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Abstract

A simple model for charged ring polyelectrolyte is proposed, to describe their
thermodynamic properties. Starting from an analytical expressions previously ob-
tained for charged chains within the binding mean spherical approximation, we
present a method to determine suitable modifications in order to describe charged
rings. It is shown that the electrostatic excess thermodynamic properties can still
be computed from relatively simple formulas which involve a screening parameter
rB.

1 Introduction

We are pleased and honored to contribute to the Festschrift dedicated to the 70th birthday
of Vojko Vlachy, a well-known expert in the modelling of the structural and thermody-
namic properties of polyelectrolytes. The description of the thermodynamic properties of
polymers has made great progress with the various models developed by Wertheim [1, 2].
In these models, it was assumed that the polymers can be described as a set of spherical
sub-units linked together to form chains, rings, star polymers, etc. A thermodynamic per-
turbation theory (TPT) was developed in order to calculate the free energy of polymers
from the reference free energy of its dissociated constituents. From these free energies
other thermodynamic quantities such as the pressure can be deduced by differentiation.
This approach enabled one to develop analytical models of polymer properties. The sta-
tistical associating fluid theory (SAFT) is based on this approach [3, 4]. Thus, if neutral
polymers are assumed to be composed of hard spheres, the reference free energy is that
of a system of hard spheres for which accurate expressions are available.

Moreover, integral equations have also been developed to describe polymer chains
from the interactions between their subunits. This complementary approach allows one
to derive thermodynamic quantities such as the pressure, but also permits to describe
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the structure in terms of the radial distribution function between the various elementary
constituents of these polymers. This approach is particularly useful when the subunits
constituent of the polymer interact through a long-range potential . In this case the fact
that these subunits are linked together has a profound influence on these interactions,
which significantly changes the structure and thermodynamics of these systems. In par-
ticular, the integral equations were used to describe the properties of polyelectrolytes
made up of charged hard spheres in chain assemblies [5, 6, 7, 8, 9]. Important contribu-
tions to the development and application of this approach have been made by V. Vlachy
et al., particularly for spherical [10, 11] and flexible polyelectrolytes in explicit solvent
[12]. To solve these integral equations analytically, the mean spherical approximation
(MSA) was used as a closure relationship [13, 14, 15, 16]. For these charged hard sphere
chains, explicit expressions were established for the electrostatic contributions to the vari-
ous thermodynamic properties [8, 9]. The pressure computed using these expressions was
compared to those derived from simulation. These pressure can describe those deduced
from simulation for weakly charged polyelectrolytes [17].

Integral equations can also be applied to the description of polymers with other struc-
tures than simple chain: branched polymers or star polymers. However these equations
are not suitable to describe ring polymers. For uncharged rings, modifications of the ther-
modynamic perturbation theory have been developed [18, 19, 20, 21, 22]. By contrast, for
charged rings, there is currently no suitable expression for the electrostatic contributions
to the various thermodynamic properties usually calculated using integral equations. In
this article we present a method to obtain such expressions from suitable modifications
of the expressions established previously for charged chains.

We present in the next section how to obtain these expressions. In the following
section these expressions are applied to calculate the osmotic pressure for charged rings
in solution. A comparison is made with a similar calculation made for charged chains.
Finally, prospects of this work are presented.

2 Theory

The development of expressions for the electrostatic contributions to the various ther-
modynamic quantities (internal energy, Helmholtz energy, pressure) is carried out from
expressions previously obtained in the case of polyelectrolytes represented as chains of
charged hard spheres. These previous expressions were obtained from Wertheim Ornstein-
Zernike (WOZ) integral equations solved using the MSA approximation as a closure re-
lationship. We first present the model and the expressions. Then, changes to these terms
are presented in order to describe polyelectrolyte rings.

