S. Grillner and T. Jessell, Measured motion: searching for simplicity in spinal locomotor networks, Current Opinion in Neurobiology, vol.19, issue.6, pp.572-586, 2009.
DOI : 10.1016/j.conb.2009.10.011

F. Delcomyn, Neural basis of rhythmic behavior in animals, Science, vol.210, issue.4469, pp.492-498, 1980.
DOI : 10.1126/science.7423199

A. Lundberg, Multisensory Control of Spinal Reflex Pathways, Prog. Brain Res, vol.50, pp.11-28, 1979.
DOI : 10.1016/S0079-6123(08)60803-1

E. Schomburg, N. Petersen, I. Barajon, and H. Hultborn, Flexor reflex afferents reset the step cycle during fictive locomotion in the cat, Experimental Brain Research, vol.122, issue.3, pp.339-350, 1998.
DOI : 10.1007/s002210050522

L. Pichon, C. Chesler, and A. , The functional and anatomical dissection of somatosensory subpopulations using mouse genetics, Frontiers in Neuroanatomy, vol.45, p.21, 2014.
DOI : 10.1016/j.neuron.2004.12.015

S. Arber, D. Ladle, J. Lin, E. Frank, and T. Jessell, ETS Gene Er81 Controls the Formation of Functional Connections between Group Ia Sensory Afferents and Motor Neurons, Cell, vol.101, issue.5, pp.485-498, 2000.
DOI : 10.1016/S0092-8674(00)80859-4

J. De-nooij, S. Doobar, and T. Jessell, Etv1 Inactivation Reveals Proprioceptor Subclasses that Reflect the Level of NT3 Expression in Muscle Targets, Neuron, vol.77, issue.6, pp.1055-1068, 2013.
DOI : 10.1016/j.neuron.2013.01.015

D. Usoskin, A. Furlan, S. Islam, H. Abdo, P. Lönnerberg et al., Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing, Nature Neuroscience, vol.14, issue.1, pp.145-153, 2015.
DOI : 10.1038/emboj.2013.85

*. Li, C. Li, K. Wu, D. Chen, Y. Luo et al., Somatosensory neuron types identified by high-coverage single-cell RNA-sequencing and functional heterogeneity, Cell Research, vol.46, issue.1, pp.83-102, 2016.
DOI : 10.1038/cr.2015.149

B. Coste, J. Mathur, M. Schmidt, T. Earley, S. Ranade et al., Piezo1 and Piezo2 Are Essential Components of Distinct Mechanically Activated Cation Channels, Science, vol.330, issue.6000, pp.55-60, 2010.
DOI : 10.1126/science.1193270

A. Faucherre, J. Nargeot, and M. Mangoni, piezo2b Regulates Vertebrate Light Touch Response, Journal of Neuroscience, vol.33, issue.43, pp.17089-17094, 2013.
DOI : 10.1523/JNEUROSCI.0522-13.2013

R. Ikeda, M. Cha, J. Ling, Z. Jia, D. Coyle et al., Merkel Cells Transduce and Encode Tactile Stimuli to Drive A??-Afferent Impulses, Cell, vol.157, issue.3, pp.664-675, 2014.
DOI : 10.1016/j.cell.2014.02.026

S. Maksimovic, M. Nakatani, Y. Baba, A. Nelson, K. Marshall et al., Epidermal Merkel cells are mechanosensory cells that tune mammalian touch receptors, Nature, vol.139, issue.7502, pp.617-621, 2014.
DOI : 10.1038/nature13250

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4097312

S. Woo, S. Ranade, A. Weyer, A. Dubin, Y. Baba et al., Piezo2 is required for Merkel-cell mechanotransduction, Nature, vol.3, issue.7502, pp.622-626, 2014.
DOI : 10.1038/nature13251

*. Ranade, S. Woo, S. Dubin, A. Moshourab, R. Wetzel et al., Piezo2 is the major transducer of mechanical forces for touch sensation in mice, Nature, vol.516, issue.7529, pp.121-125, 2014.
DOI : 10.1016/S0304-3959(01)00492-4

*. Lukacs, V. De-nooij, J. Zaytseva, D. Criddle, C. Francisco et al., Patapoutian A: Piezo2 is the principal mechanotransduction channel for proprioception Using mouse conditional knockout lines for Piezo2, the authors of this study show that Piezo2 is the main channel for proprioception. Piezo2 deficient DRG neurons lost most of their mechanically induced currents and consequently Piezo2 conditional knockout mice had severe limb coordination deficits, Nat. Neurosci, vol.18, pp.1756-1762, 2015.

