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Abstract. Recent progress in quantitative ultrasound exploit the multimode

waveguide response of long bones. Measurements of the guided modes, along with

suitable waveguide modeling, have the potential for inferring strength-related factors

such as stiffness (mainly determined by cortical porosity) and cortical thickness.

However, the development of such model-based approaches is challenging, particularly

due to the multiparametric nature of the inverse problem. Current estimation

methods in the bone field rely on a number of assumptions for pairing the incomplete

experimental data with the theoretical guided modes (e.g., semi-automatic selection

and classification of the data). The availability of an alternative inversion scheme

that is user-independent is highly desirable. Thus, this paper introduces an efficient

inversion method based on genetic algorithms using multimode guided waves, in

which the mode-order is kept blind. Prior to the evaluation on bone, our proposal

is validated on laboratory-controlled measurements on isotropic plates and bone-

mimicking phantoms. Results show that the model parameters (i.e., cortical thickness

and porosity) estimated from the measurements on a few ex vivo and in vivo human

radii are in good agreement with the reference values derived from X-ray-based

techniques.

1. Introduction

Elastic guided waves (GWs) is one of the most promising quantitative ultrasound (QUS)

technique under development for characterizing cortical bone. Several experimental

studies have evidenced that long cortical bones as radius and tibia could act as natural

waveguide for ultrasound despite attenuation, irregular geometry and heterogeneous

material properties [1, 2, 3]. Measurement of GWs is particularly attractive because

they propagate throughout the bone thickness and may thus answer to the attempt of

determining multiple bone properties, such as cortical thickness and material properties,
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which are in turn relevant indicators of the bone biomechanical competence [4].

Cortical loss observed with aging, which results in cortical thinning, porosity increase,

impaired mechanical properties and increased fracture risk [5], is expected to change the

propagation characteristics of the guided modes. Consequently, GWs-based approaches

have a strong potential for yielding a more complete characterization of cortical bone

than does conventional X-ray bone densitometry [6].

A GWs-based approach is typically associated with the measurement of long bones

in the so-called axial transmission (AT) configuration, which exploits the propagation

of GWs in the cortical shell along the main bone axis. AT techniques have been

extensively used for measuring the velocity of the first arriving signal (FAS) in bone.

Investigations based on FAS have been both conducted in laboratory conditions on

phantoms or ex vivo [7, 8], and in clinical studies [9, 10, 11, 12, 13, 14, 15]. Additional

slower guided modes have been investigated over the past decade, and it has been shown

that a fundamental flexural guided mode (equivalent to the Lamb A0-mode for a plate)

could also be identified with this technique [16]. A multimode approach combining

measurement of two modes at specific frequencies has also been shown to provide

a possibility for discerning contributions of the material properties and the cortical

thickness [17]. Despite these encouraging results, little attention has yet been paid to

cortical bone characterization using multimode GWs. In particular, measurements of

higher-order guided modes could increase our confidence in the inferred ultrasound bone

biomarkers but yield a challenge of solving multiparametric inverse problems [18].

In that vein, three Lamb modes (identified as A0, S0 and A1) were experimentally

observed in an ex vivo study [3]. Estimates of the Young’s moduli of three ox bone

samples were then obtained by fitting an isotropic plate model (with given thickness and

density) to measured phase velocities using a least-mean-square algorithm. In another

related study, Ta et al. [19] identified the thickness of a bovine tibia by manually fitting

measured phase velocities of the three first cylindrical modes (i.e., L(0, 1), L(0, 2) and

L(0, 3)) to an isotropic hollow tube model filled with viscous liquid (with given material

properties). A pioneering proposal provided a combined estimation of both the cortical

thickness and elastic coefficients from ex vivo measurements by minimizing the square

differences between experimental and calculated frequencies using a least-square opti-

mization criterion and a gradient-based method (i.e. built-in trust reflective region algo-

rithm) [20]. The main limitation of that study was that the incomplete data were grouped

into user-defined experimental trajectories, where each trajectory was associated to a

specific Lamb branch. Nonetheless, this prior assignment is generally far from trivial,

particularly in the case of in vivo measurements, where noise and soft tissue modes may

corrupt the experimental trajectories. Consequently, an accurate optimization method

for solving multiparametric inverse problems from multimode GWs is still lacking in the

bone community.

Inverse problems based on GWs are, however, well accepted and widely used in the

field of nondestructive testing (NDT) [21], including different applications such as the

quality control of thin bonds or the characterization of composite materials. Among the
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few works dealing with higher-order guided modes, a number of studies was dedicated to

the estimation of the elastic properties of isotropic plates [22, 23, 24], transverse isotropic

materials as wood [25], or anisotropic structures [22, 26, 27]. Nonetheless, only a limited

number of works proposed a combined estimation of both the structural and material

properties. Karim et al. [22] used an inversion scheme based on the simplex algorithm

to estimate the thickness and the elastic properties of an adhesive layer between two

aluminum plates. Dean et al. [23] determined the thickness and two independent

elastic constants of thin aluminum plates using a downhill simplex algorithm. Yan et

al. [24] presented a particle swarm-based-simulated annealing optimization technique

for retrieving the thickness and elastic properties of thin aluminum plates. However,

all these approaches were applied to laboratory-controlled measurements on isotropic

plates [22, 23], or even on simulated data [24].