2.1 The model of fixed length polyelectrolyte

We consider a system with an arbitrary number of components m, with number density
pi, charge ez;, (e is the elementary charge) and hard core diameter o; in a solvent viewed



as a continuum of relative permitivity €,. We consider that the particles 1, 2, --- n with
21 = 29 = -+ =z, and 01 = 09 = -+ = 0, are the constituents of the polyelectrolyte
chain. There is also counterions ¢ of charge z., diameter o, and number density p. such
that the system is electroneutral. Possibly the system also contains coions of arbitrary
sizes and charges. The set of particles with indices 1, 2, --- n are participating in the
bonding to form the polyelectrolyte chains, while those with m 4+ 1,--- m are not. The
temperature of the system is 7', Boltzmann’s constant is kg and we use § = 1/kgT
throughout. Each hard sphere of the set of particles 2, -+ n — 1 has two sticky points, A
and B, randomly positioned on its surface. In contrast, spheres 1 and n have only one
sticky point and the counterions and coions have no sticky points. The pair potential for
this model is given by

ui;(12) = ull*(r) + ui(r ZUKL 12) (1)

where 1 and 2 stand for the spatial and orientational coordinates of two ions, i and j
are the indexes for the ionic species, ufi®(r) is the hard-sphere potential, ufl(r) is the
Coulomb potential, and Ué{L (12) is the short-ranged site-site potential responsible for
association. Hereafter K and L take the values A and B and denote the type of site. The
short-ranged site-site potential U% L( ) between sites K and L on ions i and j are defined

in terms of the Mayer function, KL (r), as
i (1) = exp[=BUS " (r)] = 1= Bji*o(r — o)) (2)

where BZI]{ L is an element of the matrix of the sticky interactions. The Coulomb potential,

ugl(r), is given by

i) = 2

with € = 47mege, and ¢y the permittivity of vacuum.
The thermodynamic properties of this model can be evaluated by using thermody-
namic perturbation theories [23, 24, 25, 26, 27] or by using the WOZ integral equations

8,9, 28, 29, 30, 31]. In both case it has been shown, that the thermodynamic properties
like the excess Helmholtz free energy AA, may be decomposed in three terms as

AA = AAHS+AAchain+AAel (4)

(3)

Er

in which AAS is the contribution from uncharged dissociated hard spheres, which was
computed using a classic expression [32]. AA%" is a contribution arising from association
between the subunits 1, 2, --- n of the chain regarded as being uncharged, and AA¢ is
the electrostatic contribution from charged associated hard spheres. The relation giving
the chain part of the free energy AA“"%™" is identical to that obtained in TPT1 or SAFT
approximations [1, 2, 3, 4].

The electrostatic contribution from charged hard sphere chains and counterions A A,
have been determined from the WOZ integral equations. By averaging the correlation
functions over the orientations of each site, the orientation dependence of the site-site po-
tentials can be eliminated to obtain the total orientation-averaged pair correlation func-
tion, h;;(r). As an outcome of the attractive potentials defined in Eq. (2), the functions
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h;j(r) have additional short range attractive contributions proportional to the orientation-
averaged Mayer functions, fX*(r). Initially, Wertheim developed his integral equations
for particles with binding off-center sites with fixed positions. So the corresponding corre-
lation functions are orientation dependent. As a simplification, the orientation-averaged
total pair correlation functions h;;(r) can be coupled with the orientation-averaged direct
correlation functions ¢;;(r) through a set of approximate orientation-averaged integral
equations [1, 2] called Wertheim-Ornstein-Zernike (WOZ) equations. This procedure has
been proposed and used initially to describe flexible polymers [33, 34]. WOZ equations
couple total correlation functions h;;(r) and direct correlation functions c;;(r). For each
pair of particles of species ¢ and j, h;;(r) and c;;(r) are matrices, consisting of the partial
correlation functions for the different bonding states. Partial correlations corresponding
to species 7 and j simultaneously unbound (denoted with superscript 00) have a special
role in the definition of the closure relations for the integral equations. In particular, a
MSA-like closure relation has been used to solve these equations, namely for the direct
correlation functions one set ¢ (r) = ufi(r) for r > oy; [35, 36]. The analytic solution
of this Binding (or Associative) Mean Spherlcal Approximation (BiMSA) was obtained
in the case of polyelectrolytes represented as charged hard sphere chains [5, 6, 7, 8, 9].
Explicit expressions were obtained for the thermodynamic properties in terms of a scaling
parameter[8, 9], I'Z, similar to the Debye-Hiickel s screening parameter. The electro-
static contribution to the internal energy AE® can be deduced from the solution of the
WOZ equations. From the thermodynamic relation 0fA/0S = FE, the electrostatic con-
tribution to the Helmholtz energy AA®, can be deduced by thermodynamic integration.
Then, the osmotic and mean activity coefficients can be calculated by differentiation of
the Helmholtz energy AA. To simplify the presentation of the equations, we will now
consider that all the sub-units forming the chain have the same diameter. The generaliza-
tion to chains made of subunits of arbitrary size is straighforward but tedious. In previous
work different closure relations have been studied. A chain approximation that takes 3
body hard core exclusion into account has been introduced [8]. It has been shown that
this triplet exclusion chain approximation (TECA) satisfies explicitly the Debye Hiickel
limiting law for all lengths n, and also for all charge combinations. Now we will consider
only the results obtained with this closure.