S. Vrontou, A. Wong, K. Rau, H. Koerber, and D. Anderson, Genetic identification of C fibres that detect massage-like stroking of hairy skin in vivo, Nature, vol.74, issue.7434, pp.669-673, 2013.
DOI : 10.1038/nature11810

K. Poole, R. Herget, L. Lapatsina, H. Ngo, and G. Lewin, Tuning Piezo ion channels to detect molecular-scale movements relevant for fine touch, Nature Communications, vol.7, p.20143520
DOI : 10.1042/BC20060039

D. Mccrea and I. Rybak, Organization of mammalian locomotor rhythm and pattern generation, Brain Research Reviews, vol.57, issue.1, pp.134-146, 2008.
DOI : 10.1016/j.brainresrev.2007.08.006

*. Djenoune, L. Khabou, H. Joubert, F. Quan, F. et al., Investigation of spinal cerebrospinal fluidcontacting neurons expressing PKD2L1: evidence for a conserved system from fish to primates This cross-species study establishes PKD2L1 as a marker for CSF-cNs across vertebrates and shows that CSF-cNs share the same markers and morphology in zebrafish, Front. Neuroanat, vol.8, p.26, 2014.

A. Orts-del-'immagine, A. Kastner, V. Tillement, C. Tardivel, J. Trouslard et al., Morphology, Distribution and Phenotype of Polycystin Kidney Disease 2-like 1-Positive Cerebrospinal Fluid Contacting Neurons in The Brainstem of Adult Mice, PLoS ONE, vol.99, issue.2, p.87748, 2014.
DOI : 10.1371/journal.pone.0087748.t001

URL : https://hal.archives-ouvertes.fr/hal-01123433

*. Petracca, Y. Sartoretti, M. , D. Bella, D. Marin-burgin et al., The late and dual origin of cerebrospinal fluid-contacting neurons in the mouse spinal cord, This elegant study explores the developmental origins of CSF-cNs in mouse and demonstrates the differential origin of CSF-cNs as in zebrafish while also highlighting developmental differences between the species, pp.880-891, 2016.
DOI : 10.1242/dev.129254

H. Park, J. Shin, and B. Appel, Spatial and temporal regulation of ventral spinal cord precursor specification by Hedgehog signaling, Development, vol.131, issue.23, pp.5959-5969, 2004.
DOI : 10.1242/dev.01456

P. Huang, F. Xiong, S. Megason, and A. Schier, Attenuation of Notch and Hedgehog Signaling Is Required for Fate Specification in the Spinal Cord, PLoS Genetics, vol.58, issue.6, p.1002762, 2012.
DOI : 10.1371/journal.pgen.1002762.s005

L. Yang, S. Rastegar, and U. Strähle, Regulatory interactions specifying Kolmer-Agduhr interneurons, Development, vol.137, issue.16, pp.2713-2722, 2010.
DOI : 10.1242/dev.048470

Y. Ishimaru, H. Inada, M. Kubota, H. Zhuang, M. Tominaga et al., Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor, Proceedings of the National Academy of Sciences, vol.103, issue.33, pp.12569-12574, 2006.
DOI : 10.1073/pnas.0602702103

O. Del-'immagine, A. Wanaverbecq, N. Tardivel, C. Tillement, V. Dallaporta et al., Properties of subependymal cerebrospinal fluid contacting neurones in the dorsal vagal complex of the mouse brainstem, J. Physiol
URL : https://hal.archives-ouvertes.fr/hal-01412836

*. Jalalvand, E. Robertson, B. Wallén, P. Grillner, and S. , Ciliated neurons lining the central canal sense both fluid movement and pH through ASIC3, Nature Communications, vol.347, p.10002, 2016.
DOI : 10.1038/ncomms10002

J. Bushman, W. Ye, and E. Liman, A proton current associated with sour taste: distribution and functional properties, The FASEB Journal, vol.29, issue.7, pp.10-109614, 2015.
DOI : 10.1096/fj.14-265694