In vivo data measured on cortical bone are, however, particularly complicated

to deal with. Indeed, they are usually incomplete, in that some modes show up as

piecewise curves as some frequency regions are not observed, and contaminated by noise

or additional guided modes due to the overlying soft tissue [28, 29]. In addition, modal

superposition cannot be avoided in regions of the frequency/wave number domain where

the modes are close to each other, especially for short receivers array [30]. Thus, these

ambiguities prevent to clearly identify the theoretical guided modes corresponding to

the experimental data, especially for higher-order modes. As a consequence, typical

approaches based on curve fitting, in which modes numbering prior to the inversion is

required, do not serve our purpose, and a method in which the mode-order is kept blind

is clearly needed [24, 30].

In this way, this work presents a global search approach, which enables us to

estimate the thickness and a surrogate for the elastic properties (i.e., porosity) of

cortical bone, avoiding any prior knowledge on the experimental data. This can be

achieved by including an additional model parameter, in terms of a pairing vector,

which represents the combination (i.e., number and position) of theoretical guided modes

that are necessary to fit the experimental data. Genetic algorithms (GAs), which

were already successfully applied for inverting GWs measurements in the NDT field

[31, 32, 27] and geophysics [33], are used as search algorithm in the optimization, due

to their capability of dealing with complex multidimensional and multimodal inverse

problems. Our proposal is first validated on a series of laboratory-controlled materials

(both isotropic and transverse isotropic) and then evaluated ex vivo on human radius

specimens and in vivo on a cohort of healthy subjects. As a by-product of this study,

it is worth pointing out that, despite the potential of both tools, proposals that exploit

GAs coupled with multimode GWs data for identifying the thickness and porosity of

cortical bone are, to the authors’ best knowledge, nonexistent in the open literature.

The remaining of this paper is organized as follows. The experimental set-up

and extraction of the dispersion curves are introduced in Section 2. The forward

calculation of the theoretical dispersion curves is described in Section 3. The genetic

algorithms-based identification framework is presented in Section 4. Finally, the results
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and discussion are exposed in Sections 5 and 6, respectively.

2. Experimental measurements

2.1. Samples and reference measurements

The proposed algorithm was first tested on laboratory-controlled measurements

performed on a series of isotropic plates (aluminum, copper and brass) and composite

plates/tube of different thickness. The composite material, given as transverse isotropic,

is a bone-mimicking material made of short glass fibers embedded in an epoxy matrix

(Sawbonesr, Pacific Research Laboratories Inc., Vashon Island, WA). The reference

thickness of each plate/tube was directly derived from caliper measurements, repeated

five times in the area of AT measurements. For the isotropic plates, reference

values of the bulk wave velocities were taken from the literature [34]. For the

bone-mimicking plates/tube, reference values of the stiffness coefficients, measured by

resonant ultrasound spectroscopy, were available for the thicker plate [35].

Our approach was then evaluated on ex vivo measurements performed on three

human radius specimens, which were supplied by the Département Universitaire

d’Anatomie Rockefeller (Lyon, France) through the French program on voluntary corpse

donation to science. These specimens were excised from fresh elderly cadavers (two males

and one female, aged from 57 to 77 years old) and overlying soft tissues were removed.

The donors furnished informed written consent to provide their tissues for investigation

in accordance with legal clauses stated in the French Code of public health. The samples

were kept frozen before use and lightly warmed to room temperature before acquiring

the US data. In vivo measurements were also achieved in three healthy subjects (3 males

aged from 27 to 34 years old) to test the robustness of our approach. They were all

volunteers recruited from the laboratory staff. Note that informed consent was obtained

from all subjects in accordance with regulations.

Measurements were performed on a predefined region of interest (ROI) at the

proximal radius by positioning the center of the probe approximately 70 mm away

from the radial styloid. The length of the ROI, prescribed by the length of the receiver

array, was 20 mm on the postero-lateral face of the radius/forearm, as depicted in Figure

1. On that figure, x1 and x3-axes are supposed to be aligned with the direction of the

principal symmetry of the material. The x1x2-plane is the isotropy plane, whereas the

x3-axis is oriented along the main bone axis. In the same way, for the bone-mimicking

samples, the x3-axis is oriented in the fibers’ direction and the x1-axis is normal to it.

Reference measurements were performed independently of the GWs measurements

to assess the correctness of the US-based estimates. For the ex vivo samples, the

cortical thickness and porosity were quantified in site-matched region using X-ray micro-

computed tomography (µCT) measurements with an isotropic voxel size of 9 µm using a

desktop µCT system (Bruker 1176, NV, Kontich, Belgium). For each specimen, a stack

of 1200 sections was reconstructed (NRecon, Skyscan NV, Kontich, Belgium). The
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reader is referred to our previous reports [38, 39] for further details.

Figure 3 depicts examples of the (f, k)-pairs obtained after applying the

aforementioned signal processing steps for both academic and bone samples.
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(b) In vivo

Figure 3. Example of the (f, k)-pairs obtained after applying the signal processing steps on the raw

RF signals: (a) copper plate, (b) ex vivo specimen, and (c) in vivo subject.

