L. Qiao, Y. Y. Liu, F. Hong, and J. J. Zhang, A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels, Chem. Soc. Rev., vol.47, issue.2, pp.631-675, 2014.
DOI : 10.1039/C3CS60323G

M. Costentin, J. M. Robert, and . Saveant, -to-CO Electrochemical Conversion, Accounts of Chemical Research, vol.48, issue.12, pp.2996-3006, 2015.
DOI : 10.1021/acs.accounts.5b00262

URL : https://hal.archives-ouvertes.fr/hal-00758450

D. Windle and E. Reisner, Heterogenised Molecular Catalysts for the Reduction of CO<SUB>2</SUB> to Fuels, CHIMIA International Journal for Chemistry, vol.69, issue.7, pp.435-441, 2015.
DOI : 10.2533/chimia.2015.435

A. Hori, R. Murata, and . Takahashi, Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol.85, issue.8, pp.2309-2326, 1989.
DOI : 10.1039/f19898502309

R. Hori, Y. Takahashi, A. Yoshinami, and . Murata, Electrochemical Reduction of CO at a Copper Electrode, The Journal of Physical Chemistry B, vol.101, issue.36, pp.7075-7081, 1997.
DOI : 10.1021/jp970284i

S. X. Chen, F. Guo, C. Li, M. Bentley, A. M. Horne et al., at Metal Electrodes in a Distillable Ionic Liquid, ChemSusChem, vol.35, issue.11, pp.1271-1278, 2016.
DOI : 10.1002/cssc.201600359

P. Kuhl, T. Hatsukade, E. R. Cave, D. N. Abram, J. Kibsgaard et al., Electrocatalytic Conversion of Carbon Dioxide to Methane and Methanol on Transition Metal Surfaces, Journal of the American Chemical Society, vol.136, issue.40, pp.14107-14113, 2014.
DOI : 10.1021/ja505791r

W. Li and M. W. Kanan, O Films, Journal of the American Chemical Society, vol.134, issue.17, pp.7231-7234, 2012.
DOI : 10.1021/ja3010978

URL : https://hal.archives-ouvertes.fr/hal-01372799

G. S. Rosen, Q. Hutchings, R. V. Lu, A. Forest, F. Moore et al., Reduction, ACS Catalysis, vol.5, issue.8, pp.4586-4591, 2015.
DOI : 10.1021/acscatal.5b00922

M. Dutta, N. C. Rahaman, M. Luedi, P. Mohos, and . Broekmann, Electroreduction on Oxide-Derived Cu Foam Catalysts, ACS Catalysis, vol.6, issue.6, pp.3804-3814, 2016.
DOI : 10.1021/acscatal.6b00770

N. Gattrell, A. Gupta, and . Co, A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper, Journal of Electroanalytical Chemistry, vol.594, issue.1, pp.1-19, 2006.
DOI : 10.1016/j.jelechem.2006.05.013

P. Kuhl, E. R. Cave, D. N. Abram, and T. F. Jaramillo, New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces, Energy & Environmental Science, vol.98, issue.5, pp.7050-7059, 2012.
DOI : 10.1039/c2ee21234j

D. Lee, J. Kim, and . Lee, O-Cu Catalyst, Angewandte Chemie International Edition, vol.77, issue.49, pp.14701-14705, 2015.
DOI : 10.1002/anie.201505730

P. Loiudice, E. A. Lobaccaro, T. Kamali, B. H. Thao, J. W. Huang et al., Reduction, Angewandte Chemie International Edition, vol.118, issue.19, pp.5789-5792, 2016.
DOI : 10.1002/anie.201601582

K. Ma, W. A. Djanashvili, and . Smith, over Cu Nanowire Arrays, Angewandte Chemie International Edition, vol.4, issue.23, pp.6680-6684, 2016.
DOI : 10.1002/anie.201601282

H. Reske, F. Mistry, B. R. Behafarid, P. Cuenya, and . Strasser, on Cu Nanoparticles, Journal of the American Chemical Society, vol.136, issue.19, pp.6978-6986, 2014.
DOI : 10.1021/ja500328k

S. Roberts, K. P. Kuhl, and A. Nilsson, High Selectivity for Ethylene from Carbon Dioxide Reduction over Copper Nanocube Electrocatalysts, Angewandte Chemie International Edition, vol.36, issue.17, pp.5179-5182, 2015.
DOI : 10.1002/anie.201412214

A. A. Tang, A. S. Peterson, Z. P. Varela, L. Jovanov, W. J. Bech et al., The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction, Phys. Chem. Chem. Phys., vol.605, issue.15???16, pp.76-81, 2012.
DOI : 10.1039/C1CP22700A

S. Varela, M. Kroschel, T. Reier, and P. Strasser, Controlling the selectivity of CO2 electroreduction on copper: The effect of the electrolyte concentration and the importance of the local pH, Catalysis Today, vol.260, pp.8-13, 2016.
DOI : 10.1016/j.cattod.2015.06.009

J. Kortlever, K. J. Shen, F. Schouten, M. T. Calle-vallejo, and . Koper, Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide, The Journal of Physical Chemistry Letters, vol.6, issue.20, pp.4073-4082, 2015.
DOI : 10.1021/acs.jpclett.5b01559

