this purpose, we propose the general Pairwise Interaction

model (PIM), which generalizes the PWM model by accurately

reproducing pairwise correlations between nucleotides in addition

to position-dependent nucleotide usage. The model derives from

the principle of maximum entropy, which has been recently

applied with success to a variety of biological problems where

correlations play an important role, from the correlated activity of

neurons [18–21] to the statistics of protein families [22–26] to the

alignment of large animal flocks [27–29]. In a thermodynamical

model of TF-DNA interaction, the PIM amounts to including

general effective pairwise interactions between nucleotides [30].

The PIM offers a systematic and general computational frame-

work allowing one to determine and analyze the landscape of TF

binding in vivo.

We find that the in vivo TFBS statistics and predictability are

significantly improved in this refined model. We consider, for

comparison, a model that describes the statistics of TFBSs as a

statistical mixture of PWMs [15,31]. This alternative model can

directly capture some higher-order correlations between nucleo-

tides, but is found to be outperformed by the PIM for all

considered TFs. Further, the PIM can recapitulate the multiplicity

of motifs predicted by the PWM mixture model: by studying the

landscape of the PIM and its structure of local energy minima, or

probability peaks, we show that each basin of attraction or valley

around a local energy minimum is generally dominantly described

by one PWM in the mixture model.

The difference between the PIM and the PWM model lies in the

pairwise interaction between nucleotides. Surprisingly, despite

significant differences in prediction accuracy between the two

models, these interactions are fairly weak, sparse and found

dominantly between consecutive nucleotides, in general qualitative

agreement with in vitro binding results [11]. Comparison with a

model restricted to interactions between consecutive nucleotides

show that interactions between pairs of nucleotides that are farther

apart nonetheless play a significant role in the prediction

improvement.

The PIM only requires a modest computational effort, and the

refined description of TFBS that it affords should generally prove

useful when enough data is available.

Results

The PWM model does not reproduce the TFBS statistics
We first tested how well the usual PWM model reproduced the

observed TFBS statistics. Specifically, we asked how well the

frequencies of different TFBSs were predicted using only single

nucleotide frequencies. For this purpose, we used a collection of

ChIPseq data available from the literature [32–34], both from D.

Melanogaster and from mouse embryonic stem cells (ESC) and a

myogenic cell line (C2C12). For a given TF, the ChIPseq data

consist of an ensemble of DNA sequences, the ChIPseq fragments,

each a few hundred nucleotides long. The exact positions of the

TFBSs are unknown on each of these sequences. They are

determined as L-mers (we take here L~12) that have a score for

the PWM above a given threshold score (here we chose to adjust

the threshold score so that 50% of the ChIPseq fragments have at

least one L-mer above the threshold score -typically, there are one

or two L-mers above the threshold score on these ChIP fragments).

This set of high-scoring L-mers provides a collection of putative BS

s for the TF considered. From these, a PWM can be buil t in the

usual way by counting the frequencies of the 4 possible nucleotide

s at each position 1,…,L. However, this PWM does not coincide in

general with the one that served to determine the set of putative

TFBS s. To determine self-consistently the collection of binding

sites for a given TF from a collection of ChIPseq fragments, we

thus iteratively refined the PWM together with the set of putative

TFBSs in the ChIPseq data (see Figure 1 and Methods for a detailed

description). This process ensured that the frequency of different

nucleotides at a given position in the considered set of binding sites

(the high-scoring L-mers) was exactly accounted for by the PWM.

We then enquired whether the frequencies of the different

binding sites in the set agreed with that predicted by the PWM, as

would be the case if the probabilities of observing nucleotides at

different positions were independent. Figure 2 shows the results for

three different TFs, one from each of the three considered

categories: Twist (Drosophila), Esrrb (mammals, ESC), and MyoD

(mammals, C2C12). The independent PWM model strongly

underestimates the probabilities of the most frequent sequences.

Moreover, the PWM model does not correctly predict the

frequency order of the sequences and attributes comparable

probabilities to these different sequences, in disagreement with

their observed frequencies.

To get a full measure of the discrepancy between the observed

distribution of TFBSs and the PWM prediction, we calculated the

relative entropy, or Kullback-Leibler divergence (DKL), between

the two distributions [35] (see Methods). The DKL is zero i f the two

distributions are identical and is positive otherwise. We found that

for most TFs (22 out of 28), the DKL divergence was significantly

larger than expected just from finite-sampling error noise (see

Figure 2D). In the following, we focus on the 22 factors, for which

the PWM description of the TFBSs needs to be refined. Note that

the 6 factors that are satisfactorily described by the PWM model

are predominantly those for which the smallest number of ChIP

sequences was available (see Table 1 and Figure S1 in File S1, blue

names).

Pairwise interactions in the binding energy improve the
TFBS description

The discrepancy between the observed statistics of TFBSs and

that predicted by the PWM model calls for a re-evaluation of the

model’s main hypothesis, namely the independence of bound

nucleotides. To account for the correlative structure of TFBS

statistics, we wish to construct a model that assigns a frequency to

each of the possible 4L L-mers such that, given a data of observed

L-nucleotide long binding sequences, the model reproduces:

i) the frequency counts of the 4 nucleotides at each position in

the sequence data, (e.g. 40% of nucleotides at the third

position are C and 60% at the fifth position are T), as the

PWM does,

ii) the frequency counts of each pair of nucleotides in the

sequence data (e.g. 40% of pairs of nucleotides at the third

and fifth position are (C,T); that is a C at the third position is

A General Pairwise Interaction Model
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always associated to a T at the fifth position and not only in

60% of the cases as would be expected for independently

bound nucleotides).

There are many models that can achieve these two require-

ments. In order to precisely specify a single one, we ask that the

model probability distribution exactly reproduces the frequency

counts of single nucleotides and pairs of nucleotides in the

sequence data but is otherwise as unconstrained as possible. This is

the principle of maximum entropy. This provides a natural

generalization of the PWM model since the PWM model is the

maximum entropy model that reproduces the frequencies of single

nucleotides (condition i) above). Specifically, call P½s1:::sL� the

model probability of a given TFBS sequence (s1:::sL). One can

show (see Methods) that the model distribution has the following

form, referred to as the Pairwise Interaction model (PIM)

hereafter:

P½s1:::sL�~(1=Z) exp ({H½s1:::sL�), ð1Þ

Z is a normalization constant that ensures that the sum of

probabilities of the different sequences is one. As an example,

P(TACATATGTATA)~0:09 means that the model predicts

that 9% of the sequences in the sequence data are the nucleotide

sequence TACATATGTATA. As written under the form (1), the

quantity H½s1:::sL�) can be interpreted as the binding ‘‘energy’’ (in

suitable units) of the considered TF for the nucleotide sequence

½s1:::sL�. Note that with the sign convention used, the more

frequent the sequence, the lower or more negative its binding

energy is and the stronger its binding to the TF.

The PIM binding energy H is made of two kinds of terms:

H½s1:::sL�~

{
XL

i~1

hi(si){
XL

i~1

X
jvi

Ji,j(si,sj), si[fA,C,G,Tg:
ð2Þ

The first sum comprises the binding energies of the individual

nucleotides, with {hi(si) the contribution to the binding energy of

nucleotide si at position i. The second sum comprises the ‘pairwise

interactions’, a modification of the binding energy that take s into

account pairs of nucleotides in the sequence. Namely, for a

sequence with a C a t the third position and a T at the fifth, the

contribution of these two bases to the binding energy is not only

the sum ({h3(C){h5(T)) of the independent contributions but it

also includes a pairwise term {J3,5(C,T).

