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Abstract 

The role of sensory feedback in shaping locomotion has been long debated. Recent advances 

in genetics and behavior analysis revealed the importance of proprioceptive pathways in spinal 

circuits. The mechanisms underlying peripheral mechanosensation enabled to unravel the 

networks that feedback to spinal circuits in order to modulate locomotion. Sensory inputs to the 

vertebrate spinal cord were long thought to originate from the periphery. Recent studies 

challenge this view: GABAergic sensory neurons located within the spinal cord have been 

shown to relay mechanical and chemical information from the cerebrospinal fluid to motor 

circuits. Innovative approaches combining genetics, quantitative analysis of behavior and 

optogenetics now allow probing the contribution of these sensory feedback pathways to 

locomotion and recovery following spinal cord injury. 

 

Highlights 

 Main channels underlying mechanosensory responses have been identified in dorsal 

root ganglia 

 GABAergic sensory neurons were recently identified as chemo- and mechanoceptors 

within the vertebrate spinal cord 

 Proprioceptive pathways shaping locomotion appear distributed and multimodal 
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Introduction 

Locomotion is generated by the oscillatory activity of motor neurons driven by groups of local 

interneurons in the spinal cord [1]. These premotor networks do not rely on sensory feedback to 

generate the basic locomotor rhythm as the isolated spinal cord can oscillate without any 

peripheral input in many species [2]. Nonetheless, in moving animals, there is evidence that 

sensory feedback provides strong modulation of locomotion and is critical for its proper function. 

In particular, excitation from peripheral afferents can initiate locomotion [3] as well as reset the 

oscillatory cycle [4]. Yet, the technical challenges that arise from selectively targeting and 

manipulating sensory pathways during ongoing locomotion make it difficult to probe the 

contribution of sensory feedback to natural locomotion. The recent discoveries of new channels 

and selective markers of sensory cells made it possible to map new pathways and investigate 

their functions. Here we discuss the latest work on the mechanisms and relevance of peripheral 

mechanosensory feedback for shaping motor output. In addition, we introduce the recent 

discovery that cerebrospinal fluid-contacting neurons (CSF-cNs) constitute a new class of 

GABAergic sensory neurons located within the spinal cord. 

 

Peripheral sensory neurons 

In the peripheral nervous system, dorsal root ganglia (DRG) are the primary entry point for 

somatic sensation in vertebrates. Temperature, pain, itch and touch but also proprioceptive 

signals like muscle contraction and load are relayed by DRG excitatory afferents to spinal 

circuits where they are processed (Fig. 1). These diverse signals are carried by different 

subclasses of DRG types. The sensory diversity of different DRG neurons primarily results from 

the differential expression of channels and receptors that mediate the different stimuli [5]. While 

peripheral sensory neurons mediate many different types of sensory inputs such as 

temperature, pain, itch and chemical irritants, the most relevant for locomotion is mechanical 

feedback from muscle and skin.  

 

DRG subtypes have mainly been characterized based on their innervation pattern, 

electrophysiological properties and responsiveness [5]. The identification of genetic markers to 

label some of the subclasses such as parvalbumin for proprioceptive DRGs [6,7] has been key 
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to understand the properties and functions of proprioceptive neurons. Recent efforts using 

single cell RNA sequencing made it possible to divide neuronal subtypes based on their gene 

expression profiles and provide a more comprehensive and unbiased classification. However, 

the exact number of subtypes and their functional characteristics remains to be established 

[8,9]. 

 

A recent body of work identified Piezo2 as the main channel responsible for proprioception and 

touch response. The initial characterization of Piezo2 revealed expression in mouse DRG 

neurons [10]. Soon after, the channel was determined to be involved in vertebrate touch 

response in vivo in zebrafish. Knocking down piezo2b in zebrafish larvae leads to a loss of light 

touch but not nociceptive mechanosensation due to a loss of function in touch sensitive neurons 

[11]. Several studies performed since by the Patapoutian group established Piezo2 as the main 

channel to transduce touch response in mammals as well. Merkel cells, which are important for 

light touch sensation in mammals [12,13], rely on Piezo2 to be touch sensitive [14]. In addition 

to Merkel cells, Piezo2 is also necessary in Aβ fibers which are relaying the light touch response 

from Merkel cells to the spinal cord. This dual role is likely the reason why only mice lacking 

Piezo2 in both Merkel cells and Aβ fibers show strong deficits in their touch response [15]. 

Functionally relevant Piezo2 in Merkel cells and Aβ fibers suggests a two-receptor site model for 

light touch where Piezo2 in Merkel cells is responsible for the static phase and Piezo2 in Aβ 

fibers is responsible for the dynamic phase of the response [15]. Interestingly, similar to the 

observations made in zebrafish, mechanosensation in nociceptive C-fibers remained 

unchanged in the Piezo2 conditional knockout mice (Piezo2CKO), indicating that another yet 

unidentified channel is responsible for noxious mechanical stimuli. 

