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Since Gentry's breakthrough work in 2009, homomorphic cryptography has received a widespread attention. Implementation of a fully homomorphic cryptographic scheme is however still highly expensive. Somewhat Homomorphic Encryption (SHE) schemes, on the other hand, allow only a limited number of arithmetical operations in the encrypted domain, but are more practical. Many SHE schemes have been proposed, among which the most competitive ones rely on (Ring-) Learning With Error (RLWE) and operations occur on high-degree polynomials with large coe cients. This work focuses in particular on the Chinese Remainder Theorem representation (a.k.a. Residue Number Systems) applied to large coe cients. In SHE schemes like that of Fan and Vercauteren (FV), such a representation remains hardly compatible with procedures involving coe cient-wise division and rounding required in decryption and homomorphic multiplication. This paper suggests a way to entirely eliminate the need for multi-precision arithmetic, and presents techniques to enable a full RNS implementation of FV-like schemes. For dimensions between 2 11 and 2 15 , we report speed-ups from 5⇥ to 20⇥ for decryption, and from 2⇥ to 4⇥ for multiplication.

Introduction

Cryptographers' deep interests in lattices are for multiple reasons. Besides possessing highly desirable post-quantum security features, lattice-based cryptography relies on simple structures, allowing e cient asymptotic complexities, and is quite flexible in practice. In addition to encryption/signature schemes ( [START_REF] Ho↵stein | NTRU: A Ring-Based Public Key Cryptosystem[END_REF][START_REF] Stehlé | Advances in Cryptology -ASIACRYPT 2009: 15th International Conference on the Theory and Application of Cryptology and Information Security[END_REF][START_REF] Lyubashevsky | Advances in Cryptology -EUROCRYPT 2012: 31st Annual International Conference on the Theory and Applications of Cryptographic Techniques[END_REF][START_REF] Ducas | Advances in Cryptology -CRYPTO 2013: 33rd Annual Cryptology Conference[END_REF][START_REF] Oder | Beyond ECDSA and RSA: Lattice-based digital signatures on constrained devices[END_REF][START_REF] Peikert | Post-Quantum Cryptography: 6th International Workshop[END_REF]), identity-based encryption [START_REF] Ducas | Advances in Cryptology -ASIACRYPT 2014: 20th International Conference on the Theory and Application of Cryptology and Information Security[END_REF], multilinear maps [START_REF] Garg | Advances in Cryptology -EUROCRYPT 2013: 32nd Annual International Conference on the Theory and Applications of Cryptographic Techniques[END_REF][START_REF] Langlois | Advances in Cryptology -EUROCRYPT 2014: 33rd Annual International Conference on the Theory and Applications of Cryptographic Techniques[END_REF], lattices are also involved in homomorphic encryption (HE). The discovery of this property by Gentry in 2009 [START_REF] Gentry | Fully Homomorphic Encryption Using Ideal Lattices[END_REF], through the use of ideal rings, is a major breakthrough which has opened the door to many opportunities in terms of applications, especially when coupled with cloud computing.

HE is generally composed of a basic layer, which is a Somewhat Homomorphic Encryption scheme (SHE). Such a scheme allows us to compute a limited number of additions and multiplications on ciphertexts. This can be explained by the fact that any ciphertext contains an inherent noise which increases after each homomorphic operation. Beyond a certain limit, this noise becomes too large to allow a correct decryption. This drawback may be tackled by using bootstrapping, which however constitutes a bottleneck in terms of e ciency. Further improvements of noise management [START_REF] Brakerski | Leveled) Fully Homomorphic Encryption Without Bootstrapping[END_REF][START_REF] Brakerski | Fully homomorphic encryption without modulus switching from classical GapSVP[END_REF] have been suggested so that, in practice, and given an applicative context, it may be wiser to select an e cient SHE with parameters enabling a su cient number of operations. For instance, schemes like FV [START_REF] Fan | Somewhat practical fully homomorphic encryption[END_REF] and YASHE [START_REF] Bos | Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme[END_REF] have been implemented and tested for evaluating the SIMON Feistel Cipher [START_REF] Lepoint | Progress in Cryptology -AFRICACRYPT 2014: 7th International Conference on Cryptology in Africa[END_REF]. Among the today's more practical SHE schemes, FV is arguably one of the most competitive. This scheme is being currently considered by major stakeholders such as the European H2020 HEAT consortium [START_REF]Homomorphic Encryption, Applications and Technology (HEAT)[END_REF].
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Our contibution This work is focused on practical improvement of SHE schemes, in particular FV. Despite the fact that the security of YASHE has been called into question recently [START_REF] Albrecht | A subfield lattice attack on overstretched NTRU assumptions: Cryptanalysis of some FHE and Graded Encoding Schemes[END_REF], this scheme can also benefit from the present work. These schemes handle elements of a polynomial ring Z q [X]/(X n + 1). The main modulus q is usually chosen as the product of several small moduli fitting with practical hardware requirements (machine word, etc). This enables us to avoid the need of multi-precision arithmetic in almost the whole scheme. However, this CRT representation (a.k.a. Residue Number Systems, or RNS) is hardly compatible with a couple of core operations: coe cientwise division and rounding, occuring in multiplication and decryption, and a noise management technique within homomorphic multiplication, relying on the access to a positional number system.

We show how to e ciently avoid any switch between RNS and the positional system for performing these operations. We present a full RNS variant of FV and analyze the new bounds on noise growth. A software implementation highlights the practical benefits of the new RNS variant.

It is important to note that this work is related to the arithmetic at the coe cient level. Thus, the security features of the original scheme are not modified.

Outline Section 2 provides some preliminaries about FV and RNS. Section 3 provides a full RNS variant of decryption. Section 4 gives a full RNS variant of homomorphic multiplication. Results of a software implementation are presented in Section 5. Finally, some conclusions are drawn.

Preliminaries

Context High-level operations occur in a polynomial ring R = Z[X]/(X n +1) with n being a power of 2. R is one-to-one mapped to integer polynomials of degree < n. Most of the time, elements of R are denoted by lower-case boldface letters and identified by their coe cients. Polynomial arithmetic is done modulo (X n +1). The 'size' of a = (a 0 , . . . , a n 1 ) 2 R is defined by kak = max 06i6n 1 (|a i |). Ciphertexts will be managed as polynomials (of degree 1) in R[Y ]. For ct 2 R[Y ], we define kctk = max i kct[i]k. The multiplicative law of R[Y ] will be denoted by ?. Behind lattice-based cryptosystems in general, and FV in particular, lies the principle of noisy encryption. Additionally to the plaintext, a ciphertext contains a noise (revealed by using the secret key) which grows after each homomorphic operation. Since the homomorphic multiplication involves multiplications in R, it is crucial that the size of a product in R does not increase too much. This increase is related to the ring constant = sup{kf

• gk/kf k • kgk : (f , g) 2 (R \ {0}) 2 }. It means that kf • gk 6 kf k • kgk.
For the specific ring R used here, is equal to n.

Four our subsequent discussions on decryption and homomorphic multiplication, we denote the 'Division and Rounding' in R[Y ] (depending on parameters t, q defined thereafter) as:

DR i : ct = P i j=1 ct[j]Y j 2 R[Y ] 7 ! P i j=1 j t q ct[j] m Y j 2 R[Y ]. (1) 
The notation b t q ce, for any c 2 R (e.g. ct[j] in (1)), means a coe cient-wise division-and-rounding. Plaintext and ciphertext spaces The plaintext space is determined by an integer parameter q [Y ] with q a parameter of the scheme. On one side, some considerations about security imply a relationship between q and n which, for a given degree n, establish an upper bound to log 2 (q) (cf. ( 6) in [START_REF] Fan | Somewhat practical fully homomorphic encryption[END_REF]). On the other side, the ratio = b q t c will basically determine the maximal number of homomorphic operations which can be done in a row to ensure a correct decryption.

t (t > 2). A message is an element of R t = R/(tR

RNS representation

Beyond the upper bound on log 2 (q) due to security requirements, the composition of q has no restriction. So, q can be chosen as a product of small pairwise coprime moduli q 1 . . . q k . The reason for such a choice is the Chinese Remainder Theorem (CRT) which o↵ers a ring isomorphism