Y. S. Agarwal, D. Zhai, N. Hill, and . Sridhar, The Electrochemical Reduction of Carbon Dioxide to Formate/Formic Acid: Engineering and Economic Feasibility, ChemSusChem, vol.15, issue.9, pp.1301-1310, 2011.
DOI : 10.1002/cssc.201100220

D. Sponholz, H. Mellmann, M. Junge, and . Beller, Towards a Practical Setup for Hydrogen Production from Formic Acid, ChemSusChem, vol.16, issue.7, pp.1172-1176, 2013.
DOI : 10.1002/cssc.201300186

D. C. Matsubara, Y. Grills, and . Kuwahara, Reduction in Acetonitrile and with an Ionic Liquid as Solvent or Electrolyte, ACS Catalysis, vol.5, issue.11, pp.6440-6452, 2015.
DOI : 10.1021/acscatal.5b00656

J. Medina-ramos, R. C. Pupillo, T. P. Keane, J. L. Dimeglio, and J. Rosenthal, to CO Using Tin and Other Inexpensive and Easily Prepared Post-Transition Metal Catalysts, Journal of the American Chemical Society, vol.137, issue.15, pp.5021-5027, 2015.
DOI : 10.1021/ja5121088

X. Sun, Q. Zhu, X. Kang, H. Liu, Q. Qian et al., Molybdenum-Bismuth Bimetallic Chalcogenide Nanosheets for Highly Efficient Electrocatalytic Reduction of Carbon Dioxide to Methanol, Angewandte Chemie International Edition, vol.7, issue.23, pp.6771-6775, 2016.
DOI : 10.1002/anie.201603034

C. M. Martindale and R. G. Compton, Formic acid electro-synthesis from carbon dioxide in a room temperature ionic liquid, Chemical Communications, vol.30, issue.11, pp.6487-6489, 2012.
DOI : 10.1039/c2cc32011h

D. Watkins and A. B. Bocarsly, Direct Reduction of Carbon Dioxide to Formate in High-Gas-Capacity Ionic Liquids at Post-Transition-Metal Electrodes, ChemSusChem, vol.35, issue.182, pp.284-290, 2014.
DOI : 10.1002/cssc.201300659

J. L. Cadena, J. K. Anthony, T. I. Shah, J. F. Morrow, E. J. Brennecke et al., So Soluble in Imidazolium-Based Ionic Liquids?, Journal of the American Chemical Society, vol.126, issue.16, pp.5300-5308, 2004.
DOI : 10.1021/ja039615x

C. Grills, Y. Matsubara, Y. Kuwahara, S. R. Golisz, D. A. Kurtz et al., Reduction with a Homogeneous Catalyst in Ionic Liquid: High Catalytic Activity at Low Overpotential, The Journal of Physical Chemistry Letters, vol.5, issue.11, pp.2033-2038, 2014.
DOI : 10.1021/jz500759x

X. L. Oh and . Hu, reduction, Chem. Soc. Rev., vol.134, issue.6, pp.2253-2261, 2013.
DOI : 10.1039/C2CS35276A

N. Huan, T. Ganesh, K. S. Kim, S. Kim, S. H. Han et al., A three-dimensional gold nanodendrite network porous structure and its application for an electrochemical sensing, Biosensors and Bioelectronics, vol.27, issue.1, pp.183-186, 2011.
DOI : 10.1016/j.bios.2011.06.011

C. Shin and M. L. Liu, Copper Foam Structures with Highly Porous Nanostructured Walls, Chemistry of Materials, vol.16, issue.25, pp.5460-5464, 2004.
DOI : 10.1021/cm048887b

G. Jaouen, G. Lindbergh, and . Sundholm, Investigation of Mass-Transport Limitations in the Solid Polymer Fuel Cell Cathode, Journal of The Electrochemical Society, vol.149, issue.4, pp.437-447, 2002.
DOI : 10.1149/1.1456916

J. L. Medina-ramos, J. Dimeglio, and . Rosenthal, to CO with High Current Density Using in Situ or ex Situ Prepared Bi-Based Materials, Journal of the American Chemical Society, vol.136, issue.23, pp.8361-8367, 2014.
DOI : 10.1021/ja501923g

J. Zhu, X. Ma, X. Kang, H. Sun, J. Liu et al., into Formic Acid on a Lead or Tin Electrode using an Ionic Liquid Catholyte Mixture, Angewandte Chemie International Edition, vol.53, issue.31, pp.9012-9016, 2016.
DOI : 10.1002/anie.201601974

S. F. Hollingsworth, M. T. Taylor, J. Galante, C. Jacquemin, K. B. Longo et al., Reduction of Carbon Dioxide to Formate at Low Overpotential Using a Superbase Ionic Liquid, Angewandte Chemie International Edition, vol.118, issue.47, pp.14164-14168, 2015.
DOI : 10.1002/anie.201507629

S. S. Liu, Z. J. Cui, P. W. Sun, and . Du, Robust and highly active copper-based electrocatalyst for hydrogen production at low overpotential in neutral water, Chem. Commun., vol.1, issue.65, pp.12954-12957, 2015.
DOI : 10.1039/C5CC04965B

S. Yoo, R. Christensen, T. Vegge, J. K. Norskov, and F. Studt, Theoretical Insight into the Trends that Guide the Electrochemical Reduction of Carbon Dioxide to Formic Acid, ChemSusChem, vol.5, issue.4, pp.358-363, 2016.
DOI : 10.1002/cssc.201501197