This is an example of an inverse problem, where energies are

devised from observed frequencies. As mentioned in the introduc-

tion, such problems have recently been studied in a variety of

biological contexts [18–22,24,27–29]. In principle, the number of

energy parameters in the PIM (the hi(s)s and the Ji,j(s,s’) s) is

sufficient to reproduce the observed values of all single nucleotide

frequency counts (requirement i) above) and the frequencies of all

pair s of nucleotides (requirement ii) above), that is all pairwise

correlations between nucleotides at different positions (see

Methods). However, trying to fit each of these frequencies would

carry the risk of over-fitting the data with an unrealistically large

number of parameters. To avoid this, we instead maximized the

likelihood of the data under the model, but with a penalty

proportional to the numbers of parameters involved, as provided

by the Bayesian Information Criterion (BIC) [36] (see Methods). In

addition, just as in the procedure described previously for the

PWM model, the PIM and the collection of TFBSs for a given

factor were iteratively refined together, as schematized in Figure 1.

This is an important step to ensure that the sequence s selected by

the model are identical to the sequences that serve to determine

the parameters of the model.

Figure 3 shows that the PIM greatly improves the description of

TFBS statistics for the three factors chosen for illustrative

purposes. Where the PWM model failed at reproducing the

strong amplitude and non-linear decrease in the frequencies of the

most over-represented TFBSs, the PIM provides a substantial

improvement in reproducing the observed statistics. The improve-

ment is most apparent when comparing the frequencies of the ten

most observed TFBSs between the model and the ChIPseq data

(Figure 3 A, C, E), and is further illustrated by the statistics of the

full collection of TFBSs (Figure 3 B, D, F).

The PIM ranks binding sites differently from the PWM
model

Precise predictions of TFBSs are one important output of

ChIPseq data. They condition further validation experiments such

Figure 1. Workflow. An initial Position Weight Matrix (PWM) is used to find a set of binding sites on ChIPseq data. Models are then learned using
single-point frequencies (PWM), two-point correlations (PIM) or a mixture of PWM models learned on sites clustered by K-Means with increasing
complexity, i.e. increasing number of features in the model. Finally the models with best Bayesian Information Criteria (BIC) are used to predict new
binding sites until convergence to a stable set of TFBSs.
doi:10.1371/journal.pone.0099015.g001
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as gel mobility shift assays or mutageneses. Therefore, we assessed

the difference in TFBS predictions between pairwise (PIM) and

independent (PWM) models.

First, we compared the set of ChIP sequences retrieved by the

two models at the cutoff of 50% TPR (True Positive Rate) used in

the learning scheme, as shown in Figure 4A. The fraction of

ChIPseq sequences picked by one model but not by the other

ranged from a few percent for Esrrb, up to about 15% for Twist.

Thus, even when stemming from the same ChIPseq data, the two

models could predict significantly distinct sets of TFBSs.

Second, using the set of ChIPseq peaks on which the PIM was

learned, we looked for the best predicted binding sites on each

ChIPseq bound fragment using both the PWM model and the

PIM (Figure 4B and Table 1). The overlap was found to be about

Figure 2. Observed TFBS frequencies are poorly predicted by a PWM model. Given a set of TFBSs predicted by the PWM model on ChIP
fragments, we computed the TFBS frequencies (how many times a given sequence appears in the set, gray bars), and compared them to the PWM
predicted frequencies (blue bars) computed using single nucleotide frequencies alone. We show the results for the 10 most frequent sequences for
the TFs Twist (A), Esrrb (B) and MyoD (C). We can see that the use of single nucleotide frequencies alone does not allow one to reproduce the
statistics of the most observed binding sites. (D) Kullback-Leibler Divergence (DKL) between the observed probability distribution and the PWM
model distribution (blue). As a control we show the mean (cyan bars) along with two standard deviations of the DKL between the PWM model and a
finite sample drawn from it (see Methods). A significant discrepancy between the observed and predicted sequence probabilities is reported for 22
out of 28 factors.
doi:10.1371/journal.pone.0099015.g002
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80% on average. We also computed the overlap between the sets

comprising the two best TFBSs of each ChIPseq. When the

selected fragments typically contained more than one TFBS, this

resulted in an increase in overlap (e.g for Fosl1, Max, N-Myc,

USF1). Conversely, the overlap between the models was decreased

when the fragments typically contained one or less TFBS (e.g

CTCF, Esrrb).

Figure 3. Models with correlations improve TFBS statistics prediction. Similarly to Figure 2, we show the observed frequencies (gray bars) of
the most represented TFBSs for Twist (A), Esrrb (B) and MyoD (C) TFs, together with the probabilities of these sequences predicted by the PWM model
(blue bars), the PIM taking into account interactions between nucleotides (red bars), and the PWM-mixture model (green bars). (B,D,F) show the
comparison between frequencies for all binding sequences and predicted sequence probabilities for the three models (same color code). The
predicted probabilities of the PIM and to a lesser extent of the mixture model are in much better agreement with the observed frequencies than
those of the PWM model.
doi:10.1371/journal.pone.0099015.g003
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In conclusion, we found that the TFBS predictions made by the

two models could differ significantly both in the rank of ChIPseq

fragments and in the rank of binding sites on these fragments.

Comparison with a PWM-mixture model
An underlying assumption of the PWM model is that there

exists a preferred consensus sequence, of which other sequences

are close variants. Some authors have instead analyzed the binding

specificity of transcription factors by introducing multiple

preferred sequences [31]. This naturally leads to a model

consisting of a mixture of PWMs [15]. Such a description is a

straightforward generalization of the PWM model, but potentially

captures higher-order correlations than just pairwise correlations.

To be able to compare with the PIM, we learned PWM-mixture

models from the same ChIPseq data as previously. A mixture of K

PWMs was generated by grouping TFBSs into K clusters. As with

the PIM, the number of clusters K was constrained to avoid over-

fitting by penalizing the model likelihood using the BIC. For a

given TF, the PWM mixture and the collection of TFBSs in the

ChIPseq data were refined iteratively until convergence, usually

reached after 10 iterations (see Methods for details). The results are

shown in Figure 5A for the three representative factors: Twist,

Esrrb and MyoD.

The best description of Twi ChIPseq data is, for instance,

provided by a mixture of 5 PWMs, which corresponds to 184

independent parameters. The mixture model yields a significant

improvement compared to the single-PWM model, and milder

ones for Essrb and MyoD. In the three cases however, it does

perform as well as the PIM.

Figure 5B shows the performances of the different models for all

studied TFs using the Kullback-Leibler Divergence or DKL

between the observed distribution and the model distribution. The

mixture model improves over the single-PWM model for 12 out of

28 TFs. The improvement is particularly good in the cases where

the binding site has a palindromic structure (eg Twi, MyoD,

Myog, Max, USF1). This may be explained by the fact that the TF

binds DNA as a dimer, which could give some concreteness to the

mixture model: the recruitment of different partners by bHLH

factors like MyoD or Myog could have in fact led a mixture of TFs

to bind to the set of considered binding sites. In all studied cases

however, the PIM clearly outperforms the other models.

As in the PWM case, the finite size of the datasets leads us to

expect fluctuations in the estimation of the DKL. In order to assess

the magnitude of these finite-size fluctuations, we computed the

average DKL between the best-fitting PIM and a finite-size

artificial sample drawn from its own distribution, as shown in

Figure 5B. Values of this DKL that are larger than the one

obtained with the real dataset are indicative of overfitting, while

the opposite case would suggest that the model is incomplete. In all

cases, however, the DKL obtained with this control procedure was

within error bars of the value computed with respect to the

observed sample, with the exception of NRSF, MyoD, and Myog,

as seen in Figure 5B. We thus conclude that the PIM is generally

the best possible model given the available dataset.

Figure 4. Overlap between predicted TFBSs. (A) Venn diagrams showing the overlap between the ChIP predicted by the PWM model(blue) and
PIM (red). (B) Difference (one minus the proportion of shared binding sites) between the best binding sites predicted by the PIM and PWM model on
ChIPseq peaks (light red), and the same quantity when including the next best predicted binding sites on each peak (dark red). In several cases (e.g.
Fosl1, Max, N-Myc, Srf, STAT3, Usf1), the difference between predicted binding sites is much smaller when the two best binding sites are considered,
indicating that the PIM and the PWM model rank differently the two best binding sites in ChIP peaks with multiple bound sites.
doi:10.1371/journal.pone.0099015.g004
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Multi-peaked structure of the model
The connection between the PIM and the PWM-mixture model

can be further explored by considering the binding energies of all

possible L-mers. This can be viewed as the ‘‘ energy landscape’’ of

the PIM in the space of all possible binding nucleotide sequences.