Z q ⇠ ! Q k i=1 Z q i .
Thus, the CRT implies the existence of a non-positional number system (RNS) in which large integers ( mod q) are mapped to sets of small residues. Beyond this bijection, the arithmetic modulo q over large integers can be substituted by k independant arithmetics in the small rings Z q i . The isomophism can be naturally extended to polynomials: R q ' R q 1 ⇥ . . . ⇥ R q k . It means that RNS can be used at the coe cient level to accelerate the arithmetic in R q . In the rest of the paper, the letter q may refer either to the product q 1 . . . q k or to the 'RNS base' {q 1 , . . . , q k }. Symbol ⌫ denotes the 'width' of the moduli. From now on, any modulus m (should it belong to q or to any other RNS base) is assumed to satisfy m < 2 ⌫ . and a U(R q ), to find s; U (R q ) stands for the uniform distribution on R q ). The public key pk is created as follows: sample a U(R q ) and e key , then output pk = (p 0 , p 1 ) = ([ (as + e)] q , a). Encryption, addition, inherent noise of a ciphertext Encryption and homomorphic addition are already fully compliant with RNS arithmetic. They are recalled hereafter:

Asymmetric keys

-Enc FV ([m] t ): from e 1 , e 2 err , u key , output ct = ([ [m] t + p 0 u + e 1 ] q , [p 1 u + e 2 ] q ). -Add FV (ct 1 , ct 2 ): output ([ct 1 [0] + ct 2 [0]] q , [ct 1 [1] + ct 2 [1]] q ). By definition, the inherent noise of ct (encrypting [m] t ) is the polynomial v such that [ct(s)] q = [ct[0] + ct[1]s] q = [ [m] t + v]
q . Thus, it is revealed by evaluating ct 2 R q [Y ] on the secret key s. Elementary operations A basic word will fit in ⌫ bits. In RNS, an 'inner modular multiplication' (IMM) in a small ring like Z m is a core operation. If EM stands for an elementary multiplication of two words, in practice an IMM is more costly than an EM. But it can be well controlled. For instance, the moduli provided in NFLlib library [START_REF] Aguilar-Melchor | Topics in Cryptology -CT-RSA 2016[END_REF] (cf. Sect. 5) enable a modular reduction which reduces to one EM followed by a multiplication modulo 2 ⌫ . Furthermore, the cost of an inner reduction can be limited by using lazy reduction, e.g. during RNS base conversions used throughout this paper. NTT and invNTT denote the Number Theoretic Transform and its inverse in a ring R m for a modulus m. They enable an e cient polynomial multiplication (NTT, invNTT 2 O(n log 2 (n))).

Towards a full RNS decryption

This section deals with the creation of a variant of the original decryption function Dec FV , which will only involve RNS representation. The definition of Dec FV is recalled hereafter.

-Dec FV (ct):

given ct = (c 0 , c 1 ) 2 R q [Y ], compute [DR 0 ([ct(s)] q )] t = hj t q [c 0 + c 1 s] q mi t .
The idea is that computing [c 0 +c

1 s] q = [ [m]
t +v] q reveals the noise. If this noise is small enough, and given that [m] t has been scaled by , the function DR 0 allows to cancel the noise while scaling down [m] t to recover [m] t . Concretely, decryption is correct as long as kvk < ( |q| t )/2, i.e. the size of the noise should not go further this bound after homomorphic operations.

The division-and-rounding operation makes Dec FV hardly compatible with RNS at a first sight. Because RNS is of non positional nature, only exact integer division can be naturally performed (as a multiplication by a modular inverse). But it is not the case here. And the rounding operation involves comparisons which require to switch from RNS to another positional system anyway, should it be a classical binary system or a mixed-radix one [START_REF] Garner | The Residue Number System[END_REF]. To provide an e cient RNS variant of Dec FV , we use an idea of [START_REF] Bajard | RNS Arithmetic Approach in Lattice-Based Cryptography: Accelerating the "Rounding-o↵[END_REF]. To this end, we introduce relevant RNS tools.

Fast RNS base conversion

At some point, the decryption requires, among others, a polynomial to be converted from R q to R t . To achieve such kind of operations as e ciently as possible, we suggest to use a 'fast base conversion'. In order to convert residues of x 2 [0, q) from base q to a coprime base B (e.g. {t}), we compute:

FastBconv(x, q, B) = ( P k i=1 |x i q i q | q i ⇥ q q i mod m) m2B . (2) 
This conversion is relatively faster. This is because the sum should ideally be reduced mod q to provide the exact value x; instead, (2) provides x + ↵ x q for some integer ↵

x 2 [0, k 1]. Computing ↵
x requires costly operations in RNS. So this step is by-passed, at the cost of an approximate result.

FastBconv naturally extends to polynomials of R by applying it coe cient-wise.

Approximate RNS rounding

The above mentioned fast conversion allows us to e ciently compute an approximation of b t q [c 0 + c 1 s] q e modulo t. The next step consists of correcting this approximation. A source of error is due to the use of |ct(s)| q instead of [ct(s)] q . Computing a centered remainder means making a comparison. This is hardly compatible with RNS so it is avoided. At this point the result is not guaranteed to be correct. So we propose to simplify the computation a bit more, albeit at the price of extra errors, by replacing rounding by flooring. To this end, we use the formula b t q |ct(s)| q c = t|ct(s)|q |t.ct(s)|q q

. Since it has to be done modulo t, the term t|ct(s)| q cancels and |t.ct(s)| q mod t is obtained through a fast conversion. Lemma 1 sums up the strategy by replacing |ct(s)| q by |ct(s)| q , where is an integer which will help in correcting the approximation error.

Lemma 1. Let ct be such that [ct(s)] q = [m] t + v + qr, and denote v c := tv [m] t |q| t .
Let be an integer coprime to q. Then, for m 2 {t, }, the following equalities are satisfied modulo m:

FastBconv(|t .ct(s)| q , q, {t, }) ⇥ | q 1 | m = j t[ct(s)]q q m e = ([m] t + tr) + j vc q m e (3) 
where each integer coe cient of the error polynomial e 2 R lies in [0, k].

The error e is due to the fast conversion and the replacement of rounding by flooring. It is the same error for residues modulo t and . The residues modulo will enable a fast correction of it and of the term b vc q e at a same time. Also, note that r vanishes since it is multiplied by both t and .

Correcting the approximate RNS rounding

The next step is to show how in (3) can be used to correct the term (b vc q e e) in the particular case where v c is such that kv c k 6 q( 1 2 "), for some real number " 2 (0, 1/2]. Lemma 2. Let kv c k 6 q( 1 2 "), e 2 R with coe cients in [0, k], and an integer. Then,

" > k ) hj vc q m e i = j vc q m e. (4) 
Lemma 2 enables an e cient and correct RNS rounding as long as k( 1 2 kvck q ) 1 ⇠ has the size of a modulus [START_REF] Bajard | RNS Arithmetic Approach in Lattice-Based Cryptography: Accelerating the "Rounding-o↵[END_REF]. Concretely, one computes (3) and uses the centered remainder modulo to obtain

([m] t + tr) modulo t, that is [m] t mod t.
And it remains to multiply by

| 1 | t to recover [m] t .

A full RNS variant of Dec FV

The new variant of the decryption is detailed in Alg. 1. The main modification for the proposed RNS decryption is due to Lem. 2. As stated by Thm. 1, given a , the correctness of rounding requires a new bound on the noise to make the -correction technique successful.

Theorem 1. Let ct(s) = [m] t + v (mod q)
. Let be a positive integer coprime to t and q such that > 2k/(1 t|q|t q ). For Alg.

returning [m]

t , it su ces that v satisfies the following bound:

kvk 6 q t ( 1 2 k ) |q|t 2 .
(

There is a trade-o↵ between the size of and the bound in [START_REF] Bos | Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme[END_REF]. Ideally, ⇠ 2k at the price of a (a priori ) quite small bound on the noise. But taking ⇠ 2 p+1 k for p < ⌫ 1 dlog 2 (k)e (i.e. < 2 ⌫ is a standard modulus), the bound ( (1 2 p ) |q| t )/2 for a correct decryption should be close to the original bound ( |q| t )/2 for practical values of ⌫. A concrete estimation of in Sect. 5.1 will show that can be chosen very close to 2k in practice, and thus fitting on a basic word by far.