 

In addition to mediating light touch response, Piezo2 is also the main mechanosensitive channel 

underlying proprioception, both in muscle spindles and Golgi tendon organs (GTO) [16]. In 

response to mechanical stimulation, parvalbumin-positive (PV+) proprioceptive neurons [6,7] 

lose their predominant rapidly adapting mechanical response in Piezo2CKO while the less 

common intermediately adapting currents remained [16]. Consequently PV+ Piezo2CKO DRGs 

are unresponsive to muscle stretch and Piezo2CKO mice have marked limb coordination deficits 

[16]. It should be mentioned that some of the rare touch sensitive neurons were not explicitly 

tested in Piezo2CKO mice, leaving the possibility of Piezo2 independent mechanosensitive 

neurons. Also, in neither of these studies, eliminating Piezo2 abolished all mechanically-

activated currents [15,17]. These observations suggest that there are probably additional 
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channels mediating mechanosensation. Furthermore, Piezo2 likely acts in concert with other 

molecular partners to tune its response in different cell types [18]. Nonetheless, during the last 

few years Piezo2 emerged as the main channel underlying mechanosensation in DRG neurons. 

 

To what extend proprioceptive feedback contributes to locomotion has long been a debate in 

the spinal cord field [19]. Recently Akay et al. addressed this question in a mutant mouse model 

that lacks muscle spindle [20]. Mice lacking functional muscle spindle showed specific 

impairments in the timing of ankle flexor activity. Interestingly, this impairment was much more 

severe during swimming where proprioceptive feedback from GTO plays less of a role as the 

gravitational load is reduced. These results indicate that muscle spindles and GTO provide both 

distinct and redundant feedback when regulating muscle activity. 

 

 

Proprioceptive feedback from muscle spindle and GTO is not the only source of sensory input 

shaping limb movement. Recent work also highlighted the importance of cutaneous feedback in 

grasping and locomotion [21,22]. Retinoid-related orphan receptor (ROR) alpha positive 

interneurons were shown to receive inputs from both light touch responsive afferents and 

corticospinal pathways, likely integrating touch sensation and cortical commands [22]. Ablation 

of ROR alpha reduced the light touch response, while overall motor behavior stayed 

unchanged. However, corrective paw placement notably deteriorated, indicating the importance 

of cutaneous feedback for corrective movements. Similarly Bui et al. [21] showed another 

interneuron type, dl3, to contribute to grasping. These interneurons receive low threshold 

mechanosensitive inputs and their ablation reduces grasp strength while leaving general motor 

function intact. This and previous work [23,24] highlights the diversity of sensory interneurons 

and further studies will likely reveal the function and circuitry of additional classes. 

 

In terms of network dynamics, peripheral proprioceptive feedback originating from muscle 

activation provides glutamatergic input to sensory interneurons, which can indirectly lead to 

muscle activation. Such excitatory feedback loops are intrinsically prone to oscillation [25]. 

Presynaptic inhibition of sensory afferents has been shown to function as a gain control system 

to prevent these oscillations to occur [26]. Altogether this recent body of work adds to the 

evidence that proprioceptive feedback strongly shapes locomotion [20,26,27].  
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Intraspinal GABAergic sensory neurons 

Since the description of spinal reflexes by Sir Charles Sherrington, mechanosensory feedback 

was classically thought to originate solely from peripheral sensory afferents projecting to the 

dorsal spinal cord. Recently, cerebrospinal-fluid contacting neurons (CSF-cNs) have been 

identified as intraspinal GABAergic sensory neurons in the ventral spinal cord. Even though 

initially described nearly a century ago in over vertebrate 200 species [28,29], the function of 

CSF-cNs is still poorly understood. Searching for the sour taste receptor in the mouse tongue, 

Huang et al. first described the expression of the TRP channel PKD2L1 in spinal CSF-cNs [30]. 

Recent detailed molecular characterization established CSF-cNs as coexpressing GABA and 

PKD2L1 in the spinal cord of zebrafish, mouse and monkey [31,32]. CSF-cNs originate from two 

distinct progenitor domains in both mouse  and zebrafish, suggesting functionally different 

subpopulations [33–36]. 

 

Based on the observation that PKD2L1 is specific to pH sensitive taste cells in the mouse 

tongue [37], Huang et al. showed increased firing rates when subjecting PKD2L1 expressing 

CSF-cNs to low pH in vitro [30]. More detailed pharmacological analysis in the mouse dorso-

vagal complex and the lamprey spinal cord led to the conclusion that acidification actually 

inhibits PKD2L1 and likely activates ASIC channels [38,39]. This is in accordance with later 

studies showing that CSF-cNs do not exhibit a proton current after acidification and activation by 

low pH is most likely due to ASICs [40]. PKD2L1 is instead activated by alkalization as well as 

hypo-osmotic shocks [38]. Recent work showed that PKD2L1 likely acts as a spike generator in 

CSF-cNs and that there is a bimodal response of CSF-cNs [41]. This study and following work 

in lamprey [42], suggests that firing is increased by alkalization through the activation of 

PKD2L1 and by acidification through the activation of ASIC channels. 