The ‘‘energy’’ of a sequence is defined in term of its probability

(i.e. how frequently it appears in a set of binding sites) by

{ log P½s1, . . . ,sL� (Eq. 2) so that sequences that have a lower

energy are more probable. Peaks of the probability distribution in

the space of all possible L-mers therefore correspond to sequences

that have a lower energy than neighboring ones. By contrast with

the simple, single-minimum energy well of the PWM model

corresponding to the consensus sequence, the PIM may have

multiple local energy minima or probability peaks. This a general

feature of of this type of models in which the parameters, the hi(s)s
and the Ji,j(s,s’) in Eq. (2), vary with position i, the so-called

‘‘disordered systems’’ [37]. Starting from any given sequence, and

iteratively lowering the energy by single-nucleotide changes, one

necessarily ends up in a sequence which is a local minimum. The

collection of sequences falling into a particular local minimum

defines its basin of attraction (see Methods for details). For each

local minimum, we constructed a PWM model from the sequences

in its basin of attraction, and associated a weight proportional to its

size. We compared these PWMs to those of the mixture model, by

calculating their DKL. This gave an effective distance which

allowed us to associate each local minimum to the nearest PWM of

the mixture model.

Using this procedure, we computed the set of PWMs and

weights corresponding to the PIM inferred from the 22 TFs for

which the PWM did not offer a satisfying description. Examples

are shown in Figure 6. In the case of Twist, the PWMs

corresponding to different local minima, can be clearly associated

to the K~5 PWMs of the mixture model. For MyoD, three of the

5 PWMs based on local minima can be clearly assigned to PWMs

of the mixture model. The other two have a more spread out

representation. The case of Esrrb is similar: while one local

minimum has a clear correspondence with a PWM of the mixture

model, the other does not. The correspondence between the two

models is shown in Figure S3 in File S1 for the other TFs.

This representation allows one to identify interesting features

captured by the PIM. For example, in the case of Twist, most of

the correlations are coming from the two nucleotides at the center

of the motif, which take mainly 3 values among the 16 possible:

CA,TG and TA. In the case of MyoD, the representation makes

Figure 5. Model selection. (A) Minimisation of the Bayesian information criterion (BIC, see Methods) is used to select the optimal number of model
parameters and avoid over-fitting the training set. The evolution of the BIC is shown for the PIM (red crosses) and the PWM-mixture model (green
lines) as a function of the number of model parameters. Shades from light to dark indicate the iteration number (main loop in Figure 1), the darkest
shade being assigned to the final model. (B) Kullback-Leibler divergences (DKL) between the PWM, PWM-mixture and PIM distributions and the
observed distribution for the different TFs, for the BIC optimal parameters. In all cases the PIM outcompetes both the PWM and PWM-mixture models.
The DKL between the PIM and a finite-size distribution of sequences drawn from it is also displayed (pink, see Methods) to assess the DKL magnitude
simply due to the finite number of TFBS in the dataset. The result show that the PIM generally fits the available dataset as well as possible given its
finite size. Error bars represent two standard deviations.
doi:10.1371/journal.pone.0099015.g005
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apparent the interdependencies between the two nucleotides

following the core E-Box motif, and the restriction to the three

main cases of CT, TC and TT.

Properties of the pairwise interactions
The inference of the PIM yields explicit values for the

interaction parameters Jij , allowing for an analysis of their

properties. In particular, we wondered how strong these interac-

tions were, and how their strength depended on the distance and

positions of the interacting nucleotides.

To estimate the strength of interaction between two positions,

we used the tool of Direct Information, originally introduced to

predict contacts between residues from large-scale correlation data

of protein families [38]. More specifically, we built the Normalized

Direct Information (NDI), a quantity ranging from 0 for non-

existing interactions, to 1 when interactions are maximum (see

Methods). Heatmaps displaying the results for the representative

Twist, Esrrb and MyoD factors are shown in Figure 7A, and in

Figure S4 in File S1 for the other factors. The direct information

between different nucleotides is rather weak—usually smaller than

10%—but substantially larger than the direct interaction between

Figure 6. PWMs corresponding to the different basins of attraction of the PIM. The DNA sequence variety described by each model is
illustrated using the software WebLogo [52]. Shown are PWMs built from all TFBS, from the PWM-mixture model, and from the basins of attraction of
the PIM for Twist (A), Esrrb (B), and MyoD (C). The attractor PWMs are grouped under the mixture PWMs with smallest distance (measured by DKL, in
bits). Heatmaps showing the DKLs between attractor PWMs and mixture PWMs are displayed on the right for each factor (minimal DKLs are in black).
The proportions of binding sites used for each logo are also indicated and serve to denote the corresponding PWM.
doi:10.1371/journal.pone.0099015.g006
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nucleotides in the surrounding background (1–3%, see Figure S5

in File S1). Interestingly, such weak pairwise interactions give rise

to a substantial improvement in the description of TFBS statistics,

similarly to what was previously found in the neural context [18].

The pairwise interactions are concentrated on a small subset of all

possible interactions. This can be made quantitative by computing

the Participation Ratio of the interaction weights, an indicator of

the fraction of pairwise interactions that accounts for the observed

Direct Information (see Methods). This analysis yielded typical

values of 10{20% for the Participation Ratio (Figure 7A and

Table 2), meaning that interactions tend to concentrate on a few

nucleotide pairs. We quantified in a similar way the extent of

correlations between nucleotides, using the mutual information

between different positions in the TFBSs for a given factor (see

Methods). As seen in Table 2, the pairwise interactions are found to

be more sparse than the correlations, consistent with the intuition

that correlations between pairs of positions in the sequences can

arise indirectly from a ‘path’ of interactions, even when there is no

direct interaction between nucleotides at the two positions.

The interaction strength can also be used to measure the typical

distance between interacting nucleotides. To that purpose, we

computed the relative weight of the Direct Information as a

function of the distance between nucleotides (see Methods).

Figure 7B shows box plots summarizing the results for the

considered TFs. Both plots show a clear bias towards nearest-

neighbor interactions with a strong peak for nearest neighbors,

and a rapid decrease for distances greater than one.

Finally, we asked how the interaction strength depended on the

position along the sequence. We found that interactions were

strongest in the flanking regions of the binding site, in clear anti-

correlation with the information content, which concentrates in

the central region (Figure 7C). These observations for TF binding

in vivo agree with similar ones made from a large recent analysis of

TF binding in vitro [11]. One way to rationalize them is that

nucleotide diversity is required for pairwise correlations to be

important.

The fact that nearest-neighbor interactions are found to be

predominant in our unbiased analysis may suggest that they are in

fact sufficient to reproduce the statistics of TFBS. This appears

interesting to test since PIM s restricted to nearest-neighbor

interactions are equivalent to first-order Markov models which are

computationally more tractable and in widespread use. In order to

assess this possibility, we therefore followed the same iterative

procedure as fo the PIM but only allowing the addition of nearest-

neighbor interactions. The results for the resulting Nearest-

Neighbor Model (NNM) are shown in Figure 8. Detailed results

as a function of the number of pairwise interactions are shown for

Twi, Esrrb and MyoD in Figure 8A. In the three cases, the PIM

allows one to introduce more interactions than the NMM without

overfitting the data, as measured by the BIC, and fits the data

significantly better than the NNM (Figure 8B). Even when one

restricts it self to the optimal number of interactions for the NMM,

the PIM does better than the NMM.