Algorithm 1 Dec RNS (ct, s, )

Require: ct an encryption of [m]t, and s the secret key, both in base q; an integer coprime to t and q Ensure:

[m]t 1: for m 2 {t, } do 2: s (m) | FastBconv(| t.ct(s)|q, q, {m}) ⇥ |q 1 |m|m 3: end for 4: s( ) [s ( ) ] 5: m (t) [(s (t) s( ) ) ⇥ | 1 |t]t 6: return m (t)

Staying in RNS is asymptotically better

In any decryption technique, (ct(s) mod q) has to be computed. To optimize this polynomial product, one basically performs kNTT ! knIMM ! kinvNTT. For next steps, a simple strategy is to compute (b t q [ct(s)] q e mod t) by doing an RNS to binary conversion for performing the division and rounding. By denoting x i = |ct(s) q i q | q i , one computes P k i=1 x i q q i mod q, compares it to q/2 to center the result, and performs division and rounding. That way, the division-and-rounding would require O(k 2 n)EM. In practice, security analysis (cf. e.g. [START_REF] Fan | Somewhat practical fully homomorphic encryption[END_REF][START_REF] Bos | Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme[END_REF][START_REF] Lepoint | Progress in Cryptology -AFRICACRYPT 2014: 7th International Conference on Cryptology in Africa[END_REF]) requires at most k⌫ = dlog 2 (q)e 2 O(n). So, the asymptotic computational complexity is determined by the fact of leaving RNS to access a positional system. Staying in RNS then enables a better asymptotic complexity. Indeed, it is easy to see that Alg. 1 requires O(kn) operations (excluding the polynomial product), thus the cost of NTT is dominant in this case. By considering

k 2 O(n), we deduce C(Dec FV ) 2 O(n 3 ), while C(Dec RNS ) 2 O(n 2 log 2 (n)). But the hidden constant in 'k 2 O(n)'
is small, and the NTT, common to both variants, should avoid any noticeable divergence (cf. 5.3) for practical ranges for parameters.

We make two remarks. First, the reduction modulo q is not necessary. Indeed, any extra multiple of q in P k i=1 x i q q i is multiplied by t q , making the resulting term a multiple of t, which is not a↵ected by the rounding and is finally cancelled modulo t. Second, it is possible to precompute t q as a multiprecision floating point number in order to avoid a costly integer division. But given the first remark, it su ces to precompute the floating point numbers Q i ⇠ t q i with a precision of 2⌫ + log 2 (k) log 2 (t) bits (⇠ 2 words of precision). In this case, one does not have to use multiprecision floating point arithmetic, but only standard double or quadruple (depending on ⌫) precision. In other words, it is su cient to compute b

P k i=1 x i Q i e mod t.
This represents about 2knEM. Reducing modulo t is nearly free of cost when t is a power of 2.

A second optimized RNS variant, with only integer arithmetic, is based on Alg. 1, in which is assumed to be coprime to t. It is possible to be slightly more e cient by noticing that the coprimality assumption can be avoided. This is because the division by is exact. To do it, the for loop can be done modulo ⇥ t. For instance, even if t a power of 2, one can choose as being a power of 2, and use the following lemma to finish the decryption very e ciently.

Lemma 3. Let be a power of 2. Let z := | [m]

t + b vc q e e| t coming from (3) when computed modulo t. If satisfies (4), then ( denotes the right bit-shifting, and & the bit-wise and)

[(z + (z&( 1))) log 2 ( )] t = [m] t . (6) 
Lemma 3 can be adapted to other values for , but choosing it as a power of 2 makes the computation very easy because of simple operations on bits. Finally, as soon as t fits in 1 word, the cost of such variant (besides the polynomial product) reduces to knIMM, or simply to knEM modulo 2 log 2 ( t) whenever t is a power of 2.

4 Towards a full RNS homomorphic multiplication

Preliminaries about Mult FV

Below we recall the main mechanisms of the homomorphic multiplication Mult FV from [START_REF] Fan | Somewhat practical fully homomorphic encryption[END_REF]. More precisely, we focus on the variant with version 1 for relinearisation step. First, two functions, of which the purpose is to limit of too rapid noise growth during a multiplication, are recalled (these functions will be denoted as in [START_REF] Bos | Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme[END_REF]). They are appliable to any a 2 R, for any radix !, and with the subsequent parameter `!,q = blog ! (q)c + 1. D !,q is a decomposition in radix base !, while P !,q gets back powers of ! which are lost within the decomposition process.

D !,q (a) = ([a] ! , [b a ! c] ! , . . . , [b a ! `!,q 1 c] ! ) 2 R `!,q ! , P !,q (a) = ([a] q , [a!] q , . . . , [a! `!,q 1 ] q ) 2 R `!,q q .
(7) In particular, for any (a, b) 2 R 2 , hD !,q (a), P !,q (b)i ⌘ ab mod q. Next, Mult FV is built as follows:

-public rlk FV = [P !,q (s 2 ) ( ! e + s ! a )] q , ! a where ! e `!,q err , ! a U(R q ) `!,q , -Relin FV (c 0 , c 1 , c 2 ): compute ([c 0 + hD !,q (c 2 ), rlk FV [0]i] q , [c 1 + hD !,q (c 2 ), rlk FV [1]i] q ), -Mult FV (ct 1 , ct 2 ): denote ct ? = ct 1 ? ct 2 (degree-2 element of R[Y ]), • Step 1: f ct mult = [DR 2 (ct ? )] q = ([DR 0 (ct ? [i])] q ) i2{0,1,2} , • Step 2: ct mult = Relin FV ( f ct mult ).
There are two main obstacles to a full RNS variant. First, the three calls to DR 0 in Step 1, for which the context is di↵erent than for the decryption. While in the decryption we are working with a noise whose size can be controlled, and while we are reducing a value from q to {t}, here the polynomial coe cients of the product ct 1 ? ct 2 have kind of random size modulo q (for each integer coe cient) and have to be reduced towards q. Second, the function D !,q (in Relin FV ) requires, by definition, an access to a positional system (in radix base !), which is hardly compatible with RNS.

Auxiliary RNS bases

Step 1 requires to use enough moduli to contain any product, in R[Y ] (i.e. on Z), of degree-1 elements from R q [Y ]. So, we need an auxiliary base B, additonally to the base q. We assume that B contains `moduli (while q owns k elements). A su cient size for `will be given later. An extra modulus m sk is added to B to create B sk . It will be used for a transition between the new steps 1 and 2. Computing the residues of ciphertexts in B sk is done through a fast conversion from q. In order to reduce the extra mutiples of q (called 'q-overflows' from now on) this conversion can produce, a single-modulus base m is introduced. All these bases are assumed to be pairwise coprime.

Reducing (mod q) a ciphertext in B

sk A FastBconv from q can create q-overflows (i.e. unnecessary multiples of q) in the output. To limit the impact on noise growth (because of division by q in step 1), we give an e cient way to reduce a polynomial c + qu in B sk . It should be done prior to each multiplication. For that purpose, we use the residues modulo m as done in Alg. 2. q + qu| m for all m 2 B sk [ { m}, with kuk 6 ⌧ , and given a parameter ⇢ > 0, then Alg. 2 returns c 0 in B sk with c 0 ⌘ c mod q and kc 0 k

6 q 2 (1 + ⇢) if m satisfies: m⇢ > 2⌧ + 1. ( 8 
)
To use this fast reduction, the ciphertexts have to be handled in base q through the Montgomery [START_REF] Montgomery | Modular Multiplication without Trial Division[END_REF] representation with respect to m (i.e. | mc| q instead of |c| q ). This can be done for free of cost during the base conversions (in (2), multiply residues of c by precomputed | mq i q | q i instead of | q i q | q i ). Since { m} is a single-modulus base, the conversion of r m from { m} to B sk (line 3 of Alg. 2) is a simple copy-paste when m < m i . Finally, if SmMRq m is performed right after a FastBconv from q, ⌧ is nothing but k (recall that, in this case, we would convert | mc| q instead of [ mc] q ).

Adapting the first step

We recall that originally this step is the computation of [DR 2 (ct ? )] q . Unlike the decryption, acorrection technique does not guarantee an exact rounding. Indeed, for the decryption we wanted to get DR 0 ([ct(s)] q ), and through s we had acces to the noise of ct, on which we have some control. In the present context, we cannot ensure a condition like k[t.ct ? ] q k 6 q( 1 2 "), for some " 1 ⇠ 2 ⌫ , which would enable the use of an e cient -correction. Thus, we suggest to perform a simple uncorrected RNS flooring. For that purpose, we define: 8a 2 R, fastRNSFloor q (a, m) := (a FastBconv(|a| q , q, m))|q 1 | m mod m. First, Alg. 2 should be executed. Consequently, by Lem. 4, if m satisfies the bound in (8) for a given parameter ⇢ > 0, we assume having, in B sk , the residues of ct 0 i ⌘ ct i mod q such that:

kct 0 ? := ct 0 1 ? ct 0 2 k 6 q 2 2 (1 + ⇢) 2 . ( 9 
)
The parameter ⇢ will be determined in practice. Notice that, in base q, ct 0 i and ct i are equal. Lemma 5. Let's assume that the residues of ct 0 i ⌘ ct i mod q are given in base q [ B sk , and that

kct 0 i k 6 q 2 (1 + ⇢) for i 2 {1, 2}. Let ct 0 ? = ct 0 1 ? ct 0 2 . Then, for j 2 {0, 1, 2}, fastRNSFloor q (t.ct 0 ? [j], B sk ) = j t q ct 0 ? [j] m + b j in B sk , with kb j k 6 k. (10) 
A first part of the noise growth is detailed in the following proposition.