2.2 Thermodynamic properties of polyelectrolyte chains

Hereafter, we will consider the case of the charged chains constitued of the hard spheres
1, 2, --- n having the same diameter ¢ and with counterions and coions of arbitrary sizes
and charges. In this case, the internal energy is given by [§]

n—1n—k n k—
Eel = M 4 +l z+ —1 2 5
£ Zkak * ppchI; i+1)o ppkgz i+ 1o )
where p, = p1 = - = p, and X and M} are given by
T 2
2w —nlo?
Xy 6



1 T 2+ 1N ok
MY =—|X)— 2| = — 7
= -a T, (7)
and with
1
- 8
YT 1115 (8)
The screening parameter is given by
512 7T625 9 n—1n—~k ) n k—1 )
r°) = [Z P (X0) 400 D0 D XXy o DRy 1 (9)
€ L% k=1 i=1 k=2 i=1
with
n—1n—k k-|— ) n k—1 O'Xk )
" mhﬁmﬁ+%22 HYERLY G Zw (10)
k=1 i=1 =2 i=1
we have used the usual notation [14, 15, 16]
A=1-m(/6 (11)
k

The electrostatic part of the Helmholtz free energy has been calculate by charging up the
system of the discharged chains and counterions, which leads to:

LN
3

From the above equations, the excess osmotic coefficient ¢ is obtained by differentiation

BAAY = BAE + (13)

(bel:_

D8] me? )
u _ 76 2 [nT} (14)

3mCo e ™
where (j is given by Eq.(12 ).

Simplifications occur when the chain is composed of particles with the same charge

21 = 2y = -+ = 2y, it is a polyelectrolyte with a charge z, = nz;. In this case we have [8]:
N M0+ 22(0% L) S pen? (15)
= — z1ln iV,
€ Pre ' ' =+ 1>0y c:n—l—lp

€ i=1 c=n+1

2 71—626 [ 9 n—1 N m 9
[FB} = Pp (Xlo) <n +2> (n—1)y > + > pe ()(CU) ] (16)
The sum involved in this eq. can be express in a more explicit form, which leads to

g et p () (s 2 (-1 = 220)) 3 (X£)2] (17)

€ -y 1 -y c=n—+1
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with

T_ T
T T oA

n—1 - m
n—iv .
Ppo1 XY (n 2> 13/’) + Y pcacXCO] (18)
=1

c=n+1

In practice, the I'? parameter is evaluated first using Eq. (9). Then the various
thermodynamic quantities can be deduced. Egs. (5)-(18) constitute a set of expressions
specifically adapted to the description of linear polyelectrolyte solutions. Our goal now
is to modify these expressions for a description of solutions of a polyelectrolyte made
up of rings. For this, we will first characterize each of the contributions introduced
earlier. Thus, eq. (5), giving the internal energy of a polyelectrolyte solution, consists of
three contributions. The first is the classic contribution to the MSA approximation when
considering a dissociated electrolyte [15] . The following two contributions are double
sums on the constituents of the chains. The first double sum describes the interactions
between the components k and constituents k£ + ¢, with 1 < i < n — k. The second double
sum describes the interactions between the constituents k and k — 7, with 1 <7 < k — 1.
All the components k are included in these double sums.

To give more physical meaning to the various parameters involved in these equations
we consider the limit of great dilution. In this limit T'Po < 1, X — 2, and the y — 1.
Within this limit, the first double sum runs over z;2;;€?/((i+1)0) which is the Coulomb
interaction energy between ions k and k + i separated by distance (i 4 1)o. Similarly, the
second double sum is applied to zzz_;e*/(e(i + 1)) which is the Coulomb interaction
energy between ion k and k — i at distance (i 4+ 1)o. Then, the doubles sums, involved in
the expression of AE®, account for the Coulomb interactions between all the components
within a chain. At finite concentration, when all the constituents of the chains have
the same size o, we note that all interactions between nearest neighbors are equal to
(e?/€)(zx XL, 1/(20). Similarly, all the interactions between second neighbors are equal to
(e*/€)(z, X5/ (30), and so on ...