Figure 8C more generally summarizes the results for the 22

factors, the TFBS statistics of which is not accurately described by

the PWM model. While for some factors the PIM only mildly

improves over the NNM in terms of DKL (e.g USF1, Sox2, N-

Myc, Zfx), for many others there is a significant improvement,

sometimes leading to a more than 50% decrease of the DKL (e.g

Twi, Klf4, CTCF, MyoD), when comparison is made between the

two models with their optimal number of interactions (mean

improvement of 26%, see ‘‘PIM at PIM optimum’’ Figure 8C).

The improvement is smaller but exists for several factors even

when one considers the PIM with only the small number of

interactions (mean improvement of 12%) allowed to prevent

overfitting for the NMM (‘‘PIM at NMM optimum’’ Figure 8C).

To see how this better performance of the PIM arises together

with a prevalence of pairwise interactions between consecutive

nucleotides, we ranked the pairwise interactions in order of

decreasing strength (the absolute value of the Ji,j(s,s’)) and

monitored the number of interactions between consecutive

nucleotides as a function of interaction strength for Twi, Esrrb

and MyoD (Figure 8D). The majority of interactions between

consecutive nucleotides lie among the strong pairwise interactions.

Among the strong interactions, we observe a prevalence of

interactions between consecutive nucleotides, especially in the case

of Esrrb and MyoD. This is all the more striking that there are

many more possible non nearest-neighbor interactions than

nearest-neighbor ones. Yet, a number of longer range interaction

are also among the strongest ones. These play a significant role, as

evidenced by the better performance of the PIM over the NMM

for a number of factors, even when the number of parameters in

the PIM is restricted to number of interactions that is optimal for

the NMM. Past the 10 to 20 strongest nearest-neighbor

interactions, the number of nearest-neighbor interactions saturates

and weaker interactions between distant nucleotides start to

appear predominantly (Figure 8D). Although weaker, these are

more numerous than the nearest-neighbor couplings and, for a

number of TFs, play a significant role in improving the description

of TFBS statistics (Figure 8C).

Alternative representation of pairwise interactions by
Hopfield patterns

We also analysed the interaction matrix Jij in terms of

sequence-wide modes of co-variation, by diagonalizing it in an

orthonormal basis of eigenvectors jk, with corresponding real

eigenvalues lk. In this decomposition, the energy (Eq. (2)) can be

rewritten as (see Methods):

H~{
X

i

hi(si){
1

2

X4L

k~1

lk

XL

i~1

jk
i (si)

 !2

ð3Þ

This form is reminiscent of the Hopfield model [39], which was

introduced to describe neural memories as attractor patterns of the

neural dynamics, arising from pairwise interactions between

idealized binary neurons. Here, the role of the Hopfield patterns

is played by the eigenvectors jk. They offer an alternative way to

analyze the correlative structure of the pairwise interactions, as

already proposed in a mean-field context in [40], even though in

this case the presence of the local binding energies hi(s), prevents

the pattern sequences jk from being local energy minima in

sequence space. This spectral decomposition of the interaction

matrix is also similar in spirit to a principal component analysis.

We wondered how many patterns were necessary to approx-

imate the full interaction matrix J accurately. To address this

question, we rank ed the eigenvalues lk in order of decreasing

moduli and noted Jp the restriction of the interaction matrix

generated by the first p eigenvalues and their associated patterns.

The full interaction matrix naturally corresponds to J~J4L.

Approximate Normalized Direct Information matrices obtained

by keeping increasing numbers of dominant patterns are shown in

Figure 9 for the three considered representative factors. Pairs of

successive patterns appear to provide the main interaction

domains in this representation, as is particularly clear in the case

of MyoD. One can see in Figure 9 that J6 already closely
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approximates the full interaction matrix, a consequence of the fact

that the important interactions are concentrated on a few links

between pairs of nucleotides. In the eigenvalue spectrum of J, the

6 eigenvalues of highest moduli corresponding to these dominant

patterns show up as ‘outliers’ as compared to the bulk of the other

eigenvalues (Figure 9, red bars in the eigenvalues histograms).

Theoretical analyses in the context of protein structure prediction

have similarly found that large contributions to the interactions

come from localized patterns with the largest eigenvalues [25,26].

Discussion

The availability of ChIPseq data for many TFs is an opportunity

to revisit the question of nucleotide correlations in TFBSs, and to

propose alternative descriptions of TFBS ensembles beyond the

PWM [17]. To allow for a fair and consistent comparison between

different models, we have developed a workflow in which the

TFBS collection and the model describing them are simulta-

neously obtained and refined together. In addition, data overfitting

is a concern when comparing models with many parameters,

which we addressed using the BIC to penalize complex models.

We found that when enough data were available, the PWM

description, which assumes independence between nucleotides,

failed to reproduce the observed statistics of TFBSs. The

concomitant presence of correlations agrees with previous reports

[7,9,41] and with the conclusions of large scale in vitro TF binding

studies [10,11].

To refine the PWM description, we have proposed and

analyzed a model with general pairwise interactions (the PIM),

as well as a model using a mixture of PWMs. While the mixture

model somewhat improves over the PWM description, the PIM

achieves a much more significant and general improvement, and

can even be shown to be optimal given the amount of available

data. The PIM could account for higher-order correlations than

pairwise, superseding explicit descriptions in terms of multiple

motifs such the one provided by the PWM-mixture model.

Several other approaches have previously been proposed to

describe nucleotides correlations in TFBS, usually based on

computationally-friendly approaches such as a Markov models or

Bayesian networks [11,15,17] or focusing on strongly correlated

nucleotides pairs [12–14]. The PIM distinguishes itself from these

Figure 7. Location and strength of the nucleotide pairwise interactions. (A) Heat maps showing the values of the Normalized Direct
Information between pairs of nucleotides. The matrix is symmetric by definition. PWMs are shown on the side for better visualization of the
interacting nucleotides. The participation ratio R is indicated below each heat map. (B) Distances between interacting nucleotides. The box plots
show the relative importance of the Normalized Direct Information as a function of the distance between interacting nucleotides. Red dots denote
average values. (C) Sum of normalized direct informations in the TFBSs at a given position, averaged over all considered factors (blue line). The
average site information content relative to background as a function of position is also shown (red line). In both quantities, the average over the two
TFBS orientations has been taken.
doi:10.1371/journal.pone.0099015.g007

Table 2. Participation Ratios.

Name Part. Ratio DInorm Part. Ratio MInorm

Bin 0:11 0:14

Mef2 0:19 0:21

Twi 0:28 0:33

E2f1 0:13 0:13

Esrrb 0:11 0:11

Klf4 0:16 0:17

Nanog 0:10 0:09

N-Myc 0:09 0:09

Oct4 0:24 0:25

Sox2 0:12 0:12

Tcfcp2l1 0:12 0:11

Zfx 0:10 0:10

C/EBP-beta 0:05 0:05

CTCF 0:23 0:22

E2f4 0:14 0:27

Fosl1 0:09 0:09

Max 0:18 0:18

MyoD 0:09 0:10

Myog 0:09 0:09

NRSF 0:27 0:36

TCF3 0:19 0:22

USF1 0:07 0:07

For each TF, we show the Participation Ratios computed for the Normalized Direct Information and Normalized Mutual Information matrices (see Methods). Interactions
are generally more localized than correlations.
doi:10.1371/journal.pone.0099015.t002
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Figure 8. Comparison with the Nearest-Neighbor Model (NNM). We study the effect of restricting the PIM to nearest-neighbor interactions,
resulting in the NNM. (A) The BIC is shown for the PIM (red crosses) and NNM (cyan dots) as a function of the number of interactions added. Shade
from light to dark indicates the iteration, similarly to Figure 5. The NNM performs less well than the PIM, which provides a quantitative ground for the
addition of non-neighbor interactions. (B) Comparison between the observed and predicted frequencies of TFBS according to the PWM, NNM, and
PIM. We show the number of added interactions for the PIM and NNM in the legend of each plot. (C) DKLs between the NNM or PIM predicted
distributions, and the observed distribution, with the number of parameters that is optimal for the NNM (first two bars) and with the number of
parameters that is optimal for the PIM (last bar). The improvement yielded by the PIM is clearly seen for factors like Klf4, CTCF, E2f4 or MyoD. (D)
Cumulative distribution of nearest-neighbor (red) and non nearest-neighbor (black) interactions added as a function of the number of interactions
added (ranked by strength).
doi:10.1371/journal.pone.0099015.g008