Proposition 1. Let f ct mult = DR 2 (ct 0 ?
) with ( 9) satisfied, and 2 ) by b. To perform the second step of multiplication, we need to convert it in base q. However, the conversion has to be exact because extra multiples of M = m 1 . . . m `cannot be tolerated. m sk allows us to perform a complete Shenoy and Kumaresan like conversion [START_REF] Shenoy | Fast base extension using a redundant modulus in[END_REF]. The next lemma describes such kind of conversion for a more general context where the input can be either positive or negative, and can be larger, in absolute value, than M . Lemma 6. Let B be an RNS base and m sk be a modulus coprime to M = Q m2B m. Let x be an integer such that |x| < M (for some real number > 1) and whose residues are given in B sk . Let's assume that m sk satisfies m sk > 2(|B| + d e). Let ↵ sk,x be the following integer:

r 1 := 1+⇢ 2 (1 + B key ) + 1. Let v i be the inherent noise of ct 0 i . Then f ct mult (s) = [m 1 m 2 ] t + ṽmult (mod q) with: kṽ mult k < t(r 1 + 1 2 )(kv 1 k+kv 2 k)+ 2 min kv i k+ t|q| t (r 1 +1)+ 1 2 (3+|q| t + B key (1+ B key )). (11 
↵ sk,x := ⇥ (FastBconv(x, B, {m sk }) x sk )M 1 ⇤ msk . (12) 
Then, for x being either positive or negative, the following equality holds:

FastBconvSK(x, B sk , q) := (FastBconv(x, B, q) ↵ sk,x M ) mod q = x mod q. ( 13 
)
Consequently, since kDR 2 (ct 0 ? )+bk 6 t q 2 (1+ ⇢) 2 + 1 2 + k, we can establish the following proposition. Proposition 2. Given a positive real number , let m sk and B be such that:

M > t q 2 (1 + ⇢) 2 + 1 2 + k, m sk > 2(|B| + d e). (14) 
Let's assume that DR 2 (ct 0 ? ) + b is given in B sk , with kbk 6 k. Then,

FastBconvSK(DR 2 (ct 0 ? ) + b, B sk , q) = DR 2 (ct 0 ? ) + b mod q.
4.5 Adapting the second step At this point, f

ct mult + b = (c 0 , c 1 , c
2 ) is known in base q ( f ct mult := DR 2 (ct 0 ? )). We recall that the original second step of homomorphic multiplication would be done as follows:

ct mult = [c 0 + hD !,q (c 2 ), P !,q (s 2 ) ( ! e + s ! a )i] q , [c 1 + hD !,q (c 2 ), ! a i] q (15) 
where ! e `!,q err , ! a U(R q ) `!,q . The decomposition of c 2 in radix ! enables a crucial reduction of the noise growth due to the multiplications by the terms e i +sa i . It cannot be done directly in RNS as is. Indeed, it would require a costly switch between RNS and radix-! positional representation. However, we can do something very similar. We recall that we can write c

2 = P k i=1 |c 2 q i q | q i ⇥ q q i (mod q).
If ! has the same order of magnitude than 2 ⌫ (size of moduli in q), we obtain a similar limitation of the noise growth by using the vectors ⇠ q (c 2 ) = (|c

2 q 1 q | q 1 , . . . , |c 2 q k
q | q k ) and P RNS,q (s 2 ) = (|s 2 q q 1 | q , . . . , |s 2 q q k | q ), both in R k . This is justified by the following lemma.

Lemma 7. 8c 2 R, h⇠ q (c), P RNS,q (s 2 )i ⌘ cs 2 mod q. The public rlk FV is then replaced by rlk RNS = [P RNS,q (s 2 ) ( ! e + s ! a )] q , ! a . The following lemma helps for providing a bound on the extra noise introduced by this step.

Lemma 8. Let ! e k err , ! a U(R q ) k , and c 2 R. Then, k h⇠ q (c), ( ! e + ! a s)i + sh⇠ q (c), ! a i mod qk < B err k2 ⌫ . (16) 
Remark 1. Appendix B.1 provides a variant of this second step in which a second level of decomposition is included to limit a bit more the noise growth. Appendix B.2 details how the size of rlk RNS can be reduced in a similar way that rlk FV could be through the method described in ([5], 5.4).

Finally, the output of the new variant of multiplication, ct mult , is the following one:

ct mult = ⇣ ⇥ c 0 + h⇠ q (c 2 ), P RNS,q (s 2 ) ( ! e + ! a s)i ⇤ q , ⇥ c 1 + h⇠ q (c 2 ), ! a i ⇤ q ⌘ . ( 17 
)
Proposition 3. Let ct mult be as in [START_REF] Lepoint | Progress in Cryptology -AFRICACRYPT 2014: 7th International Conference on Cryptology in Africa[END_REF], and v mult (resp. e v mult ) the inherent noise of ct mult (resp.

f ct mult ). Then ct mult (s) = [m 1 m 2 ] t + v mult (mod q) with: kv mult k < ke v mult k + k(1 + B key (1 + B key )) + B err k2 ⌫+1 . ( 18 
)
Algorithm 3 depicts the scheme of the RNS variant Mult RNS .

About computational complexity

In a classical multi-precision (MP) variant, for the purpose of e ciency the multiplication should perform the ciphertext product by using NTT-based polynomial multiplication (e.g. as in [START_REF] Sinha Roy | Modular Hardware Architecture for Somewhat Homomorphic Function Evaluation[END_REF]). This approach requires the use of a base B 0 (besides q) with |B 0 | = k + 1 (cf. App. B.3 for more details). Notice that, in RNS variant, we also have |B sk | = k + 1. Thus, it can be shown (cf. App. B.3) that RNS and MP variants (in the case where `!,q = k) contain the same number of NTT and invNTT operations. In other words, they embed the same number of polynomial products.

Algorithm 3 Overview of the RNS homomorphic multiplication Mult RNS

Require: ct1, ct2 in q Ensure: ct mult in q S0: Convert fast ct1 and ct2 from q to Bsk [ { m}: ct 00 i = cti + q-overflows S1: Reduce q-overflows in Bsk: (ct 0 i in Bsk) SmMRq m(((ct 00 i )m) m2Bsk[{ m} ) S2: Compute the product ct 0 ? = ct 0 1 ? ct 0 2 in q [ Bsk S3: Convert fast from q to Bsk to achieve the first step (approximate rounding) in Bsk:

( f ct mult + b = DR2(ct 0 ? ) + p in Bsk)
. . . FastBconv(t.ct 0 ? , q, Bsk) S4: Convert exactly from Bsk to q to achieve the transitional step: ( f ct mult +b in q) FastBconvSK( f ct mult +b, Bsk, q) S5: Perform second step (relinearization) in q: ct mult RelinRNS( f ct mult + b) mod (q1, . . . , q k )

The RNS variant decreases the computational cost of other parts. Despite the fact that the asymptotic computational complexity of these parts remains identical for both variants, i.e. O(k 2 n) elementary multiplications, the RNS variant only involves single-precision integer arithmetic.

To sum up, because of a complexity of O(k 2 n log 2 (n)) due to the NTT's, we keep the same asymptotic computational complexity C(Mult FV ) ⇠ n!+1 C(Mult RNS ). However, the most important fact is that multi-precision multiplications within MP variant are replaced in RNS by fast base conversions, which are simple matrix-vector products. Thus, Mult RNS retains all the benefits of RNS properties and is highly parallelizable.

Software implementation

The C++ NFLlib library [START_REF] Aguilar-Melchor | Topics in Cryptology -CT-RSA 2016[END_REF] was used for arithmetic in R. It provides an e cient NTT-based product in R p for p a product of 30 or 62-bit prime integers, and with degree n as a power of 2, up to 2 15 .