3. Forward calculation of the Lamb modes

In the present study, a two-dimensional (2-D) transverse isotropic non absorbing free

plate waveguide model is used to fit the experimental dispersion curves. This choice is

motivated by our previous studies, which showed that the propagation of guided waves

into tubular-shaped samples could be explained by a 2-D free plate model [40] and that a

2-D transverse isotropic free plate model, despite its simplicity, provided reliable cortical

thickness estimates [20].

For such a model, the solutions of the corresponding Lamb wave equation for

propagation in the meridian plane can be expressed as guided modes in the f −k plane,

which are determined by prescribed thickness h of the waveguide, mass density ρ, and

stiffness coefficients c11, c33, c13, and c55 [41]. Alternatively, the dispersion equation can

be formulated as function of the bulk velocities, the mass density being embedded in the

velocity parameters. The resulting model parameters that account for the stiffness of

the waveguide are compound of two bulk wave velocities and two stiffness ratios, defined

as:

VL⊥
=

√

c11
ρ
, VT =

√

c55
ρ
,
c13
c11

, AR =
c33
c11

=

(

VL‖

VL⊥

)2

(1)

where VL‖
, VL⊥

, and VT denote the longitudinal bulk wave velocities (along and normal

to the x3-axis) and the transverse bulk velocity, respectively.

According to the complexity of the tested material, three different sets of stiffness

parameters were used in this study. For isotropic plates, only two independent

model parameters are necessary to characterize the stiffness of the waveguide, namely

VL ≡ VL‖
= VL⊥

and VT (i.e., the anisotropic ratio turns out to be constant, AR = 1,

and the stiffness ratio c13/c11 = 1− 2(VT/VL)
2 depends on the two former bulk wave
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velocities). For transverse isotropic plates/tube, the four model parameters described

in Equation (1), i.e., {c13/c11, AR, VL⊥
, VT}, are required.

To match the requirements of site-matched estimates of the cortical porosity

measured by µCT, the stiffness characterization of cortical bone is subjected to a further

simplification. Hence, we assumed that the mesoscopic stiffness coefficients can be prop-

erly predicted by a single parameter [42], namely the cortical porosity p. The latter

characterizes the volume fraction of pores into the material structure. To this end, a

model of cortical bone mesoscopic elasticity based on asymptotic homogenization was

used (source code available online [43]). The theory was described in details in the case

of matrix isotropy in Parnell and Grimal [44], and extended later to the case of a trans-

verse isotropic matrix [45]. In this model, cortical bone is represented as a two-phase

composite material made of a homogeneous transversely isotropic matrix pervaded by

periodically distributed water-filled cylindrical pores. This representation leads to trans-

versely isotropic elasticity at the mesoscale. Given an elastic tensor Cm describing the

matrix elasticity, the mass density of the matrix ρm, an elastic tensor Cf describing

the elasticity of the material within the pores, and the volume fraction of pores p, a

homogenized elastic tensor C at the mesoscale and the apparent mass density ρ can

be calculated. In this study, we assume a universal matrix with fixed elastic tensor Cm

and density ρm (set according to [43]), namely that the matrix is spatially homogeneous

and uniform among individuals. In other words, one particular porosity p corresponds

to four effective elastic coefficients cij plus one value of bone density ρ, which can, in

turn, be written in terms of two stiffness ratios (i.e., c13/c11 and AR) and two bulk wave

velocities (i.e., VL⊥
and VT )) for computing the Lamb modes. Consequently, the model

parametrization in terms of porosity does not change the dispersion equation, but can

simply be seen as a sampling of the complete elasticity domain spanned by these four

elastic parameters.

To illustrate the effect of the model parameters on the waveguide model, Figure 4

shows typical Lamb modes obtained for different thickness-porosity regimes, namely (a)

h = 1.25 mm, p = 20% and (b) h = 3 mm, p = 5%. As can be observed, the number

of modes increases with increasing thickness, while the porosity yields a slope change of

the modes (especially visible for low-order modes).

4. Genetic algorithms-based identification framework

Measurements of GWs, along with suitable waveguide modeling, have the potential to

yield estimates of waveguide properties such as thickness and stiffness. Such a model-

based approach requires solving a multiparametric inverse problem (IP) for pairing the

incomplete experimental data with Lamb modes. One of the most common approach to

retrieve those estimates is to pose the IP in an optimization form. This section describes

the objective function employed to compute the discrepancy between the measured

and numerically predicted dispersion curves and introduce the underlying optimization

algorithm used for solving the IP.
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Figure 4. Example of a 2-D transverse isotropic free plate model for (a) h = 1.25 mm, p = 20% and

(b) h = 3 mm, p = 5%.

4.1. Objective function

The difference between the experimental dispersion curves and Lamb modes is usually

the most important constituent part of the objective function, in which the inversion

process can be regarded as curve fitting (i.e., euclidean distance in a least-square sense).

However, for in vivo multimode dispersion curves, it is far from trivial to a priori

determine to which Lamb mode each data point of the experimental dispersion curves

belongs, especially when dealing with a broad thickness range (e.g., A1 in Figure 4a

looks similar to S2 in Figure 4b).