A General Pairwise Interaction Model

PLOS ONE | www.plosone.org 13 June 2014 | Volume 9 | Issue 6 | e99015



previous approaches by using on the contrary a ‘brute-force’

computer approach to compute the nucleotide correlations arising

from the model, with the full enumeration and computation of the

binding energy of all possible L-mers, without any approximation

besides the limitation to pairwise interactions. This limits its

application to moderate L values. The value L~12 has been

chosen in the present study but it could be slightly increased with

more computer power or perhaps refined algorithms. With this

restriction, the PIM allows one to assess the impact of simplifying

assumptions. Comparison between the PIM and the NNM shows

that taking into account interactions between consecutive nucle-

otides, as in first-order Markov models, is not sufficient to provide

a good account of TFBS statistics. Similarly, we have shown that

multiple weak interactions play a comparable role to the few

strong correlated dinucleotides pairs [12–14] in improving TFBS

description. Using the BIC also provides a principled way to limit

Figure 9. Representation of interactions by Hopfield patterns. The full interaction matrix J is approximated by a matrix Jp built from the p
Hopfield patterns with highest eigenvalue moduli. We show the Normalized Direct Information matrices computed from J2, J4 , J6 and the full matrix
J . For MyoD, the correspondence between successive pairs of patterns and distinct interaction domains (middle, upper left and bottom right) is
particularly clear. In all cases the full Direct Information matrix is already well approximated by J6 . The bottom plots show histograms of the 6
eigenvalues of highest moduli (red) and of the other ones (blue). The high eigenvalues lie on both sides of a core of smaller eigenvalues centered
around 0.
doi:10.1371/journal.pone.0099015.g009
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the number of interactions and avoid overfitting instead of fixing a

somewhat arbitrary cut-off. A study [16] proposed to improve the

PWM by adding interactions describing various ‘features’ of TFBS

statistics. However, this interesting proposal was only implemented

in computationally simple cases (i.e for tree-like interaction

structures) and it is not clear to us how it could be applied besides

these. Recently a Hidden Markov Model (HMM) approach was

applied to ChIPseq data, in the same spirit as was done in the

present paper with the PIM [17]. The HMM approach inherits

the limitations of the Markov models pointed out above, but it has

the advantage that via its hidden state it can explicitly account for

TFBS motifs that comprise a spacer sequence of variable length.

The PIM was shown to account for higher-order correlations than

pairwise, superseding explicit descriptions in terms of multiple

motifs such the one provided by the PWM-mixture model. This

makes it able to also account for variable length spacers, at least

partially. For instance, in the case of Essrb, local probability peaks

arising from nearest-neighbor interactions exhibited a triplet of

flanking nucleotides with a variable spacer from the core motif

(Figure S6 in File S1), possibly reflecting the inherent half-site

structure of nuclear receptor binding sites. Nonetheless, extending

the PIM to explicitly include the possibility of a variable length

spacer within the binding motif, appears a worthy pursuit for

future investigations. It would allow us to bring the full power of

the PIM description to motifs for which its limit to L-mers of

moderate size is really a limitation as well as to improve over the

Markov model limitation of the HMM approach [17].

The PIM derives from the principle of maximum entropy, with

the constraint that pairwise correlations are accurately described

by the model. This approach has already been applied in a variety

of biological contexts. The determination of amino acid interac-

tions in protein structures [22,23,25,26] is the closest to ours. The

application differs however from ours on a technical level since the

diversity of amino acids is much greater than the one of

nucleotides and the lengths of proteins greatly exceed as well that

of TFBSs. This renders an enumeration of possible sequences fully

out of reach in the protein case. Various approximations are

required to compute the model correlations and apply the

maximum entropy formalism, in contrast to the present applica-

tion to TFBSs. Other applications range from populations of

spiking neurons [18,19] to bird flocks [27]. As in our case, these

models often have a multi-peaked probability landscape, leading to

speculations about the functional interpretation of the local

maxima [24,42]. In the present case of TFBSs, local maxima

may simply reflect the multiplicity of binding solutions.

The inferred parameters of the PIM provide insight into the

location and strength of the effective interactions between

nucleotides without potential biases coming from model simplify-

ing assumptions. The dominant pairwise interactions are found

mainly between consecutive nucleotides in the TFBS flanking

regions, in agreement with in vitro TF binding data from extensive

high-throughput SELEX experiments [11]. Our analysis also

shows that nominal pairwise interactions are generally weak (at

most only about 10% of the PWM weights), although they

combine to yield a significant improvement in the description of

the TFBS statistics through their collective effect. This is

reminiscent of similar results obtained in the completely different

context of correlated neuron activity [18].

However, the physical interpretation of the effective interactions

is not clear, since these may combine real physical interactions

with genomic correlations. This is similar to the case of protein

families, where structural and functional contraints are hard to

distinguish from phylogenic correlations or other observational

biases [22]. Comparison between in vitro [10,11] and in vivo binding

data may help to disentangle the different possible origins of the

found correlations, and seems worth pursuing. It appears similarly

interesting to study how much of the found pairwise correlations

can be explained on the basis of structural data. Finally, the role of

nucleotide interactions in TFBS evolution [43] should be

considered and could improve the reconstruction of TFBSs from

multi-species comparison [44–46].

Independently of these future prospects, we have found that the

TFBSs predicted from ChIPseq data depended significantly on the

model used to extract them. Since the PIM and the developed

workflow significantly improve TFBS description and require a

modest computational effort, they should prove worthy tools in

future data analyses.

Methods

Genome-wide data retrieval
We use both ChIP-on-chip data from Drosophila Melanogaster and

ChIPseq data from Mus Musculus. Data was retrieved from the

literature [32,33] and from ENCODE data accessible through the

UCSC website http://hgdownload.cse.ucsc.edu/goldenPath/

mm9/encodeDCC/wgEncodeCaltechTfbs/, for a total of 28
TFs. Among them, there are 5 developmental Drosophilae TFs:

Bap, Bin, Mef2, Tin and Twi, 11 mammalian stem cells TFs: c-

Myc, E2f1, Esrrb, Klf4, Nanog, N-Myc, Oct4, Sox2, STAT3,

Tcfcp2l1, Zfx, and 11 factors involved in mammalian myogenesis:

C/EBP-beta, E2f4, Fosl1, Max, MyoD, Myog, NRSF, Smad1,

SRF, Tcf3, Usf1. Overall, there are between 678 and 38292 ChIP

peaks, with average size 280bp (see Table 1). DNA sequences were

masked for repeats using RepeatMasker [47].

Background models
It is important to discriminate the statistics of the motifs proper

from that of the background DNA on which motifs are found.

Besides particular nucleotides frequencies, the background DNA

can exhibit significant nucleotide correlations, for instance arising

from CpG depletion in mammalian genomes (Figure S5 in File

S1). For each ChIPseq data, we used, as background, all L-mers

sequences from both strands of the ChIP peaks. This served to

learn background PWM models and background PIMs which

were used as reference models to score the corresponding TFBS

models. The position information content in all plotted PWM

logos is measured with respect to the nucleotide background

frequencies (i.e. the PWM background model).

Initial PWM refinement
Along with the ChIPseq data for the different factors, we also

retrieved corresponding PWMs from the literature [32], from

JASPAR database [48], or from TRANSFAC database version

2010:3 [49]. These initial PWMs were refined according to the

following protocol.