Concrete examples of parameter settings

In this part, we analyze what depth can be reached in a multiplicative tree, and for which parameters. The initial noise is at most V = B err (1 + 2 B key ) [START_REF] Lepoint | Progress in Cryptology -AFRICACRYPT 2014: 7th International Conference on Cryptology in Africa[END_REF]. The output of a tree of depth L has a noise bounded by C L RNS,1 V + LC L 1 RNS,1 C RNS,2 (cf. [START_REF] Bos | Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme[END_REF], Lem. 9) with, for the present RNS variant:

⇢ CRNS,1 = 2 2 t (1+⇢) 2 B key + t(4 + ⇢) + 2 ; CRNS,2 = (1 + B key )( t|q|t 1+⇢ 2 + B key (k + 1 2 )) + 2 t|q|t + k( Berr2 ⌫+1 + 1) + 1 2 (3 + |q|t).
We denote by For an 80-bit security level and parameters

L RNS = max{L 2 N | C L RNS,1 V + LC L 1 RNS,1 C RNS,2 6 q t ( 1 2 
B key = 1, err = 8, B err = 6
err , we consider the security analysis in [START_REF] Lepoint | Progress in Cryptology -AFRICACRYPT 2014: 7th International Conference on Cryptology in Africa[END_REF], which provides ranges for (log 2 (q), n) (cf. [START_REF] Lepoint | Progress in Cryptology -AFRICACRYPT 2014: 7th International Conference on Cryptology in Africa[END_REF], Tab. 2). We analyze parameters by using the moduli available in NFLlib since those were used for concrete testing. For a 32-bit (resp. 64) implementation, a set of 291 30-bit (resp. 1000 62bit) moduli is available. These moduli are chosen to enable e cient modular reduction (cf. [START_REF] Aguilar-Melchor | Topics in Cryptology -CT-RSA 2016[END_REF], Alg. 2). Table 1 lists parameters when q and B are built with the 30-bit moduli of NFLlib. These parameters were determined by choosing the largest ⇢ (up to 2k 1) allowing to reach depth L RNS . L std corresponds to the bounds given in [START_REF] Lepoint | Progress in Cryptology -AFRICACRYPT 2014: 7th International Conference on Cryptology in Africa[END_REF]. Su cient sizes for , and m sk (allowing to set |B| = k through [START_REF] Granlund | GNU MP: The GNU Multiple Precision Arithmetic Library[END_REF] and by choosing, for q, the k greatest moduli available) are provided. For these specific parameters, the new bounds on noise in RNS variant causes a smaller depth in only one case.

Remark 2. The e↵ect of q-overflow reduction by using SmMRq m is illustrated in App. C. Taking m larger than necessary has a noticeable e↵ect on noise growth. So, even when it is not required to reach depth L RNS , it is worth doing it. Furthermore, a larger m decreases the minimal size of and m sk (as shown in the table, one set of parameters leads to dlog 2 (m sk )e = 31, avoiding the use of a 30-bit modulus; this can be solved by taking a larger m). For our purpose, choosing m larger than necessary, like 2 8 or 2 16 , is for achieving an e cient implementation.

Some remarks Convenient m and

Given values of ⇢ in Tab. 1, m = 2 8 (resp. m = 2 16 ) satisfies, by far, any set of analyzed parameters. This enables an e cient and straightforward modular arithmetic through standard types like uint8 t (resp. uint16 t) and casting towards the signed int8 t (resp. int16 t) immediatly gives the centered remainder. According to Sect. 3.5 and Tab. 1 (cf. App. C for parameters corresponding to m = 2 8 or 2 16 ), = 2 8 is su cient to ensure a correct decryption. The reduction modulo can be achieved through a simple type cast to uint8 t.

Tested algorithms

The code1 we compared with was implemented in the context of HEAT [START_REF]Homomorphic Encryption, Applications and Technology (HEAT)[END_REF] and is based on NFLlib too. Multi-precision arithmetic is handled with GMP 6.1.0 [START_REF] Granlund | GNU MP: The GNU Multiple Precision Arithmetic Library[END_REF], and multiplications by t q are performed through integer divisions. Mult MP and Dec MP denote functions from this code.

Mult RNS has been implemented in the way described by Alg. 3. Could the use of SmMRq m be avoided to reach the maximal theoretical depth, it is however systematically used. Its cost is negligible and it enables a noticeable decrease of noise growth (cf. App. C).

Two variants of Dec RNS (cf. Sect. 3.5) have been implemented. Depending on ⌫, the one with floating point arithmetic (named Dec RNS-flp thereafter) uses double (resp. long double) for double (resp. quadruple) precision, and then does not rely on any other external library at all.

Results

The tests have been run on a laptop with Intel R Core TM i7-4810MQ CPU @ 2.80GHz, under Linux.

Hyper-Threading and Turbo Boost were disactivated. 2 shows which values of k have been tested (depending on n). Multiplication timing for (n, ⌫, k) = (2 11 , 62, 1) is not given since L = 1 already causes decryption failures. In Fig. 2, the convergence of complexities of Mult RNS and Mult MP (as explained in Sect. 4.6) is well illustrated. The new algorithm presented in this paper allows speed-ups from ⇠ 4.3⇥ to ⇠ 1.7⇥ 2: Parameter k used in the tests (i.e. dlog 2 (q)e = k⌫). for degree n from 2 11 to 2 15 when ⌫ = 30, and from ⇠ 3.6⇥ to ⇠ 1.9⇥ for n from 2 12 to 2 15 when ⌫ = 62 (cf. App. D). In Fig. 1, the two variants described in 3.5 are almost equally fast. Indeed, they perform the same number of elementary (floating point or integer) operations. Between degree 2 11 and 2 15 , the RNS variants allow speed-ups varying from 6.1 to 4.4 when ⌫ = 30, and from 20.4 to 5.6 when ⌫ = 62. All the implemented decryption functions take as input a ciphertext in NTT representation. Thus, only one invNTT is performed (after the product of residues) within each decryption. As explained (cf. 3.5), despite a better asymptotic computational complexity for RNS decryption, the e ciency remains in practice highly related to this invNTT procedure, even justifying the slight convergence between MP and RNS decryption times observed in Fig. 1.

Conclusion

In this paper, the somewhat homomorphic encryption scheme FV has been fully adapted to Residue Number Systems. Prior to this work, RNS was used to accelerate polynomial additions and multiplications. However, the decryption and the homomorphic multiplication involve operations at the coe cient level which are hardly compatible with RNS, such as division and rounding.

Our proposed solutions overcome these incompatibilities, without modifying the security features of the original scheme. As a consequence, we have provided a SHE scheme which only involves RNS arithmetic. It means that only single-precision integer arithmetic is required, and the new variant fully benefits from the properties of RNS, such as parallelization.

The proposed scheme has been implemented in sotfware using C++. Because arithmetic on polynomials (in particular polynomial product) is not concerned by the new optimizations provided here, the implementation has been based on the NFLlib library, which embeds a very e cient NTTbased polynomial product. Our implementation has been compared to a classical version of FV (based on NFLlib, and GMP). For degrees from 2 11 to 2 15 , the new decryption (resp. homomorphic multiplication) o↵ers speed-ups from 20 to 5 (resp. 4 to 2) folds for cryptographic parameters.

Further work should demonstrate the high potential of the new variant by exploiting all the concurrency properties of RNS, in particular through dedicated hardware implementations.

A Proofs

A.1 Lemma 1 According to definition (2), FastBconv(|t .ct(s)| q , q, {t, }) provides |t .ct(s)| q + qa, where each coe cient a i is an integer lying in [0, k 1]. Let m be t or . Then,

FastBconv(|t .ct(s)| q , q, {t, }) ⇥ | q 1 | m mod m = (|t .ct(s)| q + qa) ⇥ | q 1 | m mod m = t [ct(s)] q |t .ct(s)| q qa q mod m (exact division) = ✓ t [ct(s)] q q ⌫ a ◆ mod m = ✓ t [ct(s)] q q ⇡ e ◆ mod m
where e i 2 {a i , a i + 1}, i.e. e i 2 [0, k]. To conclude the proof, it su ces to use the equality t = q |q| t . That way, one can write t[ct(s)] q = q([m] t + tr) + v c , and the second equality of (3) follows.

A.2 Lemma 2

By hypothesis, we have ( 12

") k 6 ( vc q e) i 6 ( 1 2 ") for i 2 [0, n 1]. It follows that, to have [b vc q e e] = b vc q e e, we require that b 2 c 1 2 6 vc q e < b 1 2 c + 1 2 .
Then, a su cient condition is given by:

⇢ ( 1 2 ") < b 1 2 c + 1 2 b 2 c 1 2 6 ( 1 2 ") k , ( odd) 
⇢ " > 0 " > k or ( even) ⇢ " > 1 2 " > k 1 2 .

A.3 Theorem 1

According to Lem. 2, the -correction technique works as long as (

1 2 kvck q ) > k , kv c k 6 q( 1 2 k ). Moreover, kv c k = ktv |q| t [m] t k 6 tkvk + |q| t t 2 .
Then, the bound (5) follows. The lower bound on guarantees that the bound (5) for the noise is positive. 

A.4 Lemma 3 Let's denote f v c := b vc q e e.
v c + |f v c | lies in [0, ). This is a direct consequence of the fact that (f v c ) i 2 [ 2 , 
2 ). Indeed, we have:

8i 2 [0, n 1], ⇢ (f v c ) i 2 [ 2 , 0) ) (|f v c | ) i = (f v c ) i + ) (f v c + |f v c | ) i 2 [0, 2], (f v c ) i 2 [0, 2 ) ) (|f v c | ) i = (f v c ) i ) (f v c + |f v c | ) i 2 [0, 2].
Consequently, (z + z&( 1)) log 2 ( ) = |m| t + tb, and (6) follows.