To overcome this difficulty, an additional model parameter is introduced here, which

accounts for the pairing of the Lamb modes with the experimental data. This model

parameter, denoted by M , is a pairing vector that represents the combination (i.e.,

number and position) of Lamb modes that are necessary to explain the experimental

data. In this way, the mode-order is kept blind and there is no need to identify the

modes prior to solving the IP. The discrete bank of pairing vectors M is built following

a combinatorial analysis based on three conditions: (1) There is at most Mmax Lamb

modes; (2) at most three modes can miss between two consecutive modes; and (3)

within each pairing vector, the modes are sorted in ascending order according to the

value of their cut-off frequency. The second condition is consistent with the fact that

some modes are not excited (due to insufficient out-of-plane displacement and to high

attenuation [20]) or pairwise higher-order modes (e.g., an anti-symmetric mode Ai and

its symmetric counterpart Si) cannot be easily distinguished experimentally (e.g., A3

and S3 overlap in Figure 4b).

The resulting model parameters θ = [h S M ], where h denotes the cortical

thickness and S is one of the three different sets of stiffness parameters described in

Section 3, are identified by a global search algorithm. In the present work, the objective
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function F (θ) consists of maximizing the occupancy rate of the Lamb modes. Hence,

F (θ) =
1

N

Mmax
∑

i=1

N exp
i

N th
i (θ)

(θinf < θ < θsup) (2)

restricted to:

N exp
i =

{

N in
i if N exp

i > 0.1 · N̄ exp

0 otherwise
(3)

The variables N exp
i and N th

i (θ) denote the number of experimental and theoretical data

of a mode i, respectively; N̄ exp is the mean of the N exp
i ; N in

i is the number of inliers of

a mode i; and N is the total number of experimental data. Basically, Equations (2)-(3)

mean that experimental data can only form an experimental trajectory if a sufficiently

large amount of them belong to a Lamb mode. Note that an experimental data is

considered as an inlier of a mode i if its euclidean distance d to that mode satisfies the

following condition:

d =

√

(

f − f(θ)

fmax

)2

+

(

k − k(θ)

kmax

)2

≤ d0 (4)

where d0 = 0.025 is a user-defined dimensionless threshold, which approximately corre-

sponds to the normalized resolution in k (that is, (π/L)/kmax with L being the length

of the receivers array) [38, 39].

Finally, the optimal model parameters θ̂ result from,

θ̂ = arg max
θinf<θ<θsup

F (θ) (5)

where θinf and θsup denote the lower and upper bounds of the model parameters

θ. Genetic algorithms are applied to maximize Equation (5), due to their capability

of finding a near global solution in situations where the objective function is

multidimensional and non-convex (i.e., has more than one local maximum).

4.2. Genetic algorithms

Genetic algorithms (GAs) are an heuristic optimization technique based on the rules of

natural selection and genetics, which simulates the mechanisms of survival competition

[46]. They have several advantages over gradient-based optimization techniques [47]: (1)

they are robust, conceptually simple and can be used in situations where the objective

function F (θ) is complex (e.g., multidimensional and non-convex); (2) they succeed in

finding a nearly global IP solution without the need of an accurate initial guess for the

model parameters θ (this is of particular interest for bone, where the stiffness coefficients

are generally unknown); and (3) the search mechanisms possess an inherent parallelism

that allows a rapid sampling of the solution space.

In contrast to gradient-based optimization techniques, GAs do not update a single

solution at a generic iteration on both the basis of the modeling error and gradient

values. The basic idea of GAs is, instead, to select among a population of individuals
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that represent a set of potential IP solutions, the individual that yields the optimal

solution [27]. Figure 5 depicts the flowchart of the model-based IP approach using GAs.

Start: randomly generate an initial population θi (i = 1, . . . , Np)

❄
Population

❄
Evaluate F (θi) for all Np individuals

❄

Stop: return the
best individual θ̂

✲Current number of generation: Ng > Nmax
g

❄

Apply genetic operators

❄
Tournament, Pt

Cross-over, Pc

Mutation, Pm, Sm

Elitism

✲

✻

✻

✻

Yes

No

Ng = 1

Ng = Ng + 1

Figure 5. Flowchart of the model-based IP approach using GAs. User-defined variables: Np: Number

of individuals per generation; Nmax

g : Number of generations; Pt: Probability of tournament; Pc:

Probability of crossover; Pm: Probability of mutation; and Sm: Scale of mutation.

The underlying steps of GAs are described in more detail in the following:

(i) An initial population ofNp individuals (called chromosomes) is randomly generated.

The population comprises a group of chromosomes that represent potential solutions

θi, (i = 1, . . . , Np), in the solution space spanned by θinf < θ < θsup (see Table 1

below).

(ii) Each solution θi is evaluated by computing the objective function F (θi) described

in Equation (3), for which one forward problem is solved independently.

(iii) The stopping criterion of the GAs scheme is checked. The algorithm stops if the

maximal number of generations Nmax
g is reached. If this criterion is satisfied, the

best individual θ̂ obtained is returned as the final IP solution.