First, because we restricted ourselves to binding sites of size

L~12 throughout this study, we sometimes had to modify the

initial length of the PWMs. In those cases, we first computed the

center of mass of the initial PWM column information content and

used it as the new PWM center. Then we added 5 columns to the

left of this center column and 6 columns to the right, filling in with

the initial PWM probabilities if they existed or with the

background nucleotide frequencies computed on the TF ChIPseq

peaks. In most cases the information content of the final PWM was

close to the information content of the full length PWM (see Table

S1 in File S1). Given ChIPseq data (bound regions) for a given TF

and an initial PWM of length L (L~12 was taken for all

computations in the present paper), we scanned both strands of
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each bound region and attributed to all observed L-mers a score

defined as the ratio between the PWM and background models

probabilities. A cutoff was set such that half of the bound regions

had at least one predicted TFBS with a score above the cutoff,

setting a True Positive Rate (TPR) of 50%. This heuristic criterion

overcame the problem of False Positives among the ChIPseq peaks

that might have polluted the data. This defined a training set of N

L-mers with probability higher than the cutoff, on which a PWM

was learned. The position of the center of mass of the PWM

column information content was then computed. A new PWM of

length L was defined centered around this position, by keeping the

columns of the previous PWM that fell inside the newly defined

window. The centered PWM was extended with columns of

background frequencies when necessary. This ensured that the

core of the motif would be found at the center, while flanking

nucleotides from both sides would be represented, a feature that

could be lacking from the initial PWM. Bound sites were again

predicted using the same cutoff. This procedure was repeated until

stabilization of the predicted sites to a fixed subset. This resulted in

a refined PWM with its associated set of bound sites.

PWM model evaluation
The PWM model consist of a matrix of single nucleotide

probabilities of size 4|L, where L is the width of the binding site.

In a first approximation, the parameters appearing in the matrix

can be estimated from a set of binding sites by computing the

observed frequency fb,i of nucleotide b at position i. However, this

frequency fluctuates around the ‘‘true’’ probability due to finite

sample size, and for example unobserved nucleotides could

actually have a low probability of being observed provided that

the number of observations be high enough. It is usual to correct

for this effect by using the Bayesian pseudo-count approach

stemming from Laplace’s rule of succession [3]. The probability to

observe nucleotide a at position i is given by:

Pi(a)~
ni,azaa

Nz
P
a

aa

ð4Þ

where ni,a is the number of observed a at position i, N is the total

number of TFBS s, and aa’s are the pseudo-counts, or prior

probabilities to observe nucleotide a at position i. The pseudo-

counts were all set to 1, however no significant effect was noted

when changing this value, as expected from the large number of

observations.

Kullback-Leibler divergence
The Kullback-Leibler divergence is a measure of distance

between two probability distributions p and q of a variable s, and is

defined as:

DKL(pEq)~
X

s

p(s) log
p(s)

q(s)
: ð5Þ

Throughout this paper, when a DKL is calculated between a

finite sample and a model distribution, p corresponds to the TFBS

frequencies in the sample, and q to the model distribution. When

the DKL is calculated between a PWM of a basin of attraction of

an attractor state and a PWM from the mixture model, p is used

for the former, and q for the latter.

Estimation of the fluctuations due to finite sampling: DKL
vs self

To estimate whether the description of the data by a model (e.g.

PWM or PIM) could be improved or was consistent with the finite

number N of observed sequences, we computed the ‘self’ DKL

between the distribution of a set of N sequences drawn from the

model distribution and the model distribution itself. This

procedure was repeated 100 times. TFs for which the PWM

model DKL was smaller than or within two standard deviations of

the self DKL were discarded for later analysis.

Derivation of the Pairwise Interaction Model (PIM)
Information theory offers a principled way to determine the

probabilities of a set of states given some measurable constraints. It

consists in maximizing a functional known as the entropy[50,51]

over the set of possible probability distributions given the imposed

constraints. Here, we wish to determine the probability P(s) of a

DNA sequence s of length L, in the set of TFBSs for a

transcription factor, given the constraints that the probability

distribution P retrieves the one- and two-point correlations

observed in a set of bound DNA sequences. We denote by A
the alphabet of possible nucleotides, A~fA,C,G,Tg and by si the

nucleotide at position i in the sequence s so that s~s1 � � � sL. With

these notations, the entropy with the considered constraints

translates into the following functional:

L~

{
X
fsg

P(s) ln P(s) zl
X
fsg

P(s){1

0
@

1
Az

XL

i~1

X
a[A

hi(a)
X
fsg

P(s)d(si,a){Pi(a)

0
@

1
A

z
XL{1

i~1

X
jwi

X
a[A

X
a0[A

Ji,j(a,a0)
X
fsg

P(s)d(si,a)d(sj ,a
0){Pi,j(a,a0)

0
@

1
A,

ð6Þ

where Pi(a) (resp. Pi,j(a,a’)) is the probability of having nucleotide

a at position i (resp. nucleotides a and a’ at position i and j) in the

TFBS data set. In the evaluation of probabilities from data,

pseudo-counts were set to 1 for single-point frequencies Pi(a) (see

previous section PWM model evaluation) and to 1=q for pairwise

frequencies Pi,j(a,a’), where q~4 is the DNA alphabet size. The

function d denotes the Kronecker d{function defined by

d(a,a’)~1 if a~a’,and 0 otherwise. The first term in Eq. (6) is

the entropy of the probability distribution to be found and the

other terms are the given constraints along with their Lagrangian

multipliers. Maximization of the functional L is performed in a

usual way by setting the functional derivative with respect to the

probability distribution P to zero:

dL
dP(s)

~0~{ ln P(s){1zlz
XL

i~1

hi(si)z
XL{1

i~1

X
jwi

Ji,j(si,sj):ð7Þ

Finally, using the constraint
P
fsg P(s)~1, one finds the

probability distribution that maximizes entropy given the

constraints that it reproduces the observed one- and two-point

correlations:

P½s�~ exp½{H(s)�=Z, ð8Þ

where H(s) is given by,
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H½s1:::sL�~ {
XL

i~1

hi(si){
XL

i~1

X
jvi

Ji,j(si,sj),

si[fA,C,G,Tg:
ð9Þ

The normalization constant Z is the partition function,

Z~
X
fsg

exp½{H(s)�: ð10Þ

Unique determination of the PIM
The split of the energy H(s) between local binding energy term

and pairwise interactions is not unique and the origin of the energy

scale is itself not uniquely defined. This non-uniqueness of H(s)
arises from the invariance of the probability distribution of

sequences, as given by Eqs. (8, 9), under shifts of the local binding

energies, hi(a) and under mutual transformations between the

pairwise interaction terms Ji,j(a,a’) and the local binding energies.

In order to uniquely determine H, this arbitrariness needs to be

taken care of by adding further conditions that uniquely fix its

different energy parameters [22], a process that we detail below

(this is called ‘gauge fixation’ in [22])

Local binding energies. The probability is invariant with

respect to the following global shift of the local binding energies

hi(a), which amounts to a change of the reference energy that is

cancelled by the normalization,

hi(si)?~hhi(si)~hi(si)z"i: ð11Þ

To uniquely prescribe the hi(a), we choose to fix this invariance

by minimizing the square norm Si~
P

a[A
~hhi(a)2 of local energy

terms The corresponding condition reads

X
a[A

~hhi(a)~0: ð12Þ

This condition can be imposed on any set of energies hi by using

the tranformation (11) and redefining the energies as follows,

hi(si)?hi(si){
1

4

X
a[A

hi(a): ð13Þ

Pairwise interactions. Another invariance stems from the

fact that contributions can be shifted between local binding

energies and pairwise interactions. Namely, the following change

of variables does not affect the probability:

Jij(si,sj)?~JJij(si,sj)~Jij(si,sj)zyi(si)zwj(sj)zCi,j , ð14Þ

since the local energy term yi and wj can be redistributed in h and

the constant Ci,j gives an energy reference for the interacting

nucleotides that is cancelled by the normalization process. A

unique set of pairwise interactions can be obtained by minimizing

the square norm Si,j~
P

a,a’[A½~JJij(a,a’)�2 This yields the condi-

tions:

X
a[A

~JJi,j(a,a’)~
X
a’[A

~JJi,j(a,a’)~0: ð15Þ

These can be imposed on any set of pairwise interactions Jij by

redefining them as follows:

Jij(si,sj)?Jij(si,sj)z
1

16

X
a,a0[A

Ji,j(a,a0)

{
1

4

X
a[A

Ji,j(a,sj){
1

4

X
a[A

Ji,j(si,a):

ð16Þ

Determination of the PIM from the data
The parameters of the model in Eq. (9), giving the energy of an

observed sequence of length L, must be computed from the data.