A.5 Lemma 4 Algorithm 2 performs in B sk the computation of

[c m]q+qu+q[ ([c m]q+qu)/q] m m
. This quantity is clearly congruent to c modulo q. In accordance with hypothesis (8), its norm is bounded by q(1/2+⌧ + m/2) m 6 q 2 (1 + ⇢).

A.6 Lemma 5

We recall that FastBconv(|t.ct 0 ? [j]| q , q, B sk ) outputs |t.ct 0 ? [j]| q + qu with kuk 1 6 k 1. Then, the proof is complete by using the general equalities

x |x|q q = b x q c = b x q e + ⌧ , ⌧ 2 { 1, 0}.

A.7 Proposition 1

The following noise analysis is inspired from the one provided in [START_REF] Bos | Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme[END_REF]. So, some of the tools and bounds from there are re-used here. In the following, we write ct 0 i = (c 0 i,0 , c 0 i,1 ). In particular, we have ct 0

? = (c 0 1,0 c 0 2,0 , c 0 1,1 c 0 2,0 + c 0 1,0 c 0 2,1 , c 0 1,1 c 0 2,1 )
. By hypothesis, each c 0 i,j satisfies kc 0 i,j k 6 q 2 (1 + ⇢). In particular, the bound in (9) comes from the fact that kc 0 1,1 c 0 2,0 + c 0 1,0 c 0 2,1 k 6 q 2 2 (1 + ⇢) 2 . Since ct 0 i = ct i mod q and kct 0 i k 6 q 2 (1 + ⇢), and by using ksk 6 B key ,

kv i k < 2 < q 2t , k [m]
t k < t 2 < q 2 and t > 2, we can write:

ct 0 i (s) = c 0 i,0 + c 0 i,1 s = [m i ] t + v i + qr i with kr i k < r 1 := 1+⇢ 2 (1 + B key ) + 1.
For our purpose, we use some convenient notations and bounds from [START_REF] Bos | Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme[END_REF], but appliable to the present context:

⇢ v 1 v 2 = [v 1 v 2 ] + r v , kr v k < 2 min kv i k 1 + 1 2 , [m 1 ] t [m 2 ] t = [m 1 m 2 ] t + tr m , kr m k < 1 2 t. (19) 
By noticing that ct 0 ? (s) = (ct 0 1 ? ct 0 2 )(s) = ct 0 1 (s) ⇥ ct 0 2 (s), we obtain:

ct 0 ? (s) = 2 [m 1 ] t [m 2 ] t + ([m 1 ] t v 2 + [m 2 ] t v 1 ) + q ([m 1 ] t r 2 + [m 2 ] t r 1 ) +v 1 v 2 + q 2 r 1 r 2 + q(v 1 r 2 + v 2 r 1 ).
with 0 6 ↵ sk,(x+µM ) 6 ` 1. Denoting |x| msk by x sk , it follows that the quantity computed in ( 12) is the following one: msk = ↵ sk,(x+µM ) + µ, and it follows that by computing the right member of (13), we obtain

[( P ì=1 |x m i M | m i M m i x sk )M 1 ] msk = [( P ì=1 |x m i M | m i M m i (x sk + µM ))M 1 + µ]
P ì=1 |x m i M | m i M m i [↵ sk,(x+µM ) + µ] msk M = (x + µM ) + ↵ sk,(x+µM ) M (↵ sk,(x+µM ) + µ)M = x.
A.9 Proposition 2 By using (9), we have kDR 2 (ct 0 ? )k 6 k t q ct 0 ? k + 1 2 6 t q 2 (1 + ⇢) 2 + 1 2 . Lem. 6 concludes the proof.

A.10 Lemma 8 First, we have h⇠ q (c), ! e + ! a s)i + sh⇠ q (c), ! a i mod q = h⇠ q (c), ! e i mod q. Second, by using q i < 2 ⌫ , we obtain kh⇠ q (c), ! e ik = k

P k i=1 |c q i q | q i e i k < P k i=1 q i ke i k 6 B err P k i=1 q i < B err k2 ⌫ . (21) 
B Additional elements about RNS homomorphic multiplication

B.1 Combining two levels of decomposition within step 2

To reduce the noise growth due to the relinearisation step a bit more, we can integrate another level of decomposition in radix ! where ! = 2 ✓ << 2 ⌫ as e ciently as in the original scheme by doing it on the residues, because they are handled through the classical binary positional system. By denoting `!,2 ⌫ = d ⌫ ✓ e, each polynomial |c q i q | q i is decomposed into the vector of polynomials ([b|c

q i q | q i ! z c] ! ) z2[0,...,`⌫ 1]
, and the new decomposition function is defined by:

D RNS,!,q (c) = ✓ d z i =  c q i q q i ! z ⌫ w ◆ i2[1,k],z2[0,...,`! ,2 ⌫ 1]
.

Therefore, each term |s 2 q q i (e i + sa i )| q j in rlk RNS [0] has to be replaced by

⇣ |s 2 q q i ! z (e z i + sa z i )| q j ⌘ z , z = 0, . . . , `!,2 ⌫ 1, e z i err , a z i U(R q ).
It follows that the extra noise is now bounded by:

khD RNS,!,q (c), ! e ik = k P k i=1 P `!,2 ⌫ 1 z=0 d z i e z i k < B err !k`! ,2 ⌫ 
. In other words, the term 2 ⌫ in ( 16) is replaced by !`! ,2 ⌫ .

B.2 Reducing the size of the relinearization key rlk RNS In section 5.4 of [START_REF] Bos | Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme[END_REF], a method to reduce the size of the public evaluation key evk significantly is suggested (by truncating the ciphertext) and it is appliable to the original FV scheme. We provide an e cient adaptation of such kind of optimization to the RNS variant of the relinearization step. We recall that the relinearization is applied to a degree-2 ciphertext denoted here by (c 0 , c 1 , c 2 ). The initial suggestion was to set to zero, say, the i lowest significant components of the vector D !,q (c 2 ). Doing so is equivalent to replacing c 2 by c 0

2 = ! i bc 2 ! i c = c 2 |c 2 | ! i .
Thus, only the `!,q i most significant components of rlk FV [0] (and then of rlk FV [START_REF]Homomorphic Encryption, Applications and Technology (HEAT)[END_REF]) are required (in other words, when rlk FV [0] is viewed as an (`q ,! , k) RNS matrix, by decomposing each component in base q, to do this allows to set ik entries to zero). This optimization causes a greater noise than the one in Lemma 4 of [START_REF] Bos | Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme[END_REF]. Given (c 0 , c 1 , c 2 ) decryptable under s, the relinearization step provides:

(c 0 , c1 ) := (c 0 + hD !,q (c 0 2 ), P !,q (s 2 ) ( ! e + ! a s)i, c 1 + hD !,q (c 0 2 ), ! a i). Thus, (c 0 , c1 )(s) = c 0 + c 1 s + c 0 2 s 2 hD !,q (c 0 2 ), ! e i mod q.
Consequently, the extra noise would come from the following term:

k |c 2 | ! i s 2 hD !,q (c 0 2 ), ! e ik = k |c 2 | ! i s 2 P `!,q 1 j=i D !,q (c 2 ) j e j k < 2 ! i B 2 key + (`! ,q i) !B err . (22) 
In the present RNS variant, the computation of bc 2 ! i c is not straightforward. This could be replaced by bc 2 (q 1 . . . q i ) 1 c through a Newton's like interpolation (also known as mixed-radix conversion [START_REF] Garner | The Residue Number System[END_REF]). Though the result would be quite similar to the original optimization in terms of noise growth, its e ciency is not satisfying. Indeed, despite ik entries of the RNS matrix rlk RNS [0] C Influence of m over noise growth Bound for m = 2 16 Fig. 3: Noise growth, for n = 2 13 , log 2 (q) = 390 (⌫ = 30, k = 13), t = 2, err = 8, B key = 1.

In the paper, we have explained that, after a fast conversion from q, ciphertexts in B sk can contain q-overflow and verify kct 0 i k < q 2 (1 + ⌧ ) . In a multiplicative tree without any addition, one has ⌧ 6 2k 1 (recall that we convert |c| q , not [c] q ). By applying Alg. 2, this bound decreases to q 2 (1 + ⇢), for some 0 < ⇢ 6 2k 1. ⇢ = 2k 1 would mean no reduction is necessary at all: this case occurs only three times in Tab. 1 for degrees 2 11 and 2 12 ). This highlights the necessity of such reduction before a multiplication so as to reach the best possible depth, especially for highest degrees. Moreover, taking a lower ⇢ (i.e. higher m) than necessary decreases a bit the bound for m sk (cf. Tab. 3).