(iv) If not, a new (child) population is formed by stochastically modifying the individuals

(parents) of the previous generation, applying genetic operators such as tournament,

crossover, mutation, and elitism to inject genetic diversity in the population (i.e.,

to ensure that the solution does not fall in local maxima). Tournaments, associated

with a probability Pt, are first run among two individuals chosen at random from

the population. The winners (parents) are selected for crossover. The crossover

operation is then applied with a probability Pc to produce new individuals (children)
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that have some parts of both parents’ genetic characteristics. This operator makes

the solution set jumps in the solution space. Secondly, mutation is randomly

applied, with a probability Pm and scale Sm, to modify elements in the parents’

chromosomes, thus preventing the children from having only characteristics of the

previous generation. Finally, elitism allows the best individuals from the current

generation to carry over the next, thus guaranteeing that the solution will not

decrease from one generation to the next. In this work, the best chromosome is

carried to the next generation without modification.

(v) Using the individuals of the new generation, the algorithm restarts from step (ii)

and the procedure continues until the aforementioned stopping criterion is met.

The choice of {Nmax
g , Np}, along with the probabilities of the genetic operators

{Pt = 0.7, Pc = 0.8, Pm = 0.1, Sm = 0.1}, are empirical variables set so that the

convergence to a near global optimum is guaranteed, while establishing a trade-off

between the IP error and the computational cost [48]. In this work, the convergence of

the algorithm was trained over a group of experimental data by examining the evolution

of the currently optimal solution by increasing {Nmax
g , Np}. After a certain number of

iterations, we could no longer see any further improvement of the solutions and the

optimal variables were fixed when applying the algorithm to the remaining data.

4.3. Settings and conditioning of the genetic algorithms

The bounds of the model parameters θ that define the problem domain were selected

as follows: firstly, the thickness bounds of the plates/tube were chosen so that the

corresponding interval covers all the values measured by caliper. Secondly, the bulk wave

velocities bounds for the isotropic plates covered values encountered in the literature for

all the materials tested here [34]. Thirdly, the bulk wave velocities and stiffness ratios

range for the bone-mimicking plates/tube were defined as large as in [20]. Lastly, the

bounds of the model parameters for cortical bone were taken according to physiological

observations found in the literature [5]. The bounds of the model parameters θ and the

empirical variables of the GAs are summarized in Table 1 for all the samples tested in

this work.

Bounds of the model parameters θ: [θinf θsup] GAs variables

c13

c11
AR VL⊥

VT p h Mmax

Nmax
g Np

- - (mm/µs) (mm/µs) (%) (mm) -

Isotropic plates - - [3.76 7.58] [1.84 3.71]
- [0.5 5.5] 14

320 80
Bone-mimicking materials [0.2 0.7] [1.1 2.5] [1.58 3.74] [1 2] 400 100
Cortical bone - - - - [0 30] [0.5 4] 10 240 60

Table 1. GAs settings.

Note also that the pairing vectorM is naturally dependent on the cortical thickness

h (i.e., the maximal number of modes increases with increasing thickness, as can be

seen in Figure 4). As a consequence, the populations in the GAs are built so that
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the model parameters θ satisfy the relation between h and Mmax, depicted in Figure

6. In the same vein, for the isotropic case, the populations are built so that the
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Figure 6. Relationship between the maximum Lamb modes number Mmax and the thickness h: (a) +

(b) depict the allowed region for academic plates/tube, whereas (b) depicts the allowed region for bone.

thermodynamic condition for isotropy is fulfilled [49], that is VT < VL/
√
2. Such a

condition can unfortunately not be verified for the transverse isotropic case, because

the stiffness coefficient c66 is not available in a 2-D waveguide model. In this way, this

conditioning allows avoiding unphysical solutions in the populations, thus strengthening

the convergence of the algorithm over the course of the generations.

5. Results

5.1. Case study: Isotropic plates

First, results on isotropic plates are presented. Figure 7 depicts the optimal matching

between the experimental data and the Lamb modes. As can be observed, a remarkable

agreement is found between the experimental data and the model. The US-based

estimates θ̂, which are compared to reference values, are summarized in Table 2. The

Optimal model parameters θ̂ Reference values

Thickness Bulk velocities Pairing vector Thickness Bulk velocities
(mm) (mm/µs) - (mm) (mm/µs)

h VL VT M href VLref
VTref

Aluminum 2.09 6.79 3.23 [A0 S0 A1 S1 S2] 2.02± 0.02 6.38 3.11

Copper
2.11 4.88 2.40 [A0 S0 A1 S1 S2 A2] 2.03± 0.02

4.76 2.33
5.12 4.87 2.34 [A0 S0 A1 S1 S2 A2 S3 A3 A4 S4 S5 A5] 5.03± 0.02

Brass 1.51 4.52 2.22 [A0 S0 A1 S1 S2] 1.48± 0.02 4.37 2.10

Table 2. Isotropic plates: Reference values and US-based estimates of thickness and bulk velocities

(modes that are missing in the optimal pairing vector are displayed in gray).

relative difference on thickness is lower than 4%, while the relative differences on bulk

velocities are lower than 6.5% and 6% for VL and VT , respectively. Note that both the
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(a) 2-mm aluminum plate
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(b) 2-mm copper plate
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(c) 5-mm copper plate
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(d) 1.5-mm brass plate

Model
Inliers
Outliers

Figure 7. Optimal matching between the experimental data (dots) and the Lamb modes (lines) for

the isotropic plates: (a) 2-mm aluminum, (b) 2-mm copper, (c) 5-mm copper and (d) 1.5-mm brass.