The parameters h and J represent the energy contributions

respectively coming from individual nucleotides and from their

interactions. The PWM model is the particular case where all the

pairwise interactions vanish: Ji,j(a,a’)~0.

To build the model, we start from the PWM description,

characterized by the set of initial hi(a)~ log pi,a and the pairwise

interactions J ’s set to zero. We add one pairwise interaction

Ji,j(a,a’) at a time, corresponding to the pair of nucleotides whose

pairwise distribution predicted by the model differs most from

data, as estimated by a binomial p-value. We then fit the

augmented model to data, use this model to select a new set

binding sites from the reads, and repeat the whole procedure. In

each of these steps, fitting is performed by a gradient descent

algorithm:

J?JzE cdata
2 {cmodel

2

� �
, ð17Þ

h?hzE cdata
1 {cmodel

1

� �
, ð18Þ

where c1 and c2 are matrices of size 4|L and 4L|4L

respectively corresponding to the single- and two-point frequen-

cies, and superscripts denote whether the matrices are computed

from the data or from the model distribution. This algorithm

converges to the set of parameters (f~hhig,~JJi,j) that match all single

marginals and the pairwise marginals of interest. The number of

pairwise interactions that are being added is controlled by the

Bayesian Information Criterion, or BIC (Figure 5 in main text).

The BIC computes the opposite log-likelihood and adds a penalty

proportional to the number of parameters involved. This adverts

the over-fitting of a finite dataset with an extravagant number of

parameters. The procedure is iterated until minimization of the

BIC, yielding the best PIM with the full set of parameters

(fhi(a)g,fJi,j(a,a’)g). As in the case of the PWM model, we score

each sequence using the ratio between the TF and background

pairwise models and impose a score cutoff so as to select a set of

bound sites yielding 50% TPR, on which a new pairwise model is

learned. This process is iterated until convergence to a stable set of

bound sites.
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BIC computation
Consider a sample X~(X1, . . . ,XN ) of N TFBSs drawn from

an unknown distribution function f we wish to estimate. To this

extent, several models fM1, . . . ,Mmg are proposed, each model

Mi having a density gMi
with parameter hi of dimension Ki. It is

straightforward to see that, as Ki increases, the fit to the observed

sample as measured by the likelihood function gMi
(X Dhi) increases

as well, the limiting case being when f is estimated as the sample

distribution. However, such an estimator is inappropriate to

account for new, yet unobserved TFBSs, i.e. it is not predictive.

Such a case where the number of parameters used to estimate a

distribution becomes of the order of the size of the sample is

known as overfitting. The BIC allows to overcome overfitting by

penalizing high dimension parameters. Using Bayes Rule, and a

uniform a priori distribution on the models, we have

P(Mi DX )!P(X DMi): ð19Þ

That is, the probability of the model given the data can be

inferred from the probability that the data is generated by the

model. The latter is obtained by marginalizing the joint

distribution of the data and the parameters over the space of

parameters H:

P(X DMi)~

ð
H

P(X ,hDMi)dh~

ð
H

gMi
(X Dh)P(hDMi)dh: ð20Þ

For a unidimensional parameter h, the likelihood gMi
(X Dh) is

maximized at some particular ĥhi with an uncertainty (or width)

proportional to 1=
ffiffiffiffiffi
N
p

in the limit of large N. Assuming a broad

prior, then for large N the integral is dominated by the likelihood

which is concentrated around its maximum. One can then

approximate the integral by the area of the region of height the

maximum likelihood and of width 1=
ffiffiffiffiffi
N
p

, that is gMi
(X ,ĥhi)=

ffiffiffiffiffi
N
p

.

This result can be retrieved analytically using the method of

steepest descent. For a number Ki of parameters, one gets a total

volume gMi
(X ,ĥhi)=NKi=2 [36]. Taking the logarithm yields the

BIC condition:

BICi~{2 log (P(X DMi))^{2 log (gMi
(X ,ĥhi))zKi log (N): ð21Þ

In the present case, the sample X is the set of observed TFBSs

and the model Mi determines the probability PMi
(s) of belonging

to X ,

log (gMi
(X ,ĥhi))~

X
s[X

log½PMi (ĥhi )
((s)�: ð22Þ

The interpretation of Eq. (21) is clear: adding new parameters

improves the fit, but also adds new sources of uncertainty about

these parameters due to the finite size of the data. This uncertainty

disappears as N??, since the log-likelihood scales with N while

the correction scales with log (N).

Finally, Eq. (21) is a functional over models, the chosen model

MBIC is the one that minimizes it,

MBIC~ argmin
Mi

BICi: ð23Þ

PWM mixture model
We investigated an approach based on a mixture of PWMs. For

that purpose, we used a comparable setup as for the PIM.

However, instead of adding correlations to a given PWM, new

PWMs were added to a mixture model. More precisely, a mixture

of K PWMs, with 1ƒKƒ10, was generated by using a K-means

algorithm with a Hamming distance metrics on the initial set of

bound sites. This resulted in K clusters, each comprising nk TFBSs

among the initial N TFBSs. A PWM was generated on each of

these clusters, with probability distribution Pk. The mixture model

of order K was then defined as [36]:

P½s�~
XK

k~1

pkPk½s�, ð24Þ

where pk~nk=N is the cluster weight. Because a PWM has 3|L

degrees of freedom (L of them being constrained by the

summation of nucleotide probabilities to one) and there are

K{1 free weight parameters, the number of parameters

corresponding to a mixture of order K is 3LKz(K{1). As

previously, the model showing minimal BIC score was used for

TFBS detection, a new set of PWMs and weights pk was generated

by clustering the set of detected TFBS and the procedure was

iterated until convergence to a stable set of TFBS.

Local minima of the PIM and their basins of attraction
We defined the basins of attraction of a PIM energy landscape,

in the following fashion. Let s be a L-mer with energy H(s). We

looked for the nucleotides that could be changed to minimize

H(s). If such nucleotides existed, one of them was chosen at

random, and its value was updated. One nucleotide sequence

corresponding to a local energy minimum of the energy landscape,

was reached when no nucleotide could be changed. The basin of

attraction of a local-energy-minimum sequence was then defined

as the ensemble of L-mers that fell onto this sequence when their

energy was minimized. The randomness in the choice of the

changed nucleotide, could in principle lead different local-energy-

minimum sequences to be reached starting from the same initial

sequence. However, we observed that this was rarely the case, and

that results were highly similar for different runs of this procedure

or when we used a deterministic method consisting in iteratively

choosing the nucleotide leading to the strongest decrease in energy

(Figure S2 in File S1).

We computed local-energy-minimum sequences and their

basins of attraction for the final set of bound sites obtained with

the best PIM. A PWM was learned on each basin of attraction,

leading to a set of representative PWMs, with different weights

representing different proportions of bound sites in their basins.

Computation of the Direct Information
We wanted to build a quantity based solely on direct

interactions Ji,j between nucleotides, discarding indirect interac-

tions. To this end, we used the interaction parameters obtained

from the PIM to build the direct dinucleotide probability function:

Pd
i,j(a,a’)~e

~hhi (a)z~hhj (a’)zJi,j (a,a’)=Zi,j , ð25Þ
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where

Zi,j~
X
a,a’

e
~hhi (a)z~hhj (a’)zJi,j (a,a’):

The 8 single nucleotide energies ~hhi and ~hhj were fully determined

by the constraints that the direct probability function matched the

observed one-point frequencies:

P
a’

Pd
i,j(a,a’) ~Pi(a), a’[fA,C,G,Tg,

P
a

Pd
i,j(a,a’) ~Pj(a’), a[fA,C,G,Tg:

ð26Þ

The normalization of the probabilities
P

a Pi(a)~1, served to

reduce this system to 6 equations. The energies ~hhi(a), which are

determined up to a constant, were fixed by the condition that they

vanished for the nucleotide A, ~hh(A)~0. The system was solved

using the Levenberg-Marquadt algorithm with l~0:005. While

the interaction energies (the Ji,j(a,a’)s are chosen to be those of the

PIM, the single nucleotide energies ~hhi are different from the

corresponding ones (the hi) in the PIM since they originate from a

different set of constraint and effectively take into account the

pairwise interaction with -and between- other nucleotides.