As an illustration of the interest of this reduction procedure, Fig. 3 depicts the noise growth when m 2 {0, 2 8 , 2 16 }. According to Tab. 1, m = 2 8 is well su cient in such scenario in order to reach L RNS = 13. Against a computation with no reduction at all ( m = 0, implying L RNS = 11 in this case), taking m = 2 8 implies an average reduction of 25%. By using m = 2 16 , we gain around 32%.

Consequently, SmMRq m has been systematically integrated in the implementation of Mult RNS . Tables 3 and4 summarize which value has been chosen for m for all the configurations which have been implemented and tested, and they list su cient sizes for m sk and in these cases. 

D Timing results for decryption and multiplication

Table 5 lists timings and speed-ups of RNS vs MP variants. Also, timings of an RNS decryption and multiplication including the use of SIMD (Single Instruction Multiple Data) have been added.

In RNS variants (as well decryption as multiplication), the replacement of division and rounding by base conversions (i.e. matrix-vector multiplications) allows to benefit, easily and naturally, from concurrent computation. An RNS vector-matrix multiplication naturally owns two levels of parallelization: along the RNS channels, and along the dimension of the result. In NFLlib, an element of R q is stored in a (32-byte aligned) array data in which the n first values are the coe cients of the polynomial in R q 1 , and so forth and so on. Advanced Vector Extensions (AVX2) have been used to accelerate the computations.

An AVX2 register is handled (for our purpose) through the type m256i. This enables us to handle either 8x32-bit, or 4x64-bit, or again 16x16-bit integers concurrently. Given the configuration of the data array, reading/writing communications between 256-bit AVX2 registers and data are the most e cient (through mm256 store si256 and mm256 load si256 intrinsics, which require the 32-byte alignment of data) when the base conversion is parallelized along the dimension n. This is the way it has been implemented and tested. Moreover, this has been only done within the 32-bit implementations, and not 64-bit, because the intrinsic instructions do not provide as many convenient functions for handling 4x64 than for 8x32 (for instance, no multiplication).

Regarding the timings, the impact of AVX2 remains quite moderate. This is because it is used to accelerate the parts of algorithms besides the NTT-based polynomial products which constitute the main cost. For decryption, the RNS variants, floating point and integer, are already very e cient, whereas the performance of AVX2 variant depends on time-consuming loading procedures from/to vectorial registers, explaining the small di↵erences. About the multiplication, as expected the timings are converging when n grows, because of the cost of NTT's. 

Algorithm 2

 2 SmMRq m((c 00 m ) m2Bsk[{ m} ): Small Montgomery Reduction modulo q Require: c 00 in Bsk [ { m} 1: r m [ c 00 m/q] m 2: for m 2 Bsk do 3: c 0 m |(c 00 m + qr m) m 1 |m 4: end for 5: return c 0 in Bsk Lemma 4. On input c 00 m = |[ mc]

) 4 . 4

 44 Transitional step Lemma 5 states that we have got back DR 2 (ct 0 ? ) + b in B sk so far, where we have denoted (b 0 , b 1 , b

Figure 1

 1 presents timings for Dec MP , Dec RNS and Dec RNS-flp , and Fig. 2 depicts timings for Mult MP and Mult RNS (all the data are provided in App. D). Both figures gather data for two modulus sizes: ⌫ = 30 and ⌫ = 62. Step 2 of Mult MP uses a decomposition in radix-base ! = 2 32 when ⌫ = 30, and ! = 2 62 when ⌫ = 62. The auxiliary bases B sk and B 0 involved in Mult RNS and Mult MP contain k + 1 moduli each. Table

Fig. 1 :Fig. 2 :

 12 Fig. 1: Decryption time (t = 2 10 ), with ⌫ = 30 (plain lines) and ⌫ = 62 (dashed lines).

2 c. 6 ` 1 + d e 6 m sk 2 1 6 b m sk 1 2 c , ↵ 2 >

 26122,2 msk = [↵ sk,(x+µM ) + µ] msk . It remains to show that [↵ sk,(x+µM ) + µ] msk = ↵ sk,(x+µM ) + µ or, in other words, that b m sk 2 c 6 ↵ sk,(x+µM ) + µ 6 b m sk 1 But by hpothesis on m sk , and because `> 1, we can write m sk > 2(`+ d e) > 2b c + 1. Then, ⇢ ↵ sk,(x+µM ) + µ sk,(x+µM ) + µ > b c > m sk 1 b m sk 2 c. Thus, [↵ sk,(x+µM ) + µ]

  The secret key s is picked up in R according to a discrete distribution

key on R (in practice, bounded by B key = 1, i.e. ksk 6 1). For creating the public key, an 'error' distribution err over R is used. In practice, this is a discrete distribution statistically close to a gaussian (with mean 0 and standard deviation err ) truncated at B err (e.g. B err = 6 err ). err is related to the hardness of the underlying (search version of) RLWE problem (for which the purpose is, given samples ([ (a i s + e i )] q , a i ) with e i err

Table 1 :

 1 k )|q|t 2 } the depth allowed by Mult RNS , with Dec RNS used for decryption. Parameters, using the 30-bit moduli of NFLlib.

	n k t LRNS (Lstd) ⇢ 2 11 2 (2) 5 (no need) m 3 2 2 10 1 (1) 5 (no need)	dlog 2 (msk)e 18 27	7 7
	2 12	6 2 2 10	5 (6) 4 (4)	11 (no need) 10 2	21 29	13 54
	2 13	13 2 2 10	13 (13) 9 (9)	1 3 13	81 3	15 31	36 58
	2 14	26 2 2 10	25 (25) 19 (19)	1 2 1	106 53	17 27	53 53
	2 15	53 2 2 10	50 (50) 38 (38)	1 20 1 2	2140 214	20 30	203 107

  By computing (3) modulo t, then we obtain z = | [m] + |f v c | + tb so far. The next step is to show that any coe cient of f

	t + f v c | t + ta), where t . i 2 {0, 1}. Thus, ta vanishes modulo t. Next, for any t, and because is a power of 2, we have First, we notice that we can also write z = | |m| t + f v c | t = ([m] t . Indeed, |m| a z&( 1) = |z| = |f v c | . Consequently, z + z&( 1) = | |m| t + f v c | t + |f v c | . Now, (4) means that is chosen such that (f v c ) i lies in [ 2 , 2 ). This, together with the fact that ( |m| t ) i 2 [0, (t 1)], implies that we can write | |m| t + f v c | t = |m| t + f v c + tb with b i 2 {0, 1} (b t ) i = 0 and ( ṽc ) i < 0)). i = 1 , (( |m| To sum up, we have established that z + z&( 1) = |m| t + f v c

Table 3 :

 3 Parameters based on 30-bit moduli ofNFLlib and depending on an a priori chosen m.

	n k t 2 11 3 2 2 10	m LRNS dlog 2 (msk)e 2 8 2 13 1 22	7 7	n k t 2 11 1 2 2 10	m LRNS (Lstd) dlog 2 (msk)e 0 (0) 2 8 0 (0)	
	2 12 6	2 2 10	2 8 5 4	14 23	13 13	2 12 3	2 2 10	2 8	4 (5) 3 (3)	14 23	7 7
	2 13 13	2 2 10	2 8 13 9	15 24	27 27	2 13 6	2 2 10	2 8 11 (11) 8 (8)	15 24	13 13
	2 14 26	2 2 10	2 8 25 19	17 26	53 53	2 14 12	2 2 10	2 8 23 (23) 17 (17)	16 25	25 25
	2 15 53	2 2 10	2 16 50 38	20 29	112 107	2 15 25	2 2 10	2 16 47 (47) 37 (37)	17 26	51 52

Table 4 :

 4 Parameters based on 62-bit moduli ofNFLlib and depending on an a priori chosen m.

Table 5 :