Inliers and outilers are displayed in red and blue dots, respectively. Modes that are missing in the

optimal pairing vector M are displayed in discontinuous lines.

structural and material US-based estimates generally tend to slightly overestimate the

reference values.

One strength of the proposed algorithm is to be able not only to retrieve reliable

estimates of the plate thickness (i.e., h) and bulk velocities (i.e., VL, VT ), but also to

recognize Lamb modes that are not excited experimentally (discontinuous lines in Figure

7), thanks to the pairing vector (i.e., M ) that prevents possible mode misidentification.

Note that both antisymmetric and symmetric modes can miss (indicated as light gray

symbols in Table 2), depending on the material properties, the thickness regime and the

frequency bandwidth.

5.2. Case study: Bone-mimicking plates

Second, results on bone-mimicking plates and tube are presented. Figure 8 depicts

the optimal matching between the experimental data and the Lamb modes. Again,

a good agreement is found between the experimental data and the model. Table 3

summarizes the US-based estimates θ̂, which are compared to reference values. The US-
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(a) 1-mm bone-mimicking plate
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(b) 2-mm bone-mimicking plate
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(c) 3-mm bone-mimicking plate
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(d) 4-mm bone-mimicking plate
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(e) 2-mm bone-mimicking tube

Model
Inliers
Outliers

Figure 8. Optimal matching between the experimental data (dots) and the Lamb modes (continuous

lines) for the bone-mimicking plates/tube. Inliers and outilers are displayed in red and blue dots,

respectively. Modes that are missing in the optimal pairing vector M are displayed in discontinuous

lines.

based approach delivers estimates of stiffness ratios and bulk wave velocities, while the

reference method provides stiffness coefficients. Consequently, a face-to-face comparison

can only be performed by making use of Equation (1) with a given mass density ρ = 1.64

g/cm3 (the resulting stiffness ratios and bulk wave velocities are marked in bold in the
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table). As can be observed, the relative difference on thickness is lower than 3%, while

the relative differences on bulk wave velocities are less than 7% for VL⊥
(around 200

m/s), less than 7% for VT (around 100 m/s), and less than 6% for VL‖
(around 200 m/s).

The inter-sample repeatability, calculated as the half-range divided by the median value

over the five samples, was less than 4% for VL⊥
and VT , and less than 5% for VL‖

.

Optimal model parameters θ̂
Reference

Thickness Stiffness ratios Bulk velocities Pairing vector thickness

(mm) - (mm/µs) - (mm)

h
c13

c11
AR VL⊥

VT M href

Plate 1 1.21 0.45 1.43 2.88 1.70 [A0 S0 A1 S1 S2] 1.25± 0.02

Plate 2 2.40 0.49 1.49 3.10 1.62 [A0 S0 A1 S1 S2 A2 A3 S3] 2.34± 0.05

Plate 3 3.44 0.50 1.43 3.03 1.66 [A0 S0 A1 S1 S2 A2 A3 S3 A4 S4 S5] 3.48± 0.21

Plate 4 4.34 0.46 1.51 2.98 1.73 [A0 S0 A1 S1 S2 A2 A3 S3 A4 S4 S5 A5] 4.21± 0.11

Tube 2.33 0.46 1.46 2.91 1.65 [A0 S0 A1 S1 S2 A2 A3 S3 ] 2.32± 0.05

Ref. [35] - 0.50 1.50 2.91 1.62 - -

Table 3. Bone-mimicking samples: Reference values and US-based estimates of thickness, stiffness

ratios and bulk velocities (modes that are missing in the optimal pairing vector are displayed in gray).

Note that measurements on the tube of circular cross-section (Figure 8e) do

not significantly differ from those on the thickness-equivalent plate (Figure 8b).

Consequently, these measurements do not affect the identification of the model

parameters, thus strengthening the hypothesis that, in our case, measurements on a

non-flat contact surface can conveniently be modeled with a 2-D free plate model [20, 40].

As in the isotropic case, the proposed algorithm is able to retrieve reliable estimates

of the plate thickness, stiffness ratios and bulk wave velocities, and also to recognize

Lamb modes that are missing experimentally (discontinuous lines). As for isotropic

materials, it results that both antisymmetric and symmetric modes can miss.

5.3. Cortical bone assessment

Dispersion curves were measured on all the ex vivo radii and in vivo subjects. Figures

9 depict the experimental data along with the optimal model for the three ex vivo and

in vivo cases, respectively.

The US-based estimates of cortical thickness and porosity, along with the reference

values measured by site-matched X-ray-based techniques are summarized in Table 4.