2.3 Thermodynamic properties of polyelectrolyte rings

Now we will consider the amendments to the internal energy when the chains are closed
rings. To perform this conversion, we add a connection between the particles 1 and n
in each of the chains. We assume that this induces no modification on the first term in
the expression for AE®. By contrast, we will modify the following two terms to account
for connectivity changes occurring during the transformation of a polyelectrolyte chain
into a ring. This has the effect of changing all the interactions between the components
k such that 1 < k < n. Thus for chains, in the first double sum one finds the term
21 X% /(no) in eq. (5), which accounts for the interaction between the components 1
and n. In the rings, the particles 1 and n are bonded. To more realistically describe the
interactions between these particles in a ring, we consider that the term associated with
this pair is of the same form as that between 1 and 2. Then, we replace the previous term
by 21X%/(20). Similarly for each of the pairs (k and k + i in the first double sum, and
k and k — 7 in the second double sum) we assume that the shortest distance in the ring



is the most realistic. Similarly, all interactions between the polyelectrolyte components
of pairs are changed. We assume for simplicity that interactions between first, second,
..., i-th neighbors within the polyelectrolyte keep the same forms they have in the case of
polyelectrolytes chains.

So, for chains, at finite concentration, when all the constituents of the chains have the
same size o, we note that all interactions involved in eq. (5) between nearest neighbors
are equal to (e?/€)(zx Xy, ,/(20). Similarly, all the interactions between second neighbors
are equal to (e?/€)(z X0, 5/(30), and so on ... To be more specific, in the equation (5)
for AE® the interaction between the i-th neighbors uses the term z,X2..y*/((i + 1)0)).
Similarly, in the eq. (9) for [['?]2, the interaction between the i-th neighbors uses the term
X, X0yt And finally, in the eq. (10) for n”, the interaction between the i-th neighbors
uses the term o X2,y*/(i + 1)). We keep the same terms in the corresponding equations
for the rings.

Then, in order to determine the sums involved in the expressions of AE, I'B and n*
for charged rings, we must first count the number of first neighbors, second neighbors,
etc, for a n components ring. For a ring containing n particles there are n(n — 1)/2
interactions. When counting the neighbors, we first count the number of first neighbors
which form a first group of interactions. Next we count the number of second neighbors
which constitute a second group, and so on. We call v the total number of groups, for a
given n.

When n is odd, all the groups contain n pairs of interactions. Knowing the total number
of interactions between pairs and the number of interactions in each group, we deduce
that v = (n — 1)/2 when n is odd.

When n is even, the group of interactions between the most distant pairs contains n /2
interactions. This leaves n(n — 2)/2 interactions spread in the v — 1 other groups, that
contain n pairs of interactions. So, v = n/2 when n is even.

Now for simplicity, we consider rings made of particles with the same diameter and the
same charge z;. This introduces the simplification A = XY = --- = XY, In the case of

2
chains, the double sums involved in the expressions for AE®, [FB} and n’, are replaced
by simple sums (see eqs. (15, 16, 18)). Similarly, for the rings, the double sums are also
replaced by simple sums on the interactions between the i-th neighbors, with 1 <17 < v.

When n is odd, we obtain

2 (n—1)/2 . -
AEEZ & MO ZXO g . c]\4'0 19
= [nppzl( LA ; (i+1)o” +c:nz+1pz ’ "

2 el 9 (n-1)/2 m 9
o] lnp,, (x0) (1+2 5 yz)+ 5 (xg)] 20)

c=n—+1
with
T T 0 (n—1)/2 1 ) m 0
= — |np,o0 Xy [1+2 —y' | + O X, 21
N =55 e ; 1Y C:%:Hp (21)




In the same way, when n is even, we obtain

o S R 1Ok WP
AR — & MO 42X oY 2 o ezeM .
o | et | My 2 ; (i+1)o” i (n+2)o 4 c:zn;rlp o )
2 me?f 2 (22 i .m S ’
[FB} = [npp ()(10) (1 +2 Y Y4y P+ Pe (Xco) (23)
i1 c=n+1
with
0w 0 22 y"? S 0
. o140 Lo, X 24
n 2A npPpo1y + Zzzl 1+ 1y * (n+2) " c=n+1p Terte <>

We note that the new equations (19, 22), obtained for AE® satisfies the relation

8 A Eel _ [1’\3]2
ors T
This property allows us to deduce expressions of the Helmholtz free energy and pressure,
as in the case of charged chains. We find similar expressions for the free energy given by

eq. (13) , and the pressure given by eq. (14). However, the parameters I'® and n’ must
be calculated either with eqs (20, 21) if n is odd, or with eqs. (23, 24) if n is even.