The Direct Information [23] was then defined as:

DIi,j~
X
a,a’

Pd
i,j(a,a’) log2

Pd
i,j(a,a’)

Pi(a)Pj(a’)

 !
: ð27Þ

As there is no upper bound for this direct information, we built

a normalized version of the direct information:

NDIi,j~
DIi,jffiffiffiffiffiffiffiffiffi

SiSj

p , ð28Þ

where Si denotes the entropy at position i. Note that Si~DIi,i so

that NDIi,i~1 for this maximally correlated case. On the

contrary, independent nucleotides give NDIi,j~DIi,j~0.

Computation of the Mutual Information
The Mutual Information was defined as:

MIi,j~
X
a,a’

c2
model
i,j (a,a’) log2

c2
model
i,j

c1
model
i (a)c1

model
j (a’)

 !
: ð29Þ

where c2
model and c1

model are defined in Eq. 17 and 18. As for the

case of the direct information, we built a normalized version of the

mutual information:

NMIi,j~
M Ii,jffiffiffiffiffiffiffiffiffi

SiSj

p , ð30Þ

where Si denotes the entropy at position i.

Participation Ratio
For each TF, an interaction weight was defined for each pair of

nucleotides as

wi,j~NDIi,j=
X
i’=j

NDIi’,j : ð31Þ

Similarly, a ‘correlation weight’ can be defined by replacing

NDIi,j in the previous equation by NMIi,j . Self-interactions have

no meaning here and were attributed wi,i~0. Let us note

N~L(L{1) the number of possible interactions, counting both

(i,j) and (j,i) terms. Using our weight, one writes the Participation

Ratio as:

R~
1

N
P

i=j w2
i,j

: ð32Þ

The interpretation is simple: if all weights are equal, then

wi,j~1=N and R~1, i.e. all possible interactions are represented.

Conversely, if only one interaction accounts in the distribution

budget, then R~1=N, meaning that only one of all possible

interactions is represented.

Distance between interactions
The previously defined interaction weights were averaged over

all possible pairs of nucleotides at a given distance d of one

another, yielding the distance distribution:

P(Di{jD~d)~Z{1 1

N{d

X
Di{jD~d

wi,j , ð33Þ

where

Z~
XN{1

d~1

1

N{d

X
Di{jD~d

wi,j ð34Þ

is a normalization factor. Note that we introduced a correction

1=(N{d) to account for finite-size effects, namely the fact that

randomly distributed interactions will lead to an overrepresenta-

tion of nearest neighbors interactions just because these are more

numerous.

Interaction matrix and Hopfield patterns
In the PIM energy, shown in Eq. (1) from the main text, only

16L(L{1)=2 terms appear in the interaction budget: indeed, we

forbid self-interactions (already accounted for by the local energy

h) and do not count the pairwise interactions twice. However, we

can straightforwardly extend the interaction matrix to a full

symmetric matrix ĴJ(i,a),(j,b) of size (4L)2, with 4L-valued indices

(i,a),i[f1, � � � ,Lg,a[A. The matrix ĴJ is such that for

iwj,ĴJ(i,a)(j,b)~Ji,j(a,b) with furthermore ĴJ(i,a),(i,b)~0 and

ĴJ(i,a),(j,b)~ĴJ(j,b),(i,a). The energy of a sequence s can then be

written with these notations

X
1ƒivjƒL

Ji,j(si,sj)~
1

2

XL

i~1

XL

j~1

ĴJ(i,si ),(j,sj )~v(s){ĴJv(s), ð35Þ

where in the last equality the { sign denotes vector transposition

and we have introduced the 4L vector v(s) associated to sequence

s, v(s)i,a~1 if a~si and v(s)i,a~0 otherwise.
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Since the matrix ĴJ is symmetric, it can be diagonalized in an

orthonormal basis of eigenvectors jk, k~1, � � � ,L with real

eigenvalues lk,

ĴJ~
X

k

lkjk jk{: ð36Þ

Denoting by jk
(i,a) the coordinates of the k-th eigenvector then,

one can rewrite Eq. (35) as

X
1ƒivjƒL

Ji,j(si,sj)~
1

2

X4L

k~1

lk

XL

i~1

jk
(i,si )

 !2

: ð37Þ

Finally, the full PIM energy is given by:

H~{
X

i

hi(si){
1

2

X4L

k~1

lk

XL

i~1

jk
(i,si )

 !2

: ð38Þ

Code availability
The source code used in the present paper is available at

https://github.com/msantolini/PIM. It allows one to build the

different models given sequence data (ChIP-chip or ChIPseq for

example) and an initial PWM. Data files used for Twist in the

present study are also provided as test examples.

Supporting Information

File S1 Supporting figures and tables. Figure S1.
Dependence of the fit on the number of ChIP sequences.
For each TF, the number of available ChIP sequences is plotted vs.

the improvement in the description of its TFBS statistics, provided

by the he PIM as compared to the PWM model. The latter is

quantified by the ratio of DKL between the respective model

probability distributions and the experimental ones provided by

the ChIP data, DKLPIM=DKLPWM. The improvement afforded

by the PIM is clearly seen to be correlated to the number of ChIP

sequences available.TFs for which the PWM description appears

satisfactory (see Figure 2 of the main text) are shown in blue.

Figure S2. Comparison of the different methods to
define the basins of attraction. We compare two methods

that allow to define the basins of attraction of the PIM model.

Given an initial sequence, the attractor is found by changing

iteratively either the nucleotide providing the strongest decrease in

energy (deterministic method) or a random nucleotide providing a

strict decrease of energy (random method). We show for the 3
factors studied in the main text the proportion of sites falling in

each of the basins of attraction using the deterministic method or

10 trials of the random method. For these factors we observed that

the number of basins of attraction was not changing, and that the

proportion of sites falling in each basin was well conserved.

Figure S3. Same as Figure 6 of the main text for all considered

factors described by a mixture model with two or more PWMs.

Figure S4. Same as Figure 7A of the main text for the other

considered factors. Figure S5. Background correlations.
(A,B,C) Heat maps showing the correlations between nucleotides

in the ChIP data of the 3 factors from the main text. Because of

translation invariance, we only show the correlations between a

nucleotide (rows) and the next nearest (first four columns) to

farthest (last four columns) nucleotides, using the binding site

length of L~12. We see in the Drosophila data the appreciable

presence of repeated sequences (of type AA, TT, CC, and GG). In

the mammalian data sets, we observe the known CpG depletion.

(A9,B9,C9) Corresponding heat maps showing the values of the

Normalized Direct Information between pairs of nucleotides.

Figure S6. Variable spacer length. We learned a PIM for

Esrrb including the 4 flanking nucleotides on the left of the main

motif. (A) The metastable states of this model show a feature not

captured in the main text where binding sites are defined

symmetrically around the center of mass of the information

content: namely a ‘CAG’ trinucleotide with variable spacer length

from the main motif. This feature is apparent in the first 3 logos

shown here. (B) The contribution of this trinucleotidic interaction

to the Direct Information is captured through strong direct links

between the 4 flanking nucleotides, showing that the PIM is

implicitly able to capture higher order correlations. Logos from the

PWM model are surrounding the heatmap for clarity. Table S1.
Comparison between initial PWMs and L~12 PWMs.
Bottom rows correspond to the 6 factors that are satisfactorily

described by the PWM model. Information content is in bits.

(PDF)
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