Despite a lower SNR and the possible presence of additional guided modes (for the

in vivo cases), which show through a larger number of outliers than for the academic

materials, a reasonable agreement was found between the experimental data and the

model. The absolute differences on cortical thickness were lower than 0.2 mm and are

in the order of magnitude of the reference standard deviations. On the other hand, the

absolute difference on the ex vivo porosity was around 1.5%. US-based estimates of

the porosity cannot be validated in vivo, but are coherent with the values estimated ex
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(a) Ex vivo 1
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(d) In vivo 1
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(b) Ex vivo 2
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(e) In vivo 2
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(c) Ex vivo 3
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(f) In vivo 3
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Inliers
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Figure 9. Optimal matching between experimental data (dots) and Lamb modes (continuous lines)

for ex vivo radii ((a)-(c)) and in vivo subjects ((d)-(f)). Inliers and outilers are displayed in red

and blue dots, respectively. Modes that are missing in the optimal pairing vector M are displayed in

discontinuous lines.

vivo and with µCT-estimates tabulated in the literature (e.g., [3− 15]% [50], [2− 14]%

[51]). As in the previous cases, both antisymmetric and symmetric modes can miss

in the data. It is worth pointing out, that for bones of similar thickness, there is no

difference between the modes-order for ex vivo and in vivo samples, thus suggesting that
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Optimal model parameters θ̂
Reference values
µCT / HR-pQCT

Thickness Porosity Pairing vector Thickness Porosity
(mm) (%) - (mm) (%)

h p M href pref

Ex vivo

1 2.3 6.0 [A0 S0 A1 S1 S2 A2 A3 S3] 2.2± 0.3 4.6± 0.7
2 3.0 10.8 [A0 S0 A1 S1 S2 A2 A3 S3 A4 S4] 2.9± 0.2 9.2± 0.6
3 3.6 2.6 [A0 S0 A1 S1 S2 A2 A3 S3 A4 S4 S5] 3.8± 0.1 4.1± 0.2

In vivo

1 2.9 5.2 [A0 S0 A1 S1 S2 A2 A3 S3 A4] 3.0± 0.2 -
2 3.2 5.0 [A0 S0 A1 S1 S2 A2 A3 S3 A4 S4] 3.3± 0.2 -
3 3.6 9.5 [A0 S0 A1 S1 S2 A2 A3 S3 A4 S4 S5] 3.5± 0.2 -

Table 4. Cortical bones: Reference values and US-based estimates of thickness and porosity (modes

that are missing in the optimal pairing vector are displayed in gray).

the overlying soft tissue do not significantly affect the modes progagating in bone.

6. Discussion

In this study, we report on a GAs-based inversion method using multimode guided

waves for a combined identification of cortical thickness and porosity of bone samples.

A strength of our proposal is that the global search performed by GAs, along with the

definition of an objective function in terms of the occupancy rate, do not require any

prior knowledge neither on the model parameters (e.g., initial guess as in conventional

gradient-based approaches) nor on the way to associate experimental data to a specific

Lamb mode (i.e., the mode-order is kept blind through the introduction of a pairing

vector).

The method was first validated on a series of laboratory-controlled measurements

performed on isotropic plates and bone-mimicking phantoms, and then evaluated on

a few ex vivo and in vivo human radii. Correct estimates could be retrieved through

the multiparametric inversion, even when higher-order modes are superimposed in the

experimental dispersion curves or when it is not trivial to a priori determine which

Lamb mode each data point of the experimental dispersion curve belongs to. The

optimization procedure allowing the estimation of the model parameters is (1) user-

independent and takes into account all data, unlike our former studies [20, 40], where

strong prior knowledge was necessary to fit the experimental trajectories to the Lamb

modes; and (2) not restricted to a specific number of model parameters, where an ex-

haustive search might prove rather intractable from a computational viewpoint (our

inversion scheme, solved and parallelized on a 24-cores desktop computer - Intel Xeon

CPU E5-2620 v2 @ 2.10GHz -, takes around 10 minutes for a single data set).

Although multiparametric inversion methods using multimode GWs have been

widely used for the NDE of different waveguide structures, this work introduces for

the first time a pairing vector to reduce the ambiguity for identifying the modes and

gathers the complexity of aspects that were usually studied independently, namely:

(1) measurements on both academic and singular waveguide structures; (2) the use of
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a global search algorithm in the inversion procedure; and (3) the estimation of both

structural and material properties. To the authors’ best knowledge, the excitability of

guided modes has not been properly described in the literature for transverse isotropic

materials, and one can thus not conclude on the correctness of the resulting pairing

vector. Nonetheless, the results showing good consistency between the reference values

and the inverted properties a posteriori justify using the pairing vector to reach our

objective.