 5 Timing results.

	n ⌫ k variant	Decryption (ms) Speed-up Multiplication (ms) Speed-up
		MP	1.153		13.809	
	30 3	RNS-flp RNS	0.192 0.189	6.005 6.101	3.159	4.371
	2 11	RNS-AVX2	0.188	6.133	2.710	5.096
		MP	1.020			
	62 1	RNS-flp	0.054	18.880		
		RNS	0.050	20.390		
		MP	4.587		45.055	
	30 6	RNS-flp RNS	0.798 0.789	5.748 5.814	15.614	2.886
	2 12	RNS-AVX2	0.775	5.919	13.737	3.280
		MP	3.473		28.168	
	62 3	RNS-flp	0.339	10.245		
		RNS	0.326	10.653	7.688	3.664
		MP	16.051		218.103	
	30 13	RNS-flp RNS	3.732 3.691	4.301 4.349	100.625	2.167
	2 13	RNS-AVX2	3.637	4.413	88.589	2.462
		MP	10.945		92.093	
	62 6	RNS-flp	1.552	7.052		
		RNS	1.513	7.234	37.738	2.440
		MP	70.154		1, 249.400	
	30 26	RNS-flp RNS	17.497 17.333	4.009 4.047	622.596	2.007
	2 14	RNS-AVX2	16.818	4.171	617.846	2.022
		MP	38.910		424.014	
	62 12	RNS-flp	6.702	5.806		
		RNS	6.494	5.992	206.511	2.053
		MP	364.379		8, 396.080	
	30 53	RNS-flp RNS	85.165 81.225	4.279 4.486	4, 923.220	1.705
	2 15	RNS-AVX2	72.665	5.015	5, 063.920	1.658
		MP	180.848		2, 680.535	
	62 25	RNS-flp	33.310	5.429		
		RNS	31.895	5.670	1, 406.960	1.905

https://github.com/CryptoExperts/FV-NFLlib

Then, by using [START_REF] Montgomery | Modular Multiplication without Trial Division[END_REF] and t = q |q| t , we deduce that:

t + ṽmult mod q with r a := (DR 2 (ct 0 ? ) t q ct 0 ? )(s) =

⌘ s i and:

Below, some useful bounds are given.

Next, we set a bound for each term of [START_REF] Oder | Beyond ECDSA and RSA: Lattice-based digital signatures on constrained devices[END_REF], then it su ces to put them all together to obtain [START_REF] Garg | Advances in Cryptology -EUROCRYPT 2013: 32nd Annual International Conference on the Theory and Applications of Cryptographic Techniques[END_REF].

A.8 Lemma 6

We set B = {m 1 , . . . , m `} (|B| = `). The case x > 0 and = 1 is the classical case of Shenoy and Kumaresan's conversion. We recall that, by definition,

There exists an integer 0 6 ↵ 6 ` 1 such that 

In particular, it can be noticed that k|b

and that h ! u , (s 2 q q 1 , . . . , s 2 q q k )i ⌘ 0 mod q. Consequently, we have that, in

Thus, a part of the noise comes from the following extra term:

Lemma 8 brings the rest of the noise. can be set to zero like this, this Newton interpolation is intrinsically sequential, while the division by ! i is just an immediate zeroing of the lowest significant coe cients in radix ! representation. Furthermore, a direct approach consisting in zeroing, say, the first i components of ⇠ q (c 2 ) could not work. Indeed, this is like using ⇠ q (q 1 . . . q i ⇥ |c 2 (q 1 . . . q i ) 1 | q i+1 ...q k ), then it introduces the following term (when evaluating the output of relinearization in the secret key s):

..q i )s 2 mod q and the norm of |c 2 (q i+1 . . . q k ) 1 | q 1 ...q i has no reason to be small. For our approach, we rely on the fact that rlk RNS contains the RLWE-encryptions of the polynomials |s 2 q q j | q . Then, we notice that only the j th -residue of |s 2 q q j | q can be non-zero. So, let's assume that we want to cancel ik entries in rlk RNS [0] (as it has been done in rlk FV with the previous optimization). Then we choose, for each index j, a subset of index-numbers I j ✓ [1, k] \ {j} with cardinality i (i.e. at line j of rlk RNS , choose i columns, except the diagonal one; these terms will be set to zero). Next, for each j, we introduce an RLWE-encryption of |s 2 q q j q I j | q , where q I j = Q s2I j q s , which is (|s 2 q q j q I j (e j + sa j )| q , a j ). So far, the underlying security features are still relevant. Now, it remains to multiply this encryption by q I j , which gives in particular |s 2 q q j q I j (e j + sa j )| q . This is the j th -line of the new matrix rlk 0 RNS [0]. It is clear that this line contains zeros at columns index-numbered by

). Let's analyze the new noise growth. By evaluating in s the output of relinearization with this new rlk 0 RNS , we obtain:

q | q j q I j e j (mod q) Consequently, the cancellation of ik terms in the public matrix rlk RNS [0] by using this method causes an extra noise growth bounded by (this can be fairly compared to [START_REF] Shenoy | Fast base extension using a redundant modulus in[END_REF] in the case where

B.3 Some details about complexity

We analyze the cost of a multi-precision variant, in order to estimate the benefits of the new RNS variant of multiplication in terms of computational cost.

The product ct

) in MP variant is advantageously performed in RNS, in order to benefit from NTT. So, the MP variant considered here is assumed to involve a base B 0 such that qM 0 > kct ? k. By taking centered remainders modulo q, we consider kct i k 6 q 2 . Then B 0 must verify in particular that kct

4 < qM 0 . Thus, |B 0 | has to be at least equal to k + 1 (notice that, in RNS variant, we also have |B sk | = k + 1). The conversion, from q to B 0 , of each ct i has to be as exact as possible in order to reduce the noise growth. It can be done by computing [

are precomputable and their size is k words (log 2 (q) bits). Thus, the sum involves k 2 nEM. The reduction modulo q can be performed by using an e cient reduction as described in [START_REF] Aguilar-Melchor | Topics in Cryptology -CT-RSA 2016[END_REF], reducing to around 2 multiplications of k-word integers, that is O(k 1+" )nEM (where " stands for complexity of multi-precision multiplication in radix-base 2 ⌫ ; e.g. " = 1 for the schoolbook multiplication). Next, the k-word value is reduced modulo each 1-word element of B 0 , through around 2knEM for the whole set of coe cients. Finally, this procedure has to be made four times. Its total cost is around (4k 2 + O(k 1+" ))nEM.

Next, the product ct 1 ? ct 2 is done in q [ B 0 . First, 4(2k + 1)NTT are applied. Second, by using a Karatsuba like trick, the product is achieved by using only 3⇥(2k +1)nIMM. Third, 3(2k +1)invNTT are applied to recover ct ? = (c ?,0 , c ?,1 , c ?,2 ) in coe cient representation. The next step is the division and rounding of the three polynomials c ?,i 's. A lift from q [ B 0 to Z is required, for a cost of 3(2k + 1) 2 nEM. t q can be precomputed with around 3k + 1 words of precision to ensure a correct rounding. Thus, a product t q ⇥ c ?,i is achieved with O(k 1+" )nEM. After, the rounding of c ?,0 and c ?,1 are reduced in RNS base q by 2 ⇥ 2knEM. The relinearisation step (15) can be done in each RNS channel of q. By assuming that ! = 2 ⌫ , we would have `!,q = k. The computation of the vector D !,q (b t q c 2 e) reduces to shifting. The two scalar products in Relin FV , with an ouput in coe cient representation, require k`! ,q NTT+2k 2 nIMM+ 2kinvNTT. Thus, the total cost is at most the following one:

Next, the reduction of q-overflows at step S1 requires 4 ⇥ (k + 1)nIMM. The product of ciphertexts ct 0 1 ? ct 0 2 (S2) in q [ B sk requires the same cost as for MP variant, that is 4(2k + 1)NTT + 3(2k + 1)nIMM + 3(2k + 1)invNTT.

Let's analyze the cost of steps S3, S4 and S5. With adequate pre-computed data, the base conversion in S3 can integrate the flooring computation in B sk . So, S3 is achievable with 3 ⇥ k(k + 1)nIMM. The exact FastBconvSK at step S4 basically reduces to a fast conversion from B to q sk , followed by a second one from m sk to q. So, this is achieved with 3 ⇥ k(k + 2)nIMM. In S5, we already have the vector ⇠ q (c 2 ) which is involved in the fast conversion in step S3. Indeed, the function ⇠ q is an automorphism of R q . So, data in q can stay in this form throughout the computations. The two scalar products in Relin RNS involve k 2 NTT + 2k 2 nIMM + 2kinvNTT, exactly like the relinearization step in MP variant. And finally 2knIMM are needed to manage the Montgomery representation, in q, with respect to m.

Cost(Mult RNS ) = (k 2 + 8k + 4)NTT + (8k + 3)invNTT + [10k 2 + 25k + 7]nIMM.

To summarize, the RNS variant decreases the computational cost of the whole homomorphic multiplication algorithm except the parts concerning polynomial multiplications. Also, it involves as many NTT and invNTT as the MP variant. Even by considering an optimized multi-precision multiplication algorithm in MP variant (with sub-quadratic complexity), the asymptotic computational complexity remains dominated by the (k 2 + O(k))nNTT. Finally, the MP and RNS variants are asymptotically equivalent when n ! +1.