 

The initial in vitro studies showed that CSF-cNs are sensitive to changes of pH and osmolarity. 

Recent work identified mechanosensitive function of CSF-cNs in vitro [39] and in vivo [43]. In 

the lamprey spinal cord, CSF-cNs show mechanically-evoked firing [39], suggesting these cells 

may respond to CSF flow. However, from the in vitro studies in mouse and lamprey the 

relevance of this sensory response for behavior remains unclear. In zebrafish larvae, we 

showed that CSF-cNs are not recruited during fictive locomotion when muscle contraction does 

not occur [43]. In contrast, CSF-cNs respond to passive spinal cord bending as well as active 

muscle contraction. As CSF-cN activation is selective to the side of contraction, the 

mechanisms by which CSF flow activate CSF-cNs asymmetrically are unclear. Optogenetic 
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stimulation of CSF-cNs in zebrafish indicated that these cells can modulate the occurrence and 

duration of locomotion by connecting to ventro-lateral premotor glutamatergic interneurons 

[44,45]. Furthermore, impairing sensory function or vesicular release in CSF-cNs resulted in a 

decreased tail-beat frequency [43] in freely-swimming zebrafish larvae, indicating that this 

mechanosensory feedback shapes active locomotion. In mammals, the connectivity and 

physiological relevance of intraspinal CSF-cNs remain to be investigated. 

 

Conclusion and perspectives 

By combining genetics, viral tracing and calcium imaging, the work discussed above reveals 

how genetically identified sensory pathways feedback onto microcircuits in the spinal cord and 

shape motor output. Segregated sensory feedback from DRGs is integrated by different 

subtypes of interneurons, which form an overlapping network to generate the segregated output 

underlying muscle activation [46,47].  

 

While the different types of sensory afferents reaching the spinal cord have been known for a 

long time, the investigation of intraspinal GABAergic sensory cells and their corresponding 

sensory stimuli will likely add complexity to the picture. Changes in pH could be an important 

signal for spinal cord circuits but to what extend pH varies in the CSF has not yet been 

extensively measured under physiological conditions. Mechanical feedback from spinal bending 

can provide important information during locomotion in aquatic animals such as zebrafish and 

lamprey. However, to what extend spinal bending happens in mouse spinal cord and whether 

activation of CSF-cNs plays a role in quadruped locomotion remains to be investigated. 

 

Over the recent years, proprioceptive feedback emerged as a focus of research in the field of 

spinal cord injury. Significant efforts are put into promoting axonal regeneration across the 

lesion to regain lost drive to spinal circuits. Yet, it has long been recognized that simple training 

can improve locomotor deficits after spinal cord lesion [48]. This observation has led to the use 

of epidural stimulation to activate sensory motor reflex circuits to provide the necessary 

excitation to initiate locomotion in cats and rats  [49,50]. These initial findings were followed by 

epidural stimulations combined with locomotor training in patients with spinal cord injury [51–

53]. Improvements to this method were recently achieved in rats by using epidural stimulation in 

a closed loop system where the stimulation protocol was adapted to the leg position in real time 

[54] and optimized with computational modeling [55].  
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As promising as these results are, epidural stimulation remains a relatively crude method and 

the underlying mechanisms are poorly understood. Continuing efforts in understanding the role 

of sensory feedback and signal processing in the spinal cord will not only advance our basic 

understanding of spinal microcircuit computation but should have very direct effects in the 

treatment of human spinal cord injury in the future. 
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Figure legends 
 
Figure 1 
 
Sensory feedback circuits in the spinal cord. Peripheral sensory information is carried by 

dorsal root ganglion (DRG) neurons and provides excitatory input either directly to motor 
neurons (MNs) or to the spinal interneuron (IN) network. External inputs include the 
sensation of temperature, pain, itch and chemical irritants as well as mechanical touch. 
Internal peripheral sensation comes from mechansosensitive inputs from muscle spindles 
and Golgi tendon organ (GTO). Inside the spinal cord, inhibitory feedback from 
cerebrospinal fluid-contacting neurons (CSF-cNs) carry information about the bending of 
the spinal cord as well as pH and osmolarity of the cerebrospinal fluid (CSF). The IN 
network integrates peripheral and intraspinal sensory inputs as well as supras pinal 
commands and provides patterned inhibition and excitation that ultimately lead to rhythmic 
MN activation. 