Our proposal has several limitations that will be addressed in the future. The

departure from a 2-D transverse isotropic free plate model that assumes a perfect

alignment of the probe with the main bone axis and the assumption of a non absorbing

material (when bone is a highly damping one [52]) may affect the accuracy of the

retrieved estimates. In addition, the human radius is neither a plate with constant

thickness nor a tube with circular cross-section, but rather an irregular hollow shell

filled with marrow and surrounded by soft tissue. These factors could conceivably be

significant sources of model sophistication (e.g., to account for the overlying soft tissue

[53] or a gradient of material properties [54]). In particular, it has been shown that the

use of more complex models (e.g., uncoupled bilayer [28] or solid-solid bilayer [29]) can

explain additional data arising from the presence of soft tissue. These studies, however,

only solved the forward problem using known bone properties, without providing any

hints on a possible inversion, i.e., on the ability to infer properties of cortical bone for

clinical purposes. It is not clear yet that such multiparametric models could be used in

vivo, where both cortical bone and soft tissue properties are unknown, and experimental

data are noisy and incomplete. Indeed, a too complex model could lead to overfitting

of the data. According to the postulate of the Ockham’s razor [55], the simplest model

(e.g., a plate model) that is consistent with the data should be favored through a healthy

balance between the information gained from the data (i.e., accuracy of the estimates)

and the average goodness of fit (i.e., matching between the model and the data) [56].

Consequently, this study does not come down for or against the validity of the plate

model in its forward use, but on the correctness of the model parameters inferred by

the inverse problem. For the frequency-thickness product range considered here, the

obtained estimates close to the reference values suggest that when studied axially and

over a relatively short receivers distance, the Lamb wave theory in plates represents a

good approximation to explain GWs propagating in the radius, as shown in our previous

work [20, 40].

Another weakness is related to the empirical nature of the thresholds used in

the inversion procedure, that are the 10%-threshold for the occupancy rate and the

euclidean distance d0 on the inliers distribution. Both are intimately connected to the

maximum allowed uncertainty on the model parameters, which is in this case rather

small. Indeed, our approach infers the optimal Lamb modes combination to cover a

maximum number of experimental data with an optimum number of Lamb modes,

thus defining experimental trajectories in a natural way. In other words, it consists in

recognizing a pattern of Lamb modes in the experimental data. Nonetheless, it is rather
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unusual to cope with a given uncertainty on the model parameters, and one commonly

wants to quantify it. Consequently, this approach could be refined using a probabilistic

approach such as a Bayesian framework [57].

As a further limitation, our approach was tested on a small number of samples

compound of ex vivo human specimens and in vivo subjects, whose cortical thickness

and porosity cover a range (h ∈ [2.2 3.8] mm, p ∈ [4.1 9.2]%), which may likely differ

from patients at risk of fractures, in whom thinner cortex and/or higher porosity are

expected [5]. In addition, it is known that cortical loss, associated with aging and dis-

ease, occurs predominantly in the inner cortex adjacent to the medullary canal [58].

The phenomenon can eventually induce an endosteal resorption, sometimes referred to

as cortical bone trabecularization [59], and thinning of the cortex, which will, in turn,

lead to irregular inner cortical boundaries (see Figure 2a). Such effect could challenge

the hypothesis that cortical bone behaves as a waveguide for ultrasound, particularly in

elderly or ill patients. Further studies should be extended to investigate a larger number

of subjects, in whom bone properties cover a broader range that might be associated

with aging and pathologies. An ex vivo study and a clinical trial on postmenopausal

women are currently underway in our group to reach this goal.

Despite these limitations, correctness of thickness and material properties was found

to be within few percent on laboratory-controlled samples. Correctness of thickness

and porosity was also achieved on ex vivo human specimens. The absolute differences

on porosity exceeded those of the thickness, and are expected to be due in part to

the assumption of a universal matrix stiffness in the homogenization model. Further

modeling efforts are needed to challenge this issue. Although the number of specimens

is limited, it is worth pointing out that this study provided the first ex vivo estimates

of cortical porosity using the AT technique. In vivo estimates of the cortical thickness

were in good agreement with reference values, whereas the porosity estimates could only

be compared to literature values. Indeed, there are currently no available technologies

to measure cortical porosity or anisotropic elasticity in vivo. As for other US-based

technologies (i.e., calcaneal backscatter, shearwave elastography, etc.), a surrogate for

tissue elasticty cannot be directly validated in vivo but requires previous calibration

on phantoms and ex vivo validation studies. Then, its performance is tested in vivo

on a large number of subjects based on criteria of clinical interest. As our approach

was validated on phantoms and ex vivo, we believe that the in vivo prospective results

presented here are of interest for the community and represent the first feasibility step

for future clinical trials, although its clinical value is beyond the scope of the present

work. A strength of our proposal is that it might be straightforwardly extended to

a multidimensional optimization (i.e., four elastic coefficients instead of the porosity),

and a face-to-face comparison between GWs-based characterization of bone specimens

and resonant ultrasound spectroscopy estimation constitutes one of the next step of this

study.
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7. Conclusion

This study reported on the use of an efficient optimization method for estimating both

the cortical thickness and porosity of cortical bone. The proposed method automatically

takes into account the optimal combination of Lamb modes that are necessary to explain

the data by including an additional model parameter in the inverse procedure, thus

avoiding pairing burden between the incomplete data and the Lamb modes. Genetic

algorithms were used as search algorithms due to their capability of finding a near global

solution where the objective function is multidimensional and non-convex. This method

was first validated on laboratory-controlled measurements performed on isotropic plates

and bone-mimicking phantoms. Then, it was successfully applied to a set of ex vivo and

in vivo data, providing estimates of cortical thickness and porosity that were in good

agreement with reference values derived from X-ray computed tomography.
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