O. Del-'immagine, A. Seddik, R. Tell, F. Airault, C. Er-raoui et al., A single polycystic kidney disease 2-like 1 channel opening acts as a spike generator in cerebrospinal fluid-contacting neurons of adult mouse brainstem, Neuropharmacology, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01413797

E. Jalalvand, B. Robertson, H. Tostivint, P. Wallén, and S. Grillner, The Spinal Cord Has an Intrinsic System for the Control of pH, Current Biology, vol.26, issue.10
DOI : 10.1016/j.cub.2016.03.048

*. Böhm, U. Prendergast, A. Djenoune, L. , N. Figueiredo et al., CSF-contacting neurons regulate locomotion by relaying mechanical stimuli to spinal circuits, The study also shows behavioral deficits in zebrafish larvae either missing PKD2L1 or impaired vesicular release, p.10866, 2016.
DOI : 10.1038/nn.3648

C. Wyart, D. Bene, F. Warp, E. Scott, E. Trauner et al., Optogenetic dissection of a behavioural module in the vertebrate spinal cord, Nature, vol.293, issue.7262, pp.407-410, 2009.
DOI : 10.1038/nature08323

*. Fidelin, K. Djenoune, L. Stokes, C. Prendergast, A. Gomez et al., State-Dependent Modulation of Locomotion by GABAergic Spinal Sensory Neurons, Current Biology, vol.25, issue.23, pp.3035-3047
DOI : 10.1016/j.cub.2015.09.070

Q. Ma, Population coding of somatic sensations, Neuroscience Bulletin, vol.196, issue.Suppl3, pp.91-99
DOI : 10.1007/s12264-012-1201-2

T. Bui, N. Stifani, I. Panek, and C. Farah, Genetically identified spinal interneurons integrating tactile afferents for motor control, Journal of Neurophysiology, vol.114, issue.6, pp.3050-3063, 2015.
DOI : 10.1152/jn.00522.2015

S. Rossignol, M. Martinez, M. Escalona, A. Kundu, H. Delivet-mongrain et al., Chapter 8 -The " beneficial " effects of locomotor training after various types of spinal lesions in cats and rats, Progress in Brain Research. Edited by Numa Dancause SN and SR, pp.173-198

Y. Gerasimenko, V. Avelev, O. Nikitin, and I. Lavrov, Initiation of Locomotor Activity in Spinal Cats by Epidural Stimulation of the Spinal Cord, Neuroscience and Behavioral Physiology, vol.33, issue.3, pp.247-254, 2003.
DOI : 10.1023/A:1022199214515

R. Ichiyama, Y. Gerasimenko, H. Zhong, R. Roy, and V. Edgerton, Hindlimb stepping movements in complete spinal rats induced by epidural spinal cord stimulation, Neuroscience Letters, vol.383, issue.3, pp.339-344, 2005.
DOI : 10.1016/j.neulet.2005.04.049

S. Harkema, Y. Gerasimenko, J. Hodes, J. Burdick, C. Angeli et al., Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study, The Lancet, vol.377, issue.9781, pp.1938-1947, 2011.
DOI : 10.1016/S0140-6736(11)60547-3

C. Angeli, V. Edgerton, Y. Gerasimenko, and S. Harkema, Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans, Brain, vol.137, issue.5, pp.1394-1409, 2014.
DOI : 10.1093/brain/awu038

U. Hofstoetter, S. Danner, B. Freundl, H. Binder, W. Mayr et al., Periodic modulation of repetitively elicited monosynaptic reflexes of the human lumbosacral spinal cord, Journal of Neurophysiology, vol.114, issue.1, pp.400-410, 2015.
DOI : 10.1152/jn.00136.2015

*. Wenger, N. Moraud, E. Raspopovic, S. Bonizzato, M. Digiovanna et al., Closed-loop neuromodulation of spinal sensorimotor circuits controls refined locomotion after complete spinal cord injury This study uses a closed-loop system to modulate epidural stimulation as a function of limb position. This feedback system led to marked improvements in motor control in spinalized rats, Sci. Transl. Med. 2014, vol.6, pp.255-133

E. Moraud, M. Capogrosso, E. Formento, N. Wenger, J. Digiovanna et al., Mechanisms Underlying the Neuromodulation of Spinal Circuits for Correcting Gait and Balance Deficits after Spinal Cord Injury, Neuron, vol.89, issue.4, pp.814-828, 2016.
DOI : 10.1016/j.neuron.2016.01.009