B (25)

3 Application

The osmotic pressure can be computed from the previous equations. The uncharged part
of the osmotic pressure can be calculated with the hard sphere term given in [32] and the
TPT theory for the rings [18, 19, 20, 21]. In the case of charged chains, the uncharged
contribution seems to be the dominant part of the computed osmotic pressure. In order
to show the difference between the results obtained for polyelectrolyte chains and rings,
we present the electrostatic contribution to the osmotic coefficient in Figure 1. The Debye
Hiickel limiting law previously computed [8] is also reported. We present the result for
polyelectrolytes with 32 monomers of equal valency z; = —1 and diameters o7 = 0.857
nm. The counterions have a valency z. = 1 and the same diameter. The Bjerrum length
is related to the diameter by: Lp = 0.8330. By comparing the curves calculated for
chains and rings we see that they tend towards the same limit for large dilutions and
high concentration. In both cases the Debye Huckel limiting law is satisfied. The term
proportional to [I'?]3 is generally dominant in the expression of the pressure (14). The
expressions of the screening parameter I'Z, given by eq. (16) for chains, and by eq. (23) for
rings, take similar values. At intermediate concentrations, the electrostatic contribution
is more important for the rings because the charged sites interact more with the other
charges than in the case of a linear chain. The number of nearest neighbors is greater for
rings for chains, the electrostatic repulsion is probably more important in the case of the
rings.



4 Conclusion

In this work, we have studied the thermodynamics of ring polyelectrolytes in solution.
The development of expressions for the electrostatic contributions to the various ther-
modynamic quantities has been carried out from amendments to expressions previously
obtained in the case of chains of charged hard spheres. Expressions for the Helmholtz
energy, internal energy, and activity and osmotic coefficients have been obtained. It is
shown that the electrostatic excess thermodynamic properties can still be computed from
relatively simple formulas which involve a screening parameter I'?. The electrostatic
contribution to the osmotic coefficient has been computed for polyelectrolyte rings and
compared with the corresponding expression for chains. As was said earlier, simulations of
linear polyelectrolytes have already been carried out. There are also simulations of rings
whose subunits interact through Lennard-Jones potentials [22]. But there are currently
no numerical simulations of the type of system considered in this article. They could not
be achieved in the present work, but it would be interesting to make such simulations in
future work.

This work could be applied to the description of small cyclic molecules uniformly
charged such as the benzene-hexacarboxylic (mellitic) acid and its neutral and acidic salts.
On a ring polyelectrolyte, when the distance between charged subunits is small compared
to the Bjerrum’s length , the condensation of counterion could probably be considered in
the same way as for a linear polyelectrolyte. This phenomenon may be taken into account
in the integral equations, by considering on each of the charged sub-units, an additional
site allowing the association of a counterion, as was done in previous work using ther-
modynamic perturbation theory [37]. The inclusion of additional sites, for specifically
binding counterions, has recently been described for spherical polyelectrolytes [38]. The
extension of this work to linear polyelectrolyte is currently being studied. The expres-
sions describing the thermodynamic properties of linear polyelectrolyte with association
of counterions, could also be suitable to the description of cyclic polyelectrolytes. More-
over, the method used in this study to derive the thermodynamic expressions adapted to
uniformly charged rings, may also be applied subsequently to the case of cyclic molecules
comprising only one or two charged groups, which case is much more common in solution
chemistry.
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Figure 1: The electrostatic part of the osmotic coefficient of polyelectrolyte solution .
Solid line: result for chains. Dash-dotted line: result for rings. Dashed line: the limiting
law.
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Highlights
e A model for the thermodynamics of charged ring polyelectrolytes is proposed.

e We modify expressions for charged chains within BIMSA, in order to describe rings.

e The electrostatic contribution to the osmotic coefficient has been computed.
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